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Abstract. In this paper, a Conv-BiLSTM hybrid architecture is pro-
posed to improve building energy consumption reconstruction of a new
multi-functional building type. Experiments indicate that using the pro-
posed hybrid architecture results in improved prediction accuracy for two
case multi-functional buildings in ultra-short-term to short term energy
use modelling, with R2 score ranging between 0.81 to 0.94. The pro-
posed model architecture comprising the CNN, dropout, bidirectional
and dense layer modules superseded the performance of the commonly
used baseline deep learning models tested in the investigation, demon-
strating the effectiveness of the proposed architectural structure. The
proposed model is satisfactorily applicable to modelling multi-functional
building energy consumption.
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1 Introduction

As the world awakens to the need to protect and conserve the natural environ-
ment, building energy efficiency continues to take centre stage in global sustain-
ability issues. The commonly used techniques for building energy consumption
prediction (ECP) are classified under engineering methods, statistical methods
and artificial intelligence-based methods [2]. Statistical methods for building
ECP insist on assumptions such as stationarity of historical data, while engi-
neering methods tend to be time-consuming as they try to account for every
building parameter. Machine learning methods may fail to identify intricate
building energy patterns buried in the ultra-short-term timeseries data. Deep
learning methods have been adopted for building ECP with successful results,
mainly because of their automatic feature extraction and higher information
abstraction capabilities.

Research on building energy consumption prediction (ECP) has been un-
derway for decades. Building ECP has been extensively researched for many
building types such as office buildings, schools, hotels, commercial and residen-
tial buildings, as highlighted in the review paper [21]. However, multi-functional
building types have been marginally represented in building energy literature.
Data-driven techniques have been marginally applied in sports and recreation
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facilities’ energy consumption prediction studies. A toolkit was proposed for
preliminary estimation of power and energy requirements in sports centres [5].
Artificial neural networks were designed using simulated data to predict and
optimise the energy consumption of an indoor swimming pool [23].

1.1 Deep learning models review

The deep learning group of techniques provide a practical approach to building
energy consumption prediction. The monthly energy consumption of customers
of an energy company was forecasted in [6] using three deep learning models.
The fully connected MLP, Long Short-Term Memory neural networks and con-
volutional neural networks were tested on their prediction skill based on the
MAE, RMSE, MSE and (R2) metrics. The LSTM model was reported as the su-
perior model, while both the MLP and CNN did not show significant differences.
Deep recurrent networks and MLP were studied for residential and commercial
buildings for medium to long term predictions [17]. The findings highlighted
the better performances of the recurrent networks. Deep highway networks and
ensemble-based tree methods were used in short-term building energy predic-
tion, with the former reported being superior to its counterpart models in [1].
Day-ahead multi-step forecasting of commercial buildings energy consumption
was studied in [9] using CNN, recurrent neural network and seasonal ARIMA
models. In this work, the temperature-based CNN model was reported as the su-
perior model using one-year-long historical data, while the SARIMA model was
noted as the inferior model. At the district level, [3] demonstrated the superior
performance of the deep learning models for short-term load forecasting in com-
mercial buildings; however, a deterioration in performance as forecasting horizon
increases was noted. An effective genetic algorithm-LSTM hybrid was developed
in [4] for buildings ECP. Aggregated power load and photo-voltaic power output
were successfully predicted using a recurrent neural network and an LSTM hy-
brid model [22]. The aggregate residential building active power use estimation
was tested using conditional restricted Boltzmann machines (FCRMB) and fac-
tored restricted Boltzmann machine, artificial neural network, recurrent neural
network and support vector machines by [16] for different prediction horizons,
and the authors reported the superiority of FCRMB over other tested mod-
els. The IHEPC dataset on the UCI Machine Learning Repository spans, which
over almost four years, was used to develop a CNN-LSTM model which outper-
formed the prior FCRMB model in [13]. In another work, a CNN and multilayer
bidirectional LSTM model was proposed [20] and outperformed other rival tech-
niques in excessive power consumption prediction. A CNN-GRU hybrid model
was proposed [18] for short-term residential energy consumption prediction. In
this study, two benchmark datasets, namely the AEP and IHEPC, were consid-
ered, and the proposed CNN-GRU architecture outperformed the rival machine
learning and deep learning models. More recently, attention mechanism was in-
corporated on a CNN-BiLSTM [15] in daily load forecasting and proved effective.

The authors propose a Conv-BiLSTM model that can capture salient spa-
tial features using a convolution operator within the LSTM cell on multiple-
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dimensional data. After careful examination of the input timeseries features, the
architectures of the conventional CNN and LSTM models separately, a hybrid
model Conv-BiLSTM is proposed. In the hybrid Conv-BiLSTM model, both the
input-to-state and state-to-state cells have convolutional structures; that is, con-
volutions on the input timeseries are directly inputted into each BiLSTM unit
which processes the cell states in both forward and backward directions. The
proposed hybrid model shows superior accuracy for building ECP because of
its robust architectural structure. Most of the above-cited works using hybrid
models relate mostly to residential buildings ECP. However, in this study, we
consider a unique multi-functional building type marginalised used in building
energy studies.

The rest of the paper is organised as follows: Section 2 introduces the pro-
posed hybrid Conv-BiLSTM model, the rest of the forecasting methods used in
this study are described in section 3, Section 4 gives a detailed description of the
two case study datasets, Section 5 gives the results and discussion, and Section
6 highlights the conclusions and future works.

2 Proposed Hybrid Convolutional Bidirectional Long
Short-Term Memory (Conv-BiLSTM)

Hybrid deep learning models are designed by the fusion of conventional deep
learning models that combine multiple models by diversifying the input features
and varying the initialisation of the weights of the neural network. The Hybrid
Conv-BiLSTM model is implemented to capture the advantages of the CNN
and BiLSTM techniques to improve the overall prediction accuracy. The Conv-
BiLSTM is a different hybrid variant of the CNN-BiLSTM model, which does
a convolution operation within the BiLSTM cells. The Conv-BiLSTM layer is
a recurrent layer that replaces the usual matrix multiplication by a convolu-
tion operation. The convolution operator is applied directly to read input into
the LSTM cells, that is, during the input-to-state transitions and during the
state-to-state transitions [19]. The Conv-BiLSTM compresses the building en-
ergy consumption sequence into a hidden state tensor that is then decoded by
an LSTM layer which processes this input in both the forward and backward di-
rections to give the final prediction. The critical equations of the Conv-BiLSTM
cell gates are given in equations 1-5;

It = σ(WXI ∗Xt +WHI ∗Ht−1 +WCI ◦ CT−1 + bI) (1)

Ot = σ(WXO ∗Xt +WHO ∗HT−1 +WCO ◦ Ct + b0) (2)

Ft = σ(WXF ∗Xt +WHF ∗Ht−1 +WCF ◦ Ct−1 + bF ) (3)

Ct = F◦C + it ◦ (WXC ∗ xt +WHC ∗ ht−1 + bC) (4)
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Ht = O ◦ tanh(Ct) (5)

Fig. 1: An illustration of the implemented hybrid Conv-BiLSTM operational
workflow.

The convolutional product and element-wise multiplication operations are
denoted by “∗” and “◦” respectively. In (1-5), It, Ft, and Ot are the input, forget,
and output gate, respectively. W represents the weight matrix, xt is the current
input data, ht−1 is the previously hidden output, and Ct denotes the cell state
at a given timestep t. While the traditional LSTM equations use convolution
operation (*), the Conv-BiLSTM instead uses matrix multiplication between
W and Xt ,ht−1 for every gate. This matrix multiplication replaces the fully
connected layer with a convolutional layer which leads to a reduced number
of weight parameters in the model. The default expected input shape must be
of the form [samples, timesteps, rows, columns, channels], which is similar to
the form used with the image data. However, the building energy consumption
timeseries data is in sequence form, which is one dimensional (1D). As such, the
data is read as a row with columns. In this case, since data is in the 5-minutes
interval, 60 minutes at a 5-minutes interval gives 12 columns per row. When
using the Conv-BiLSTM, the previous BEC timeseries of 60 minutes is split into
two subsequences of thirty minutes each (that is, two rows with six columns
each), and the Conv-BiLSTM can then perform the convolutional operation on
each of the two subsequences. This sequence-splitting operation results in a 5D
input tensor with shape [s, 2, 1, 4, 9] denoting sample, timestep, rows, columns
and channels, respectively, as shown in Figure 1. Finally, the hidden layer of the
Conv-BiLSTM encoder is defined and flattened in readiness for decoding using
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the traditional BiLSTM operation discussed below. The last layer is made up
of the fully connected layer (dense layer), which processes the output from the
BiLSTM operation.

3 Forecasting Methods
This section briefly discusses the forecasting methods adopted in this study
for multi-functional buildings ECP, namely, the linear regression model, CNN
model, LSTM model and BiLSTM model.

3.1 Baseline Convolutional Neural Networks(CNN)

This type of neural network was originally designed to handle image data and
has achieved the state of the art results in the field of computer vision on tasks
such as image classification, object recognition, among other tasks. Through rep-
resentation learning, the CNN model can extract useful features automatically
from timeseries data by treating a sequence of observations as a one-dimensional
image. The CNN model [14] is relatively easy and faster to train because the
weights are less than a fully connected architecture. In performing the ECP,
a predetermined number of energy consumption historical observations are fed
into the convolutional layers, which perform a one-dimensional convolution of
this data. The output from the convolution operation is then passed to the fully
connected layers for final processing.

3.2 Baseline Long Short-Term Memory (LSTM)

The LSTM model reads a one-time step of the sequence at a time and then
builds up an internal state representation. During learning a mapping function
between inputs and outputs, LSTMs, unlike MLPs and CNNs, can remember the
observations seen previously and can deduce their importance to the prediction
task, and since the relevant context of inputs changes dynamically, LSTM can
adapt and respond appropriately [12].

3.3 Bidirectional LSTM (BiLSTM)

The LSTM is unidirectional, which has one group of hidden layers for the energy
consumption sequence in the positive time directions. However, the bidirectional
LSTM (BiLSTM) [19] maintains two groups by adding energy consumption input
sequence in the negative time direction. The two groups of hidden layers are
independent of each other, and their outputs are concatenated and linked to the
same output layer. The mathematical representations describing the BiLSTM
architecture are the same as that of the unidirectional LSTM except that there
exist two hidden states at timestep t, that is Hf

t and Hf
t representing the forward

and backward hidden states, respectively. The final hidden states representation
Ht results from merging Hf

t and Hf
t is as follows [19]:

Ht = Hf
t +Hf

t (6)
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4 Datasets Description

This section summaries the datasets used for developing and evaluating the
different forecasting methods for ECP.

Fig. 2: An illustration of the weekday energy consumption profiles at the two
leisure centres.

The datasets comprise two and half years of 5-minute resolution energy con-
sumption observations for two leisure centres precisely, from May 2017 to De-
cember 2019. Waves leisure centre’s (WLC) aggregate energy use profile is made
up of 14 individual meters while Don Tatnell leisure centre’s (DTLC) energy
use’s timeseries is a total of 5 electrical meters, all from various sections within
the individual leisure centres.

Fig. 2 shows the 24-hour weekly energy consumption profiles of the two leisure
centres. There is substantial similarity in the 24-hour energy use profiles between
the two centres. Energy consumption rises around the 4th hour and begins drop-
ping off at about 9 pm for most days of the week. However, on weekends, partic-
ularly on Sundays, energy consumption drops off a little earlier, between 5 pm
and 6 pm for both centres.

The 5-min resolution energy consumption profiles for the two buildings de-
mand dataset was resampled to 15 minutes, hourly datasets to test the model
performances on forecasting the next step of energy consumption and facilitate
merging with climatic data. The resampling was achieved through downsampling
the 5min energy consumption timeseries into 15min and hourly bins and taking
the sum values of the timestamps falling into a bin.

The violin plots highlighted in Figure 3 shows the observed density distri-
bution of different electrical energy use values at the two centres. The box-plot
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(a) Waves leisure centre (b) Don Tatnell leisure centre

Fig. 3: violin plots showing the energy consumption distribution at the two cen-
tres

component (inner section) with a thick black line in the centre represents the
inter-quartile ranges of the electrical energy profiles (between 15 kWh and 25
kWh) for WLC and between 4 kWh and 10 kWh for DTLC. The little white
dot points at the centre represent the median electrical energy use values of 21
kWh and 9 kWh for WLC and DTLC, respectively. The long tapered top end
sections show the existence of few very high energy use values at both centres.
These high values were outliers from system recording errors. Any values per
5-minute interval above 35 kWh for WLC and above 19 kWh for DTLC were
deemed outliers; as such, they were removed and replaced by the observation
occurring immediately after (backfilling).

On the other hand, the broader section of the violin plots shows high fre-
quency (occurrence) of electrical energy use-values. The violin plots provide a
vital visual perspective that assists in data anomaly detection and designing a
robust modelling process for electrical energy forecasting.

4.1 Input processing

The building energy time-series data needs to be transformed into supervised
learning to allow reading by the model. The sequence data is reframed into
pairs of input and output variables using the sliding window method. The inputs
comprise values of the current BEC observation t and previous BEC observations
at times t − 1,t − 2....t − n which predict the output BEC observation at time
t+ 1.The length of the sliding window is defined based on [11],[8].

4.2 Data Standardisation

The differences in numerical ranges between the input and output values require
that the dataset be standardised. Standardisation scales each feature to have
a distribution that is centred around 0, with a standard deviation of 1. Stan-
dardisation allows for comparability among input datasets, and it also enhances
the training efficiency of models since the numerical condition of optimisation is
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improved. The mean and standard deviation for each feature is calculated, then
the feature is scaled using equation 7.

z = (xi − µ)/σ (7)

where z is the standardized value, xi is the observed energy consumption value,
µ is the mean, and σ is the standard deviation of the electrical energy datasets.

4.3 Evaluation metrics

An evaluation of the models’ accuracy is done using the mean absolute error
MAE, root-mean-square error RMSE, and R-squared (R2) metrics. The (R2)
metric defines the proportion of variance of the dependent variable that is ex-
plained by the regression model. A low (R2) value closer to 0 highlights a low
correlation level, while an(R2) closer to 1 means a strong correlation exists be-
tween considered variables. The MAE metric calculates the positive mean error
value for the test data. Calculating the root of the mean square error gives a
metric called root-mean-square error RMSE. The RMSE penalises significant
errors, which makes it a strict and reliable metric. One cannot look at these
metrics in isolation in sizing up the model; rather, all the metrics must be con-
sidered at the same time. These performance evaluation metrics are calculated
using equations (8-10)

R2 = 1−
∑

(y − y′)2∑
(y − ȳ′)2,

(8)

RMSE =

√
Σ

(y′ − y)2

N
, (9)

MAE =
1

n

n∑
i=1

|y′ − y| (10)

where y is the measured energy consumption value, y′ is the predicted energy
consumption value, and N represents the number of data pairs considered.

5 Results and discussion

This section describes the results for the next 5 minutes (mins), 15mins and
hour for multi-functional buildings ECP, given the previous energy consumption
observations and the calendar timestamps. The ultra-short-term to short-term
forecasts are crucial for developing strategies that facilitate the safe, economical
and efficient operation of multi-functional buildings. Table I and Table II show
the testing phase results using the considered models for the next step energy
consumption prediction for DTLC and WLC, respectively. The results of the
most influential previous energy consumption values (lags) are discussed here.
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5.1 Implementation details

The data was split into 70% training, 10% validation and 20 % testing while
maintaining the temporal order of the timeseries data. Temporal order mainte-
nance, unlike random sampling, helps avoid information’ leaking’ into the train-
ing set; that is, it ensures no future values infiltrates the training set.

All learning algorithms were implemented in the Python programming lan-
guage on google collaboratory [7] online platform. The deep learning models
were built using Keras library with Tensorflow backend [10]. All development
and experiments were conducted on a macOS Mojave (2.90GHz Intel Core i9
16GB 2400 MHz DDR4) machine.

5.2 Prediction using 5-minute resolution

Prediction using five-minute resolution has been chosen because it is useful in
near real-time market activities such as resources dispatch and anomaly de-
tection. The next 5min of energy consumption has been performed using the
previous 25-minutes of historical energy consumption data and calendar data
inputs, namely, the hour of the day, weekday or weekend, the week of the year,
the month of the year, the quarter of the year, the day of the month. Fig. 4 shows
extracted snapshots of the ground truth and the next 5-minutes predictions per-
formance of the tested models at DTLC and WLC. According to the charts, the
tested models do capture the trend and patterns of the ground truth line but
struggle with the abrupt changes in the consumption profiles. DTLC was rela-
tively easy to predict at this resolution, with all the tested models performing
relatively well, with the R2 score metric reaching as high as 0.87 for the deep
learning models and 0.82 for the linear regression model. The proposed Conv-
BiLSTM model demonstrated superior performance with RMSE, MAE and R2

scores of 1.01 kWh, 0.76 kWh and 0.87, respectively.

(a) Don Tatnell prediction results. (b) Waves centre prediction results.

Fig. 4: An snapshort Illustration of the observed and predicted values for Don
Tatnell and Waves leisure centres in the testing phase.
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Predicting the next 5-minutes of energy consumption at WLC was a relatively
challenging task for the tested models with the RMSE score ranging between
2.04 kWh and 2.17 kWh and R2 scores between 0.79 and 0.81 for the LR and
the Conv-BiLSTM models, respectively. The hour of the day was influential in
predicting the next 5-minutes of energy consumption at both leisure centres. Fig.
5 shows the correlations between the predicted and actual BEC values for both
centers. Don Tatnell leisure centre presents are more closer fit between observed
and predicted values. The existence of a large observed BEC value (45 kWh)
in the test set may be responsible for degrading the correlation value between
observed and predicted at this centre. Waves centre does show relative higher
differences between the observed and actual values.

Table 1: Generalisation capabilities of the tested models in the testing phase for
Waves leisure centre

Model Lag
RMSE
(kWh)

MAE
(kWh)

R2 Lag
RMSE
(kWh)

MAE
(kWh)

R2 Lag
RMSE
(kWh)

MAE
(kWh)

R2

5min 15min 1hour
CNN 5 2.06 1.57 0.81 4 4.34 3.21 0.9 4 14.17 9.59 0.92
LSTM 5 2.10 1.61 0.81 4 3.68 2.79 0.92 4 15.09 10.65 0.92
ConvLSTM 2,4 2.08 1.59 0.81 2,4 3.88 2.94 0.92 2,4 13.49 9.13 0.93
ConvBiLSTM 2,4 2.05 1.56 0.81 2,4 3.80 2.86 0.92 2,4 13.00 8.99 0.94
LR 5 2.17 1.66 0.79 4 4.62 3.29 0.88 4 18.94 12.83 0.86

5.3 Prediction using 15-minute resolution

Prediction of the next 15-minutes of energy consumption is crucial for planning
effective network utilisation by energy suppliers and monitoring energy market
prices. Additional features in the form of climatic variables (temperature, dew
point, relative humidity, mean wind velocity and wind direction) at 15-minutes
intervals were added to determine their effect on building energy consumption
at the two case buildings. Prediction at 15-minutes resolution resulted in an im-
proved prediction performance for both case buildings. The deep learning suite
of models scored R2 scores of up to 0.92, representing an improvement of up
to 15% for WLC from the 5-minutes prediction scores. However, DTLC saw a
marginal increase (2%) in prediction performance by the deep learning models.
The proposed Conv-BiLSTM again showed superior performance by outperform-
ing other models in both case studies with R2 scores of 0.91 and 0.92 for DTLC
and WLC, respectively. Most building energy performance studies highlight im-
provement in model prediction performance by use of climatic variables; however,
for the two case study buildings considered in this study, the climatic variables’
addition did not improve models’ performances at 15-minute resolution.
5.4 Prediction using hourly resolution

This resolution represents the common choices of energy consumption prediction
in building energy performance literature. All tested models did well at predict-
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Table 2: Generalisation capabilities of the tested models in the testing phase for
Don Tatnell leisure centre

Model Lag
RMSE
(kWh)

MAE
(kWh)

R2 Lag
RMSE
(kWh)

MAE
(kWh)

R2 Lag
RMSE
(kWh)

MAE
(kWh)

R2

5min 15min 1hour
CNN 4 1.05 0.80 0.86 2 2.71 2.04 0.89 4 12.74 9.58 0.84
LSTM 4 1.06 0.80 0.86 2 2.88 2.23 0.88 4 10.96 7.96 0.88
ConvLSTM 2,4 1.02 0.78 0.87 2,4 2.57 1.93 0.90 2,2 12.38 9.31 0.84
ConvBiLSTM 2,4 1.01 0.76 0.87 2,4 2.54 1.92 0.91 2,2 10.34 7.56 0.88
LR 4 1.18 0.89 0.82 2 3.07 2.0 0.86 4 14.05 9.93 0.79

ing the next hour of energy consumption at WLC, with the LR models scoring
RMSE, MAE and R2 values of 18.73 kWh, 12.62 kWh and 0.87, respectively.
The proposed hybrid Conv-BiLSTM model continues to dominate with RMSE,
MAE and R2 scores of 13.00 kWh, 8.99 kWh and 0.94, respectively, outperform-
ing all the other models for the WLC dataset. However, at DTLC, predicting
the next hour of energy consumption was relatively challenging with superior
performance from among the deep learning models scoring RMSE, MAE and R2

values of 12.37 kWh, 9.31 kWh and 0.84, respectively. The Conv-BiLSTM model
showed superior performance outperforming the popular LSTM by 6% and 5%
margins in the RMSE and MAE scores, respectively.

Fig. 5: An Illustration showing the correlations between the observed and pre-
dicted BEC values for the leisure centres in the testing phase.

5.5 Model Parameters

The hybrid Conv-BiLSTM architectures comprising the layer name, output shape
and number of parameters for the next 5-minutes ECP at both WLC and DTLC
are presented in Table 3. The proposed model had a total of 186 405 and 147
721 trainable parameters for DTLC and WLC, respectively. A dropout (20%)
module was only beneficial for DTLC, while no dropout was necessary WLC as
it did not improve model performance.
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Table 3: Architecture of the best performing model using 5-minute resolution
DTLC Parameters WLC Parameters
Layer (type) Output Shape Param #
(ConvLSTM2D 2) (None, 1, 3, 32) 10624

(Dropout) (None, 1, 3, 32) 0

(Flatten 2) (None, 96) 0

(RepeatVector 2 (None, 1, 96) 0

(Bidirectional 2) (None, 1, 200) 157600

(Dropout 2) (None, 1, 200) 0

(TimeDistributed 4) (None, 1, 90) 18090

(TimeDistributed 5 (None, 1, 1) 91

Total params: 186,405
Trainable params: 186,405
Non-trainable params: 0

Layer (type) Output Shape Param #
(ConvLSTM2D 3) (None, 1, 1, 32) 21120

(Flatten 3) (None, 32) 0

(RepeatVector 3) (None, 1, 32) 0

(Bidirectional 3) (None, 1, 200) 106400

(TimeDistributed 6) (None, 1, 100) 20100

(TimeDistributed 7 (None, 1, 1) 101

Total params: 147,721
Trainable params: 147,721
Non-trainable params: 0

At both DTLC and WLC, the proposed Conv-BiLSTM hybrid technique
showed superior non-linear mapping generalisation abilities, outperforming the
baseline deep learning-based techniques. It can be concluded that the proposed
hybrid Conv-BiLSTM model is effective in learning complex decision boundaries
for near real-time to short term aggregate energy consumption prediction at the
considered multi-functional buildings. The hybrid Conv-BiLSTM model showed
satisfactory performance capturing the trends and seasonality present in the
energy consumption observations as shown in Fig. 4. The proposed hybrid Conv-
BiLSTM followed the electricity consumption patterns closely and performed
better in predicting lower and higher electricity consumption values. This is
highlighted by the closeness to the ground truth line (blue line) by the Conv-
BiLSTM model line.

Predicting the ultra-short-term (5minutes) energy consumption patterns has
been particularly challenging for the tested models for both case buildings stud-
ied, with the R2 scores ranging between 0.79-0.87. The fine resolution has ten-
dencies to bury the energy use patterns in the noise, thus making the energy use
patterns invisible. However, as the resolution becomes coarser, up to the hourly
resolution, the predictive performance of models increases with the proposed su-
perior model (Conv-BiLSTM), attaining an R2 score of 0.94 and 0.89 for WLC
and DTLC, respectively. The improvement in performance as the granularity
changes from 5-minutes to an hour can be attributed to the smoothening ef-
fect of the energy consumption profile, with the hourly and 15-minute resolution
providing the best results for WLC and DTLC, respectively. This study demon-
strates that the proposed Conv-BiLSTM is a valuable computational intelligence
technique to predict energy consumption for unique multi-functional buildings.
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6 Conclusion and future works

This paper proposes a hybrid Conv-BiLSTM model for energy consumption pre-
diction of multi-functional leisure centres. In pursuit of accurate and robust
forecasting models, the hybrid Conv-BiLSTM model was tested against a suite
of baseline competitive deep learning models for the next 5-minutes, 15-minutes
and hour of energy consumption prediction. The results of the experiments reveal
that the proposed hybrid. Conv-BiLSTM outperformed its counterpart models
for multi-functional building energy consumption prediction. By directly reading
the input into the LSTM cells and processing the cell states in both the forward
and backward directions, the hybrid Conv-BiLSTM model was able to effectively
reconstruct the energy consumption patterns at the two tested multi-functional
buildings.

Multi-functional leisure centres have high and irregular energy consumption
patterns than most studied building types. The study determined that for the
considered building types, the previous energy consumption observations and
the calendar inputs, particularly the hour of the day, had a significant effect
on the energy consumption in both case buildings, and therefore the study rec-
ommends their adoption as primary inputs. The study showed that the hybrid
Conv-BiLSTM model could be used for aggregate energy consumption prediction
at these new building types. Ongoing work with the proposed model involves its
applicability for transfer learning in which the developed model for one leisure
centre (source building) will be configured to predict the other centre (target
building) in an effort to curb data shortages issues in the latter.

References

1. Ahmad, M.W., Mouraud, A., Rezgui, Y., Mourshed, M.: Deep highway networks
and tree-based ensemble for predicting short-term building energy consumption.
Energies 11(12), 3408 (2018)

2. Ahmad, M.W., Mourshed, M., Yuce, B., Rezgui, Y.: Computational intelligence
techniques for hvac systems: A review. In: Building Simulation. vol. 9, pp. 359–
398. Springer (2016)

3. Ahmad, T., Chen, H., Huang, Y.: Short-term energy prediction for district-level
load management using machine learning based approaches. Energy procedia 158,
3331–3338 (2019)

4. Almalaq, A., Zhang, J.J.: Evolutionary deep learning-based energy consumption
prediction for buildings. IEEE Access 7, 1520–1531 (2018)

5. Artuso, P., Santiangeli, A.: Energy solutions for sports facilities. International jour-
nal of hydrogen energy 33(12), 3182–3187 (2008)

6. Berriel, R.F., Lopes, A.T., Rodrigues, A., Varejao, F.M., Oliveira-Santos, T.:
Monthly energy consumption forecast: A deep learning approach. In: 2017 In-
ternational Joint Conference on Neural Networks (IJCNN). pp. 4283–4290. IEEE
(2017)

7. Bisong, E.: Google colaboratory. In: Building Machine Learning and Deep Learning
Models on Google Cloud Platform, pp. 59–64. Springer (2019)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_23

https://dx.doi.org/10.1007/978-3-030-77977-1_23


14 Banda et al.

8. Brownlee, J.: Deep learning for time series forecasting: predict the future with
MLPs, CNNs and LSTMs in Python. Machine Learning Mastery (2018)

9. Cai, M., Pipattanasomporn, M., Rahman, S.: Day-ahead building-level load fore-
casts using deep learning vs. traditional time-series techniques. Applied Energy
236, 1078–1088 (2019)

10. Chollet, F., et al.: Keras documentation. keras. io 33 (2015)
11. Fan, C., Wang, J., Gang, W., Li, S.: Assessment of deep recurrent neural network-

based strategies for short-term building energy predictions. Applied energy 236,
700–710 (2019)

12. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New
Millennium. vol. 3, pp. 189–194. IEEE (2000)

13. Kim, T.Y., Cho, S.B.: Predicting residential energy consumption using cnn-lstm
neural networks. Energy 182, 72–81 (2019)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Communications of the ACM 60(6), 84–90 (2017)

15. Miao, K., Hua, Q., Shi, H.: Short-term load forecasting based on cnn-bilstm
with bayesian optimization and attention mechanism. In: Parallel and Distributed
Computing, Applications and Technologies: 21st International Conference, PD-
CAT 2020, Shenzhen, China, December 28–30, 2020, Proceedings 21. pp. 116–128.
Springer International Publishing (2021)

16. Mocanu, E., Nguyen, P.H., Kling, W.L., Gibescu, M.: Unsupervised energy predic-
tion in a smart grid context using reinforcement cross-building transfer learning.
Energy and Buildings 116, 646–655 (2016)

17. Rahman, A., Srikumar, V., Smith, A.D.: Predicting electricity consumption for
commercial and residential buildings using deep recurrent neural networks. Applied
energy 212, 372–385 (2018)

18. Sajjad, M., Khan, Z.A., Ullah, A., Hussain, T., Ullah, W., Lee, M.Y., Baik, S.W.:
A novel cnn-gru-based hybrid approach for short-term residential load forecasting.
IEEE Access 8, 143759–143768 (2020)

19. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE trans-
actions on Signal Processing 45(11), 2673–2681 (1997)

20. Ullah, F.U.M., Ullah, A., Haq, I.U., Rho, S., Baik, S.W.: Short-term prediction of
residential power energy consumption via cnn and multi-layer bi-directional lstm
networks. IEEE Access 8, 123369–123380 (2019)

21. Wei, Y., Zhang, X., Shi, Y., Xia, L., Pan, S., Wu, J., Han, M., Zhao, X.: A re-
view of data-driven approaches for prediction and classification of building energy
consumption. Renewable and Sustainable Energy Reviews 82, 1027–1047 (2018)

22. Wen, L., Zhou, K., Yang, S., Lu, X.: Optimal load dispatch of community microgrid
with deep learning based solar power and load forecasting. Energy 171, 1053–1065
(2019)

23. Yuce, B., Li, H., Rezgui, Y., Petri, I., Jayan, B., Yang, C.: Utilizing artificial neu-
ral network to predict energy consumption and thermal comfort level: An indoor
swimming pool case study. Energy and Buildings 80, 45–56 (2014)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_23

https://dx.doi.org/10.1007/978-3-030-77977-1_23

