
I-80 Closures: An Autonomous Machine
Learning Approach?

Clay Carper1, Aaron McClellan2, and Craig C. Douglas3

1 Department of Computer Science, University of Wyoming, Laramie, WY 82071,
USA ccarper2@uwyo.edu

2 Department of Computer Science, University of Wyoming, Laramie, WY 82071,
USA amcclel2@uwyo.edu

3 School of Energy Resources and Department of Mathematics and Statistics,
University of Wyoming, Laramie, WY 82072-3036, USA craig.c.douglas@gmail.com

Abstract. Road closures due to adverse and severe weather continue
to affect Wyoming due to hazardous driving conditions and temporarily
suspending interstate commerce. The mountain ranges and elevation in
Wyoming makes generating accurate predictions challenging, both from
a meteorological and machine learning stand point. In a continuation of
prior research, we investigate the 80 kilometer stretch of Interstate-80
between Laramie and Cheyenne using autonomous machine learning to
create an improved model that yields a 10% increase in closure prediction
accuracy. We explore both serial and parallel implementations run on a
supercomputer. We apply auto-sklearn, a popular and well documented
autonomous machine learning toolkit, to generate a model utilizing en-
semble learning. In the previous study, we applied a linear support vector
machine with ensemble learning. We will compare our new found results
to previous results.

Keywords: Machine Learning· Autonomous Machine Learning· Road
Closure.

1 Introduction

In 2018, the first author commuted between Cheyenne and the University of
Wyoming in Laramie, Wyoming. During this nine month period it became ap-
parent while driving between the two towns there were inconsistent classifications
concerning road closures. Road conditions sometimes were severe and danger-
ous while the roadway was classified as open. Road conditions sometimes were
clearly safe while the roadway was classified as closed. The experience overall
was one that is shared with anyone who regularly travels the corridor between
these two towns.

Featuring a maximum elevation differential of nearly 800 meters between
Cheyenne and Laramie (1,848 and 2,184 meters above sea level, respectively),

? This research was supported in part by National Science Foundation grant DMS-
1722621.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_22

https://dx.doi.org/10.1007/978-3-030-77977-1_22


2 C. Carper, A. McClellan, and C. C. Douglas

this section of Interstate-80 (I-80) is a predictive nightmare. The misclassification
many Wyoming residents and frequent visitors have grown accustomed to leads
to needless loss of life, accidents, higher insurances rates for Wyoming residents,
and delays in interstate commerce. Prior research [5, 6] has shown that applying
machine learning to locally obtained sensor data provides a viable solution to
this misclassification problem.

In this paper we will review previous work and results, the details of our ap-
plication of autonomous using the University of Wyoming’s Advanced Research
Computing Center (ARCC) [1], our results and comparisons to prior results,
and the implication of our new results and future work in sections 2, 3, 4, and 5,
respectively.

2 Prior Work

This project begin as a class project in fall 2018. To date, two documents have
been published: an international conference paper [5] and a master’s thesis [6].

The first publication was in the Proceedings of the 2019 18th International
Symposium on Distributed Computing and Applications for Business Engineer-
ing and Science (DCABES), Wuhan, China. In this work, we first obtained raw
sensor data on the roadway between Laramie and Cheyenne, Wyoming from
MesoWest [10]. This data consisted of 29 individual quantities measured at each
sensor at irregular time steps and was reduced to six parameters: air tempera-
ture, relative humidity, wind speed, wind bust, visibility, and dew point. This
was done due to sparsity of parameters, usability, and principle component anal-
ysis. Sparse parameters were omitted due to skewing concerns. While replacing
missing parameters with the median is standard practice, doing so on millions
of missing entries will undoubtedly skew the data in an undesirable fashion.

The weather condition was a feature among the cut parameters. Although
this parameter was dense enough to be viable, the datatype presented issues.
Since the weather condition parameter contained plaintext values such as snow
squall, thunderstorm, and mostly cloudy, we were unable to assign meaningful
and consistent numerical weights. Such an endeavor would require insight into
meteorology beyond the scope of our work. Applying a one-hot encoding of
these parameters may have been possible but would have drastically increased
the number of features and each one would be very sparse.

There are many was to ensure selected features maintain predictive power.
In this case, we ensured the selected features maintained at least 90% of the en-
ergy in the system using principle compenent analysis. To supplement the sensor
data, we obtained closure status data from the Wyoming Department of Trans-
portation [12]. This data consisted of binary classifications of weather related
roadway closures and ad hoc roadway closures. For consistency, we only used
the weather related roadway closures. Using the scikit-learn machine learning
framework, we trained a linear support vector machine (LSVM) on a subset of
the aforementioned data. Such a model yielded a maximum accuracy of 71% [5].

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_22

https://dx.doi.org/10.1007/978-3-030-77977-1_22


I-80 Closures: An Autonomous Machine Learning Approach 3

Further work occurred for the first author’s master’s thesis. Ensemble learn-
ing was the major addition to the project [2, 4, 9]. Using scikit-learn’s imple-
mentation of AdaBoost, we obtained a 10% boost in accuracy for a maximum
of 81% [6]. Boosting is a common form of ensemble learning, allowing for addi-
tional copies of the original classifier to be applied to the same subset of data.
This yielded a 13% improvement over a single linear support vector machine
model. Additionally, we performed confusion matrix analysis for the standard
and boosted models.

Rationale behind all choices can be found in prior publications [5, 6], while
results from the previous publications can be found in table 1. Note throughout
both analyses, cross validation was the metric of choice.

Table 1. Prior Models, Cross Validation Confusion Matrix

Model True Negative False Positive False Negative True Positive

Standard 59.05% 10.42% 18.56% 11.97%
Boosted 64.49% 4.98% 14.57% 15.95%

3 Methods

In this section, we present the tools used in this research and their versions, our
reasons for choosing these tools, and the methods that led to an improved model.
We strive to provide research that is verifiable and reproducible, thus everything
needed to recreate our results is provided. Not only do we describe our tools, we
include the versions of all software used, the versions of all tools’ immediate (but
not transient) dependencies, our code and data, and sample execution scripts for
use on supercomputers.

The code was written in Python, the most prevalent programming language
in academic data science research. This choice was necessitated by the fact that
our other tools only provide Python APIs, leaving little choice for other lan-
guages.

Our most important tool is auto-sklearn [8]. It is an autonomous machine
learning (AML) framework, which attempts to find the best machine learning
model automatically with little or no guidance from the researcher. The tool
auto-sklearn has undergone stringent comparisons with other AML frameworks
and compares favorably in most categories [8]. In order to automatically find
optimal models, auto-sklearn creates a parameter space that models can be se-
lected from. Then it algorithmically searches through the parameter space until
a termination condition is met. For our purposes, there are two termination con-
ditions: auto-sklearn exhausts its allocated execution time or an optimal model
is found (for a user-specified definition of optimal). Several optimality metrics
are included with the framework.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_22

https://dx.doi.org/10.1007/978-3-030-77977-1_22


4 C. Carper, A. McClellan, and C. C. Douglas

The University of Wyoming’s supercomputer, ARCC [1], is our execution
platform of choice. The ability to run our code in an environment where compute
resources were effectively unconstrained allowed for shorter iteration times and
the discovery of higher quality models.

As is common for supercomputers, ARCC uses a software scheduler to allo-
cate compute resources. We provide sample scripts to run our code for use with
ARCC’s scheduler, Slurm [1]. Since many supercomputers schedule with Slurm,
we hope our scripts allow researchers to verify and reproduce our results on their
supercomputer of choice.

Five individual iterations were ran, using one, two, four, eight, and sixteen
CPUs. The reason for this is partially because scikit-learn is built on top of
Dask [7] and partially due to the nature of auto-sklearn. Dask allows Python
programs to be scalable across multiple nodes by generating a Dask cluster. In
doing so, it organizes the workers and handles the management of the cluster.
Further, in allocating additional CPUs with a fixed amount of time we are simply
running additional models. This does not change running times but yields greater
accuracy by checking additional types and variations of models.

Since software is constantly changing, we provide a Conda environment con-
taining all the versions of all software described and their dependencies. At this
time, the code and data is available upon request.

4 Results

To benchmark an algorithm using auto-sklearn, we use a fixed subset of data that
has previously been tested on. This data is available upon request. For our test-
ing, we used the AutoSklearnClassifier [8] with randomized training and test
sets. scikit-learn [11, 3] provides a function called sklearn.metrics.accuracy_score,
which we used to determine the accuracy of the model. Doing so yields an av-
erage accuracy of nearly 91%, an improvement of 22% over the base LSVM
model [5] and an improvement of 11% over the ADABoosted LSVM [6]. It is
important to note that auto-sklearn automatically applies ensemble learning,
allowing for a linearly-boosted model to be one of the possible parameters [8].
Accuracy for each of the five variations can be found in table 2. The number
of models checked are the number of models that ran successfully. Instances of
failed models are either models that crash, exceed the time limit, or exceed the
memory limit. Memory usage is the amount of memory reported by Slurm. It is
worth noting that the memory allocated for each experiment was 80-100 giga-
bytes. We are yet to identify why this is necessary, however, without allocating
a significant amount of additional memory the multi-core instances will fail to
produce output.

The models auto-sklearn found is an ensemble consisting of nine individual
models, each with their own weights. Of the models found, 70% of the predictive
power is encapsulated in the first three models. Those models are two different
ADABoosted linear models and an extra trees model, respectively. The remain-
ing models are a collection of tree-based algorithms and k-nearest neighbors.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_22

https://dx.doi.org/10.1007/978-3-030-77977-1_22


I-80 Closures: An Autonomous Machine Learning Approach 5

Table 2. Accuracy for auto-sklearn models and number of models checked

CPUs Accuracy Models Evaluated Memory Usage (GB)

1 90.69% 72 2.68
2 90.83% 101 4.99
4 90.96% 161 8.16
8 90.85% 191 10.13
16 90.76% 255 14.82

More specifically, they are three random forest models, another ADABoosted
linear model, a quadratic discriminant analysis, and k-nearest neighbors.

Another typical metric for analyzing machine learning algorithms is confusion
matrix analysis. We elected to do so in this research, the results of which are
given in table 3. Please note that in this research, negative refers to a prediction
of a nonclosure and positive refers to a closure.

Table 3. Confusion Matrices for auto-sklearn Models

CPUs True Negative False Positive False Negative True Positive

1 67.55% 1.93% 3.10% 27.43%
2 67.72% 1.75% 3.22% 27.31%
4 67.65% 1.82% 3.13% 27.39%
8 67.74% 1.74% 3.18% 27.34%
16 67.67% 1.81% 3.15% 27.38%

Interestingly, an average of 35% of the incorrect classifications are related to
predicting the roadway being closed when it in fact was open and on average
65% of the incorrect classifications are related to predicting the roadway being
open when it was in fact closed. This is nearly identical to previous confusion
matrix values of 35.96% and 64.04%, respectively. It is worth noting that the
variations in the confusion matrices is within variational norms; adding models
doesn’t necessarily imply an increase in accuracy of predictions.

5 Conclusions and Future Work

As a continuation of previous work, an improvement of 11% in accuracy is sub-
stantial, with an average accuracy of 91%. Similar results in the confusion matrix
lead us to conclude that the application of auto-sklearn is a viable and meaning-
ful next step for classifying roadway closures. Future directions for this project
include dataset subset analysis and validation and automation.

References

1. Advanced Research Computing Center: Teton Computing Environment, Intel
x86 64 cluster (2020). https://doi.org/10.15786/M2FY47

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_22

https://dx.doi.org/10.1007/978-3-030-77977-1_22


6 C. Carper, A. McClellan, and C. C. Douglas

2. Aurélien, G.: Hands-on machine learning with Scikit-Learn and TensorFlow: con-
cepts, tools, and techniques to build intelligent systems. OReilly Media, Sebastopol,
CA (2017)

3. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. pp. 108–122 (2013)

4. Burkov, A.: The Hundred-Page Machine Learning Book. Andriy Burkov (2019)
5. Carper, C., Douglas, C.C.: I-80 closures: A support vector machine model. In:

Proceedings of DCABES 2019. Wuhan, China (8-10 November 2019 G Yucheng
(eds), IEEE Computer Society Press, Los Alamitos, CA, 2019, pp 199-202)

6. Carper, C.: A Support Vector Machine Model for Predicting Closures on Interstate
80. Master’s thesis, University of Wyoming, Laramie, WY (2020)

7. Dask: https://dask.org/, last visited 02/18/2021
8. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-

ter, F.: Efficient and robust automated machine learning. In: Cortes,
C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 28, pp. 2962–2970. Cur-
ran Associates, Inc. (2015), http://papers.nips.cc/paper/5872-efficient-and-robust-
automated-machine-learning.pdf

9. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, Third
Edition. Cambridge University Press, New York, NY (2020)

10. MesoWest Data: https://mesowest.utah.edu/, last visited 12/10/2020
11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

12. Wyoming Department of Transportation: http://www.dot.state.wy.us/home.html,
last visited 12/10/2020

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_22

https://dx.doi.org/10.1007/978-3-030-77977-1_22

