
Timeseries based deep hybrid transfer learning
frameworks: a case study of electric vehicle

energy prediction

Paul Banda, Muhammed A. Bhuiyan, Kazi N. Hasan, Kevin Zhang, and Andy
Song

RMIT University, School of Engineering, Melbourne 3000, Australia

Abstract. The problem of limited labelled data availability causes under-
fitting, which negatively affects the development of accurate time series
based prediction models. Two-hybrid deep neural network architectures,
namely the CNN-BiLSTM and the Conv-BiLSTM, are proposed for time
series based transductive transfer learning and compared to the baseline
CNN model. The automatic feature extraction abilities of the encoder
CNN module combined with the superior recall of both short and long
term sequences by the decoder LSTM module have shown to be ad-
vantageous in transfer learning tasks. The extra ability to process in
both forward and backward directions by the proposed models shows
promising results to aiding transfer learning. The most consistent transfer
learning strategy involved freezing both the CNN and BiLSTM modules
while retraining only the fully connected layers. These proposed hybrid
transfer learning models were compared to the baseline CNN transfer
learning model and newly created hybrid models using the R2, MAE
and RMSE metrics. Three electrical vehicle data-sets were used to test
the proposed transfer frameworks. The results favour the hybrid architec-
tures for better transfer learning abilities relative to utilising the baseline
CNN transfer learning model. This study offers guidance to enhance time
series-based transfer learning by using available data sources.

Keywords: Hybrid Deep Learning · Electric Vehicle Load Prediction ·
Transfer Learning

1 Introduction

Due to the environment-friendly policies and emission reduction schemes, the
transportation sector is expected to go through a significant transformation with
the adoption of many electric vehicles (EVs) into the existing vehicle fleet [8].
The usage of EVs is still in the early stages; thus, the EV charging demand data
is scarce. Hence, it is challenging to perform the EV impact studies with the
EV data that accurately represents the EV charging profiles [9]. Moreover, the
deployment of more public EV charging stations with a large capacity charging
requirement would pose a new challenge to the secure operation of the power
grid [21]. In this perspective, adequately capturing the EV charging demand and
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accurately predict the near future charging demand is critical for the electrical
power grid’s secure operation.

The implementation of forecasting techniques for EV charging demand pre-
diction has been conducted by using fuzzy clustering and back-propagation neu-
ral network models in [22], by employing evolutionary optimisation techniques in
[14] and by examining various data mining techniques [20]. An unsupervised al-
gorithm was proposed in [13] for non-intrusive EV load extraction. A comparison
of the traditional time series methods and machine learning methods for EV load
prediction was presented in [4]. Machine learning methods were concatenated to
give an ensemble method that performed better than individual machine learn-
ing methods in [1] for residential EV load prediction. A comparative assessment
of the deep learning methods for EV charging demand prediction has been per-
formed in [23]. The sub-hourly and hourly EV charging load prediction models
have been developed using a hybrid lion algorithm consist of convolutional neural
network (CNN) and long-short-term memory (LSTM) inspired models in [12].
The above studies have demonstrated effective EV prediction methods; however,
the only drawback is that they require independent and identical distribution to
exist in a data-set and that they must be enough training data to learn a good
model. To counter these limitations, we introduce transfer learning for EV load
prediction, which is not bound by the mentioned limitations.

1.1 Transfer Learning Models Review

Transfer learning using deep learning models has received great attention in var-
ious application domains such as image processing [18], time series classification,
[7], natural language processing tasks [2], [17] and building energy forecasting
[5]. The CNN model has been the dominant model facilitating transfer learning
in most studies.

In non-transfer learning studies [10],[19],[15], hybrid deep learning models
have been shown to outperform the conventional CNN model as they leverage
on the advantages of the encoder and decoder modules during operations. In
the same line of thought, the authors propose using hybrid deep learning model
architectures, namely, the CNN-BiLSTM and Conv-BiLSTM models for trans-
fer learning and compare their performance to the commonly used CNN transfer
learning model. Furthermore, most transfer learning studies seem to report trans-
fer methods is isolation, without showing a comparative assessment to determine
which transfer learning method shows superior results, an observation which is
addressed in this study. The Conv-BiLSTM model can capture salient spatial fea-
tures using a convolution operator within the LSTM cell on multiple-dimensional
data and has the extra ability to process in both forward and backward direc-
tions (bidirectional) is helpful for transfer learning. The CNN-BiLSTM model
can leverage the automatic feature extraction advantages of the encoder CNN
module and the superior recall of both short and long term sequences by the
decoder LSTM module, which processes both forward and backward directions.

The study proposes the implementation of CNN-BiLSTM and Conv-BiLSTM
hybrid deep learning architectures for time series transfer learning. Also, the
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study introduces transductive transfer learning for electrical vehicle load predic-
tion to enhance prediction efforts in limited labelled EV load data situations.

The rest of the paper is organised as follows: Section 2 briefly introduces
transfer learning and the proposed hybrid transfer learning models, Section 3
describes the three case study data-sets, Section 4 discusses the transfer learning
results and discussion, and Section 5 highlights the conclusions and future works.

2 Methodology

This section provides a brief description of the application of transfer learning
for EV load prediction. It also discusses the proposed hybrid architectures and
how they are modified for implementation in transfer learning.

2.1 Transfer Learning

Given a source domain EV data-set (data-rich), a target domain (limited labelled
data) EV data-set and a learning task, transfer learning seeks to improve the
learning of the target predictive function in the target domain EV data-sets (slow
and fast commercial EV charging stations (CEVCS)) using the knowledge learnt
from the source domain (residential EVCS) data-set. The formal expression to
define transfer learning is given as; A domain comprises feature space X and
label space Y, thus given a source domain

Ds = {xiS , yiS}
NS
i=1 (1)

and a target domain
DT = {xiT , yiT }

NT
i=1 (2)

where NS > NT and N is the labelled data size. It is challenging for a model
to learn well using little data in the target domain. Since the source and target
domains have different data distributions, it is unlikely for a model trained on the
source domain to predict the target domain’s test data-set accurately. Instead of
creating two separate models for the source and target domain, as usually done
in traditional machine learning, transfer learning seeks to utilise the knowledge
learnt on the source domain to help predict the data domain.

The proposed hybrid transfer learning workflow illustrated in Fig. 1 applies
to both the CNN-BiLSTM and Conv-BiLSTM hybrid models.

Following the above formal transfer learning definition, the transfer learning
procedure implementation in this study is thus summarised as below;

(i) Pre-process data and develop the hybrid deep neural networks for source
domain (residential EVCS) prediction with full data complement, (ii) Train the
pre-trained models (fine-tuning) with limited data from the target domain (slow
and fast CEVCS) (iii) Develop new neural networks models from scratch for
the target stations with limited data (same data size as used in step II), (iv)
Compare the pre-trained model’s (ii) results to the new target models developed
from scratch for both slow and fast CEVCS.
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Fig. 1: An illustration of the implemented hybrid deep transfer learning workflow.

2.2 Hybrid Deep Learning Models for Transfer Learning

This section describes the proposed models for transfer learning using the avail-
able three EV data-sets. Hybrid deep learning models are designed by the fusion
of conventional deep learning models that combine multiple models by diversi-
fying the input features and varying the initialisation of the neural network’s
weights.

2.3 Baseline Convolutional Neural Networks (CNN)

Originally designed to handle image data, the CNN model has achieved a state of
art results in image classification and object recognition, among other tasks. The
CNN model can extract useful features automatically from time series data by
treating a sequence of observations as a one-dimensional image. The CNN model
is relatively easy and faster to train because the weights are less than those of a
fully connected artificial neural network architecture. A predetermined number
of historical EV energy consumption observations are fed into the convolutional
layers, which perform a one-dimensional convolution operation on this data,
whose output is then passed to the fully connected layers for final processing. A
CNN operation is described in detail in [11];
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2.4 Hybrid Convolutional Bidirectional Long Short-Term Memory
(Conv-BiLSTM)

The hybrid Conv-BiLSTM does a convolution operation within the LSTM cells.
The Conv-BiLSTM layer is a recurrent layer (same as LSTM) that replaces
the usual matrix multiplication operation with a convolutional process. The
convolution operator is applied directly to read input into the BiLSTM cells, that
is, during the input-to-state transitions and during the state-to-state transitions
[16]. The Conv-BiLSTM compresses the EV sequence into a hidden state tensor
decodable by an LSTM layer that processes this input in both forward and
backward directions (bidirectional), forwarding its output to the fully connected
layer for final prediction. The critical equations of the Conv-BiLSTM cell gates
are given in equations (3-7) below;

It = σ(WXI ∗Xt +WHI ∗Ht−1 +WCI ◦ CT−1 + bI) (3)

Ot = σ(WXO ∗Xt +WHO ∗HT−1 +WCO ◦ Ct + b0) (4)

Ft = σ(WXF ∗Xt +WHF ∗Ht−1 +WCF ◦ Ct−1 + bF ) (5)

Ct = F◦C + it ◦ (WXC ∗ xt +WHC ∗ ht−1 + bC) (6)

Ht = O ◦ tanh(Ct) (7)

The convolutional product and element-wise multiplication operations are
denoted by “∗” and “◦” respectively. In equations (3-5), It, Ft, and Ot are the
input, forget, and output gate, respectively. W represents the weight matrix, xt is
the current input data, ht−1 is the previously hidden output, and Ct denotes the
cell state at timestep t. The traditional LSTM equations use convolution opera-
tion (*), in comparison, the Conv-BiLSTM uses matrix multiplication between
W and Xt ,ht−1 for every gate. This matrix multiplication replaces the fully con-
nected layer with a convolutional layer, leading to a reduced number of weight
parameters in the model. The Hybrid Conv-BiLSTM model is implemented to
capture the advantages of the CNN and BiLSTM techniques to improve the over-
all prediction accuracy. The expected input shape into the Conv-BiLSTM model
must be of the form [samples, timesteps, rows, columns, channels]. When using
the Conv-BiLSTM, the previous EV timeseries of 47 (lags) is split such that it
has one row of 47 timesteps, and the Conv-BiLSTM performs the convolutional
operation on this particular row. This sequence design operation results in a 5D
input tensor with shape [s, 1, 1, 47, 9] denoting sample, timestep, rows, columns
and channels, respectively, as shown in Fig. 4(a). Finally, the hidden layer of the
Conv-BiLSTM encoder is defined and flattened in readiness for decoding using
the BiLSTM operation. The last layer is made up of the fully connected (dense
layer) with 200 neurons for processing the output from the BiLSTM operation.
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2.5 Hybrid Bidirectional Deep Convolutional Neural Network Long
Short-Term Memory (CNN-BiLSTM)

The CNN-BiLSTM is a hybrid model that combines a 1D-CNN with a BiLSTM
model to solve the vanishing gradient problem. This hybrid system consequently
captures the advantages of both models. In this hybrid system, the 1D-CNN acts
as an encoder responsible for interpreting the input sequence from the EV time
series. The CNN encoder model then outputs a sequence that is passed on to
the bidirectional BiLSTM model (decoder) for interpretation. The encoder CNN
model does the convolutional operation and outputs a sequence. Naturally, the
LSTM has an inherent strong ability to remember the structure of short and long
term sequences; thus, by combining the BiLSTM with the CNN, which automat-
ically learns features from sequence data, the hybrid CNN-BiLSTM model offers
improved accuracy. The CNN and BiLSTM model hybrid structure expect the
input EV demand data to have a 3-dimensional form (sample, input and time-
step). Fig. 4(b) presents an illustration of hybrid CNN-BiLSTM workflow. In this
implementation, the historical EV time series of 47 hours is input into the CNN
encoder architecture for reading. The first convolutional layer reads across this
input sequence using a filter of size three timesteps (1x3) and then projects its
output onto 32 feature maps. The second convolutional layer reads the previous
layer’s output and uses the max-pooling layer to simplify the feature maps sizes
by preserving the maximum possible amount of information (signal). The final
extracted features map from the max-pooling layer is then flattened for use with
the BiLSTM decoding module, which processes the cell state in both forward
and backward directions before passing the output to the fully connected layer
prediction.
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Fig. 2: Proposed Hybrid models for EV charging load transfer learning imple-
mentation

3 Data-sets Description

The EV datasets(https://data.dundeecity.gov.uk/dataset/ev-charging-data), col-
lected over an entire year from 01/09/2017 to 31/08/2018 equates to 8760 data
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points, representing hourly EV charging power (in kilo Watt, kW) of a year.
As single residential charging stations have small data sizes with highly random
data, collective residential EV charging profiles were created by grouping data
from 100 single residential profiles located in relative proximity to each other.
This was done to ascertain the EV charging behavior at distribution substa-
tion level. Additionally, slow commercial EV charging station profile represents
data from a Health Care Centre, and fast commercial EV charging station pro-
file represents data from a multi-story car park, which are referred throughout
this report as slow commercial EV charging station (slow CEVCS) and fast
commercial EV charging station (fast CEVCS), respectively. These commercial
profiles differ in charging capacities; slow charging (6-10kW) and fast charging
(22-70kW). The EV energy consumption profiles for the three types of charging
stations, namely residential EVCS, slow CEVCS and fast CEVCS, are illustrated
in Fig. 3.

The residential EVCS consumption patterns are similar throughout the seven
days of the week, steadily rising from 6 am up until 7 pm, remaining low in
the night when users are sleeping. The slow commercial CEVCS demand has
two distinct consumption patterns within the week: weekdays and weekends. As
seen in Fig. 3, the EV charging demand is higher during the weekdays and lower
during the weekends. During the weekends it is low throughout the whole day
because of less demand. The fast CEVCS offer quick charging (about 30mins) for
users, resulting in the irregular demand with no distinct pattern. Predicting the
EV demand for the fast charging station is expected to be challenging, given the
irregular consumption patterns. Consequently, transfer learning can be expected
to be problematic for fast CEVCS relative to the slow CEVCS.

3.1 Input Processing

The EV time series data must be transformed into supervised learning to allow
reading by the model. The EV sequence is reframed into pairs of input and output
variables using the sliding window method. The inputs comprise values of the
current EV observation t and previous EV observations at times t−1,t−2....t−n
which predict the output EV observation at time t+ 1.The length of the sliding
window is defined based on [6],[3].

3.2 Data Standardisation

The differences in numerical ranges between the input and output values require
that the data-set be standardised. By standardisation, each feature is scaled
to have a distribution that is centred around 0, having a standard deviation
of 1. Standardisation allows for comparability among input data-sets, and it
also enhances the training efficiency of models since the numerical condition of
optimisation is improved. The mean and standard deviation for each feature is
calculated, then the feature is scaled using equation 8.

z = (xi − µ)/σ (8)
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Fig. 3: EV energy consumption weekly profile by the hour.

where, z represents the standardized value, xi is the observed energy consump-
tion value, µ is the mean, and σ is the standard deviation of the EV energy
data-sets.

3.3 Evaluation Metrics

An evaluation of the models’ skill is done using the mean absolute error MAE,
root-mean-square error RMSE, and R-squared R2 metrics. The R2 metric de-
scribes the proportion of variance of the input variable that the regression model
explains. The MAE metric calculates the positive mean error value for the test
data. The root-mean-square error (RMSE), which calculates the square root of
the means square error, is a strict metric that penalises significant errors; thus, it
is a reliable metric. One must look at these metrics concurrently when selecting
the superior model.These performance evaluation metrics are calculated using
equations (9-11) below

R2 = 1−
∑

(y − y′)2∑
(y − ȳ′)2,

(9)
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RMSE =

√
Σ

(y′ − y)2

N
, (10)

MAE =
1

n

n∑
i=1

|y′ − y| (11)

where y is the measured EV energy consumption value, y′ is the predicted EV
energy consumption value, and N represents the number of data pairs considered.

4 Results and Discussion

This study investigates the possibility of knowledge transfer from; (1) residential
EVCS to slow CEVCS and (2) residential EVCS to fast CEVCS to enhance
prediction in the target datasets with limited labelled data. The baseline transfer
learning-based model (CNN-T) is compared against the proposed hybrid transfer
learning-based models (CNN-BiLSTM-T and Conv-BiLSTM-T) to determine
which model is more superior. The newly created (CNN-N), CNN-BiLSTM-N
and Conv-BiLSTM-N non-transfer learning models are also compared against
their transfer learning-based counterpart models. If a new model without transfer
learning can outperform the transfer learning-based models, we can conclude
that transfer learning is not practical. Thus, we may need to fine-tune the transfer
learning model or abandon it altogether. However, if the transfer learning-based
models outperform the new model (which is the expected outcome), we can
conclude that transfer learning is beneficial.

Table 1: Comparing tested models for residential commercial charging load pre-
diction

MODEL
RMSE
(kWh)

MAE
(kWh)

R2

CNN 27.87 22.13 0.86
CNN-BiLSTM 27.17 21.25 0.87
Conv-BiLSTM 26.96 21.12 0.87

4.1 Training with Full Data Complement

The results of the initial training of the three models on residential EVCS before
transfer learning are shown in table 1. Lag 47 provided the best EV prediction
results compared to other tested lags. The results in table 1 are in reference
to lag 47; that is, the previous 47 hours of EV energy consumption are used as
input for predicting the next hour of EV energy consumption. The tested models
demonstrated almost similar performance in predicting the next hour charging
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load for the residential EVCS (source domain), with the CNN, CNN-BiLSTM
and Conv-BiLSTM models having comparable RMSE scores of 27.87 kWh, 27.17
kWh and 26.96 kWh, respectively.

4.2 Comparing Transfer Learning and Non-transfer Learning-based
Methods

This section compares the three transfer learning-based models’ performance
against their newly created counterparts for residential EVCS to slow CEVCS
and residential EVCS to fast CEVCS transfer learning. The results from this
part of the investigation are shown in Tables 2 and 3 and illustrated in Fig 4 (a)
and (b).

Table 2: Comparing RMSE values for transfer and non-transfer learning-based
model for residential EVCS to slow CEVCS

Data
size

CNN-T CNN-N
CNN-
BiLSTM-T

CNN-
BiLSTM-N

Conv-
BiLSTM-T

Conv-
BiLSTM-N

rmse mae rmse mae rmse mae rmse mae rmse mae rmse mae

12 44.87 39.23 0.12 0.10 0.08 0.07 0.06 0.05 0.15 0.14 0.04 0.04
24 0.26 0.25 0.65 0.65 0.39 0.39 0.61 0.61 0.47 0.47 0.63 0.63
36 1.05 1.04 0.12 0.11 0.42 0.41 0.03 0.03 0.04 0.03 0.08 0.07
48 2.56 2.00 1.20 1.08 0.82 0.04 0.96 0.84 0.82 0.48 0.86 0.66
60 0.27 0.26 1.36 1.31 0.24 0.19 0.54 0.53 0.13 0.11 0.16 0.15
72 1.69 1.50 1.91 1.58 1.43 1.11 1.60 1.29 1.49 1.24 1.65 1.33
96 2.17 1.21 2.55 1.67 2.32 1.32 2.77 1.70 2.32 1.27 2.72 1.78
120 2.37 1.58 3.65 3.43 2.27 1.62 2.36 2.09 2.61 1.64 2.79 2.38
1200 1.25 0.65 1.16 0.69 1.40 0.62 2.14 1.14 1.48 0.81 1.79 0.9
6961 1.99 1.17 2.03 1.13 1.38 0.98 1.77 1.14 1.36 0.98 1.46 0.88

The results from this part of the investigation indicate the potential of trans-
ferring learning in aiding model prediction in cases of limited labelled data. In
the residential EVCS to slow CEVCS, the table and charts show competitive per-
formance by all tested models. Only at data instance 36 do the newly-created
CNN-N, and CNN-BiLSTM-N models seem to present superior results than the
transfer based hybrid models, with the latter presenting equal MAE scores with
the Conv-BiLSTM-T model. In the rest of the tested data instances, the pro-
posed transfer learning-based hybrid models, particularly the Conv-BiLSTM-T
model presenting superior results.

In the residential EVCS to fast CEVCS transfer scheme, hybrid transfer
models continue to show dominance over newly created counterpart models. The
CNN-N and the CNN-BiLSTM-N supersede counterpart models at data instance
48. Besides this instance, transfer learning models continue to dominate in both
the limited data instances and beyond.
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Fig. 4: An RMSE comparison of the implemented non transfer and transfer
learning-based models

Table 3: A comparison of the transfer learning and non-transfer learning-based
model for residential EVCS to fast CEVCS

Data
size

CNN-T CNN-N
CNN-
BiLSTM-T

CNN-
BiLSTM-N

Conv-
BiLSTM-T

Conv-
BiLSTM-N

rmse mae rmse mae rmse mae rmse mae rmse mae rmse mae

12 22.64 18.54 143.64 136.50 42.90 36.33 50.63 46.08 37.97 33.40 60.27 56.44
24 57.77 51.74 52.48 47.50 32.29 29.58 54.90 50.27 40.98 38.10 46.82 41.29
36 44.24 36.35 53.35 50.54 19.70 18.70 38.36 34.05 34.73 30.32 30.04 34.63
48 45.77 39.07 21.23 16.31 42.14 36.02 20.64 16.30 21.34 17.88 22.32 17.00
60 27.13 19.05 17.63 16.71 12.82 10.21 21.08 19.89 14.70 12.43 21.35 20.10
72 33.30 26.81 31.46 25.67 22.51 17.92 35.03 29.23 23.52 18.39 23.84 19.06
96 27.67 20.95 22.46 18.75 18.73 15.24 22.77 18.02 20.33 17.27 22.80 18.75
120 25.18 20.06 28.82 24.68 22.95 18.01 27.56 23.95 21.85 18.11 28.02 24.55
1200 28.03 21.38 25.13 19.60 25.90 20.28 27.42 20.69 24.92 18.41 27.20 20.68

6961 26.20 20.13 25.50 19.34 24.58 19.61 29.08 21.79 24.30 19.27 27.68 20.78

4.3 Comparing Transfer Learning-based Models

In another part of the investigation, transfer learning-based models were com-
pared to determine which methods are most effective during transfer learning. It
is observed that hybrid-based transfer learning models outperform the baseline
CNN-T model at most tested data sizes, which point to the hybrid architectures’
effectiveness during transfer learning.

As seen in Table 4, there is dominance by the proposed hybrid transfer
learning-based models over the baseline CNN-T model. As clearly seen in the
illustration given in Fig. 5, the CNN-T model at all instances recorded higher
RMSE values in both tested transfer learning schemes, that is, from residential
EVCS to slow CEVCS and from residential EVCS to fast CEVCS. When con-
sidering the hybrid transfer learning-based models, it is observed that in small
data settings, the Conv-BiLSTM-T model tend to show superior performance
over its counterpart CNN-BiLSTM-T hybrid model.
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Table 4: Comparing the implemented transfer learning-based models from resi-
dential EVCS to slow CEVCS and to fast CEVCS

Data
size

CNN-T
CNN-
BiLSTM-T

Conv-
BiLSTM-T

CNN-T
CNN-
BiLSTM-T

Conv-
BiLSTM-T

rmse mae rmse mae rmse mae rmse mae rmse mae rmse mae
12 44.87 39.23 0.08 0.07 0.15 0.14 22.64 18.54 42.90 36.33 37.97 33.40
24 0.26 0.25 0.39 0.39 0.47 0.47 57.77 51.74 32.29 29.58 40.98 38.10
36 1.05 1.04 0.42 0.41 0.04 0.03 44.24 36.35 19.70 18.70 34.73 30.32
48 2.56 2.00 0.82 0.04 0.82 0.48 45.77 39.07 42.14 36.02 21.34 17.88
60 0.27 0.26 0.24 0.19 0.13 0.11 27.13 19.05 12.82 10.21 14.70 12.43
72 1.69 1.50 1.43 1.11 1.49 1.24 33.30 26.81 22.51 17.92 23.52 18.39
96 2.17 1.21 2.32 1.32 2.32 1.27 27.67 20.95 18.73 15.24 20.33 17.27
120 2.37 1.58 2.27 1.62 2.61 1.64 25.18 20.06 22.95 18.01 21.85 18.11
1200 1.25 0.65 1.40 0.62 1.48 0.81 28.03 21.38 25.90 20.28 24.92 18.41
6961 1.99 1.17 1.38 0.98 1.36 0.98 26.20 20.13 24.58 19.61 24.30 19.27

4.4 Summary of Findings

Transfer learning models dominate the newly created (CNN-N) between data
sizes of 24 hrs and 60 hrs and beyond, except at isolated instances (12 hrs, 24
hrs and 48 hrs). A 12-hour sized sample did not provide enough information
to enhance transfer learning in most tested cases, explaining the relatively high
error values recorded at this testing point by transfer learning models. Both
hybrid deep transfer models prove robust models, with consistent superior per-
formance over the CNN-N and CNN-T models for both residential EVCS to slow
CEVCS transfer and residential EVCS to fast CEVCS transfer learning tasks.
The hybrid CNN-BiLSTM-T and the Conv-BiLSTM-T show interchangeable
performance between themselves in tested transfer learning tasks. That is, no
outright dominance by either model in the critical transfer window and beyond.
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Fig. 5: An RMSE comparison of the implemented transfer learning-based models

The above observations confirm the benefits of transfer learning for electrical
vehicle knowledge transfer. In cases of little available labelled data at either

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_20

https://dx.doi.org/10.1007/978-3-030-77977-1_20


Title Suppressed Due to Excessive Length 13

the slow or fast CEVCS, a model trained at the residential EVCS can improve
prediction efforts at these target data-sets.

5 Conclusions and Future Works

The CNN model is a standard model for transfer learning due to its enabling
properties. Most research efforts study the effective strategies of improving trans-
fer learning using the CNN model. However, little is known about the perfor-
mance of hybrid deep learning models as mediums for transfer learning. Experi-
ments were set up using electric vehicle data-sets to determine the performance
of hybrid CNN-BiLSTM and Conv-BiLSTM models against the commonly used
CNN-based model in the transfer learning tasks. The experimental results con-
firmed the superiority of hybrid deep learning transfer learning-based models
over the conventional CNN transfer learning model. These results show that the
hybrid structure of the implemented models is beneficial for the transfer learning
tasks. As such, it can be concluded that the use of the hybrid CNN-BiLSTM and
Conv-BiLSTM models for time series data-sets can improve the performance of
the models in transfer learning settings. This study is also a pioneer transfer
learning study to electric vehicles prediction literature. Future works would in-
volve pre-processing input data to improve the transfer learning performance,
such as the weighting of the samples selected for transfer learning; that way, only
important data pairs are chosen, negating instances of negative transfer learn-
ing. Source domain models can be improved by considering more input data to
enhance their generalisation capacity.
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