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Abstract. This paper shows how a gradient-free optimization method
is used to improve the prediction capabilities of wildfire progression by
estimating the wind conditions driving a FARSITE wildfire model. To
characterize the performance of the prediction of the perimeter as a func-
tion of the wind conditions, an uncertainty weighting is applied to each
vertex of the measured fire perimeter and a weighted least-squares error
is computed between the predicted and measured fire perimeter. In addi-
tion, interpolation of the measured fire perimeter and its uncertainty is
adopted to match the number of vertices on the predicted and measured
fire perimeter. The gradient-free optimization based on iterative refined
gridding provides robustness to intermittent erroneous results produced
by FARSITE and quickly find optimal wind conditions by paralleling
the wildfire model calculations. Results on wind condition estimation
are illustrated on two historical wildfire events: the 2019 Maria fire that
burned south of the community of Santa Paula in the area of Somis,
CA, and the 2019 Cave fire that started in the Santa Ynez Mountains of
Santa Barbara County.

Keywords: Wildfire · FARSITE · Uncertainty · Interpolation · Gradient-
free optimization.

1 Introduction

Fire is critical for healthy ecosystems around the world. With the increased and
inevitable occurrence of wildfires, more accurate and responsive prediction of the
wildfire propagation is important for resource allocation in fire fighting efforts.
The fire growth modeling software FARSITE is widely used by the U.S Forest
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Service to simulate the propagation of wildfires [7], and is characterized by the
ability to estimate the wildfire propagation under heterogeneous conditions of
terrain, fuels and weather. Crucial sources of information in the modeling of fire
progression are the prevailing wind conditions characterized by average wind
speed and wind direction that determine the overall direction and rate of spread
of the wildfire.

Considerable research has been done on studying the growth and behavior
of wildfire. Rothermel introduced the mathematical model for predicting fire
spread [12], and experiments have been conducted to analyse the influence of fuel
and weather on the spread of fires [1]. Further steps in the study of the wildfire
behavior were achieved by steering the model using real-time data [5, 10, 11].
Data assimilation by combining FARSITE and ensemble Kalman filter has been
done in [6, 13–15]. Furthermore, unmanned aerial vehicles have been applied to
better monitor the large-scale wildfire [9, 16]. As mentioned in [1], among the
numerous factors that can affect the spread of the wildfire, wind speed and wind
direction play the critical roles. Unfortunately, wind conditions are available only
from sparsely placed weather stations.

Detailed studies are available on learning the (non-linear) relationship be-
tween the properties of the fuel and the wildfire progression [2–4], but often
only limited information on wind speed and wind direction can be used. This
means that the quality of the prediction is extremely dependent on the qual-
ity of an empirical estimate of the wind conditions obtained from geometrically
spaced weather station. In reality, information of the actual wind conditions at
the boundary of the wildfire is unavailable due to limited number of weather sta-
tions and the turbulent atmosphere caused by wildfire. As a result, significant
and compounding errors can occur in the prediction of the wildfire propagation.
A first step is to estimate the best initial wind conditions before any data assimi-
lation procedure. In this situation, the error caused by an erroneous measurement
of the wind conditions can be reduced, and the accuracy of the prediction by
data assimilation techniques can be greatly improved.

In this paper a gradient-free optimization is used to provide an estimate of
the initial wind conditions. The gradient-free optimization is based on iteratively
refining a grid of possible wind speed and wind direction conditions and sim-
ulating wildfire progression through FARSITE. Since each grid point provides
an independent wildfire simulation, the computations can be executed in par-
allel and also provides robustness to possible erroneous fire perimeter produced
by FARSITE under certain wind conditions. For each grid, the optimal wind
condition is estimated by a weighted least-squares error between a uncertainty
weighted measured fire perimeter and the simulated fire perimeter. Additional
refined gridding around the optimal wind conditions provides additional accu-
racy on the estimate. Due to the spread of the wildfire, it is highly possible that
measured wildfire perimeters at different times are described by polygons with
different numbers of vertexes compared to a simulated fire perimeter. Interpo-
lation is then needed in order that different polygons have the same number
of vertexes. Linear interpolation of the fire perimeters is used to guarantee the
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weighted least-squares error can always be computed. Furthermore, the weight-
ing in the least-squares computation is adjusted to account for unevenly dis-
tributed polygons to allow an evenly distributed weighting of the complete fire
perimeter.

The paper is organized as follows. Section 2 presents the polygon data model
of the wildfire perimeters and the method to compare two different wildfire
perimeters via a polygon interpolation and a weighted least-squares error com-
putation. Section 3 outlines the gradient-free optimization based on iterative
gridding to estimate the optimal initial wind speed and wind direction to match
predicted and measured fire perimeters on the basis of the weighted least-squares
error between polygons. Section 4 shows the numerical results for the estimation
of wind conditions for two use cases of wildfires in California: the 2019 Maria fire
that burned south of the community of Santa Paula and the 2019 Cave fire that
started in the Santa Ynez Mountains of Santa Barbara County. Conclusions are
summarized in Section 5.

2 Wildfire Perimeter and Error Quantification

2.1 Uncertainty Characterization

A wildfire may cover multiple disjoint burned areas. For simplicity of the analysis
presented in this paper, the notion of wildfire progression is characterized by a
wildfire perimeter that is considered to be a single closed polygon. The analysis
presented here can be applied to each of the closed-polygons in case a wildfire
does cover multiple disjoint burned areas. The single closed polygon describing
the wildfire perimeter is an ordered sequence of N vertexes and N piece-wise
linear line segments. The vertexes of the approximated polygon are located by
the Eastern and Northern coordinate pairs (e(k), n(k)), k = 1, 2, . . . , N .

Measurements of the wildfire perimeters can be a combined data collection
effort from satellite imagery, aerial surveillance or manually mapped observations
with different quality assessments [8]. Therefore, it is important to consider the
two-dimensional (2D) uncertainty for each vertex of the closed polygon that
describes the measured wildfire perimeter. The general description of the 2D
uncertainty on a vertex (e(k), n(k)) is a rotated ellipse, where the semi-major
axis a(k), semi-minor axis b(k), and the rotation angle α(k) collectively reflect
the variance in the horizontal direction and vertical direction. Such detailed
information may not be available and therefore the uncertainty on a vertex
(e(k), n(k)) is expressed by a circle around each vertex with a radius r(k), where
the value of r(k) is proportional to the uncertainty of the vertex on the polygon.

However, it is very likely that a measured fire perimeter comes with no uncer-
tainty characterization. In that case, the assumption is made that the uncertainty
on each vertex is proportional to the (smallest) distance to the neighboring ver-
tex on the polygon. Formally this uncertainty is described by

r(k) = max(min(l(k), l(k − 1)), rmin)

l(k) =
√

(e(k + 1)− e(k))2 + (n(k + 1)− n(k))2
(1)
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for k = 1, 2, . . . , N , where r(k) is the assumed uncertainty, l(k) is the distance
between neighboring vertexes (e(k+1), n(k+1)), (e(k), n(k)), and rmin is a user-
defined minimum value of uncertainty radius. The value of rmin is used to avoid
the condition in which two adjacent vertexes are extremely close to each other,
and can be determined by the accuracy of measuring method used to acquire
the polygon of the fire perimeter. An illustration of the uncertainty assignment
for a measured fire perimeter is given in Fig. 1.
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Fig. 1. Assignment of uncertainty radii r(k) (circles) of a measured fire perimeter with
vertexes (e(k), n(k)) (stars) and the resulting closed polygon (blue lines).

2.2 Perimeter Interpolation

With the spread of a wildfire, the corresponding closed polygon describing the
measured fire perimeter typically becomes larger and the number Nm of ver-
texes of the measured closed polygon (em(k), nm(k)), k = 1, 2, . . . Nm increases
accordingly. Similarly, the number of vertexes Ns on a simulated fire perime-
ter (es(k), ns(k)), k = 1, 2, . . . Ns obtained with fire modeling software such as
FARSITE will also increase, but in general Nm 6= Ns. Next to difference in
number of vertexes, the ordering of the vertexes (em(k), nm(k)), k = 1, 2, . . . Nm

of the measured fire perimeter and (es(k), ns(k)), k = 1, 2, . . . Ns are not the
same and a direct comparison between a pair (em(k), nm(k)) and (es(k), ns(k))
is incorrect.

The solution to this problem is to first interpolate one of the fire perime-
ters to the same and higher number N = max(Nm, Ns) of vertexes of the
other fire perimeter. Subsequently, when comparing pairs (em(k), nm(k)) and
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(es(k), ns(k)), the starting vertex at k = 1 of one of the fire perimeters will be
re-ordered to obtain the smallest weighted least-squares error between the poly-
gons. In this paper, interpolation of the fire perimeter is done with standard 2D
linear interpolation, where interpolated vertexes are introduced on the straight
lines connecting the original vertexes of the closed polygon, and the procedure
of linear interpolation is summarized in Algorithm 1.

Algorithm 1 Linear interpolation of wildfire polygon

Input: Vertexes of the original approximated polygon
Output: Newly constructed vertexes of the interpolated polygon

1: Calculate the length of each side of the polygon.
2: Calculate the cumulative side length from the starting point.
3: Find locations with equally distributed length along the side of polygon from the

starting point.
4: Construct new polygon vertexes

Similarly, uncertainties of the original vertexes can also be interpolated with
respect to the cumulative side length from the starting point. Due to the fact
that the interpolation is related to the distance from the starting point, it is easy
to verify that interpolation from different starting points will lead to different
results. This will be considered in the subsequent section when the weighted
least squares are calculated.

2.3 Weighted Least Squares Error

With an interpolated (and properly ordered) closed polygons of the simulated fire
perimeter (es(k), ns(k)), and the measured fire perimeter (em(k), nm(k)) with an
uncertainty r(k) on each vertex k = 1, 2, . . . , N , a weighted least-squares error

1

N

N∑
k=1

w(k)2
[
(es(k)− em(k))2 + (ns(k)− nm(k))2

]
, w(k) =

1

r(k)
(2)

can be used to define the distance between the fire perimeters. The weighting
w(k) = 1/r(k) ensures measurements with a large uncertainty r(k) are weighted
less in the error characterization. However, even with uncertainty radii defined
by (1) with a minimum value rmin, the weighted least-squares error in (2) will
be skewed and emphasizes parts of the closed-loop polygon where vertexes are
closely clustered and have only small distances with respect to each other, as
also illustrated in Fig. 1. The reasons are clear:

– Small uncertainty radii r(k) due to (1) will result in a larger weighting w(k) =
1/r(k) on the regions of the polygon where vertexes are closely clustered.

– More vertexes in areas of the polygon where vertexes are clustered further
accentuates the weighting on these regions of the polygon.
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To solve the problem of the skewed emphasis of the weighted least-squares
error, the weighting w(k) for each vertex is skew compensated by a weighting
computed via

w̃(k) = w(k)cw(k)uw(k), w(k) =
1

r(k)
(3)

where cw(k) is a concentration weighting for each vertex used to account for
clustering of vertexes on the closed polygon and the weighting uw(k) is the user-
defined weighting for each vertex, used to actually emphasize certain vertexes
on the closed polygon. The weighting cw(k) is defined as

cw(k) =
1

m(k)
(4)

where m(k) is the number of successive vertexes around the kth vertex with a
small adjacent distance l(k). A small adjacent distance l(k) is defined by the
relative distance condition

l(k)

lmean
< 0.2, lmean =

1

N

N∑
k−1

l(k)

where l(k) was defined in (1). The weighting uw(k) is defined to be 0 for the
barrier points, defined as vertexes where the fire perimeter has not changed, and
1 for the other vertexes.

-2.087 -2.086 -2.085 -2.084 -2.083 -2.082

eastern [m] 10
6

1.5015

1.502

1.5025

1.503

1.5035

1.504

1.5045

1.505

1.5055

n
o
rt

h
e
rn

 [
m

]

10
6

Fig. 2. Weighting radii 1/w̃(k) (circles) for skew-compensated least-squares compensa-
tion of a closed polygon of a measured fire perimeter consisting of vertexes (e(k), n(k))
(stars) and barrier vertexes (black line).
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An illustration of the skew compensation is show in Fig. 2. On account of
the fact that barrier points will not move with the spread of the wildfire, a zero
value weighting is assigned to each barrier point. Hence, the weighting radii of
barrier points are infinitely large, and not included in Fig. 2.

Finally, to also address the re-ordering of the vertexes of the closed polygon,
consider the short-hand notation based on complex numbers

x(k) = es(k) + j · ns(k), k = 1, 2, . . . , N
y(k, q) = em(k) + j · nm(k), k = q, q + 1, . . . , N, 1, . . . , q − 1

(5)

where x(k) ∈ C for k = 1, 2, . . . , N represents the 2D coordinates of vertexes
of a closed polygon of a simulated fire perimeter starting at index k = 1 and
y(k, q) ∈ C represents the 2D coordinates of vertexes of a closed polygon of a
measured (and possibly interpolated) fire perimeter, but reordered to start at
index q. The ability to adjust the starting point k = q of the closed polygon now
allows for the definition of the skew compensated weighted least-squares error

s = min
q

1

N

N∑
k=1

w̃(k)2|y(k, q)− x(k)| (6)

where w̃(k) is defined in (3). The starting point k = q is used to remove the
dependency of cyclical ordering of complex points describing the closed polygon.

3 Wind Condition Estimation with FARSITE

3.1 Forward simulations

In this study, FARSITE is used for the forward simulation of the simulated fire
perimeter x(k) as a function of the prevailing wind conditions u. FARSITE can
be considered as a non-linear mapping ρ(·) for fire progression, simplified to

x(k) = ρ(p(k), u, θ,∆T ) (7)

where the input p(k) ∈ CNp is a closed polygon of Np vertexes representing the
initial fire perimeter. The simulated output x(k) ∈ CNx , defined earlier in (5),
is the closed polygon of k = 1, 2, . . . , Nx vertexes representing a simulated fire
perimeter obtained after a time step of ∆T . The additional inputs u represents
the wind conditions, and θ denotes a parameter representing fuel content, fuel
moisture and topography, all assumed to be constant over the time step of ∆T .

Unknown wind conditions influence the interpolated and re-ordered vertexes
of the measured fire perimeter represented by the closed polygon y(k, q) defined
in (5). Prevailing wind conditions in terms of wind speed and wind direction
combined in a two dimensional input u will also influence the vertexes of the
simulated fire perimeter represented by the closed polygon x(k). Along with the
definition of the weighting w̃(k) in (3), it is expected that a minimization of s
in (6) as a function of u will provide the best wind conditions to minimize the
distance between x(k) and y(k).
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3.2 Wind Speed and Wind Direction Optimization

The formal problem of finding an estimate of the prevailing wind conditions on
the basis of a wildfire measurement y(k) can be stated as the optimization

min
u
s(u), s(u) = min

q

1

N

N∑
k=1

w̃(k)2|y(k, q)− x(k)|

x(k) = ρ(p(k), u, θ,∆T )

(8)

where w̃(k) is defined in (3) and y(k, q) is defined in (5). Although the minq y(k, q)
problem defined earlier in (6) is only a combinatorial problem and the opti-
mization is a standard weighted least-squares problem, the non-linearity and
non-convex mapping of ρ(·) requires a non-linear and iterative optimization,
typically using the sensitivity or the gradient.

For FARSITE, that is responsible for the mapping in (7), the sensitivity
or gradient ∂

∂uρ(p(k), u, θ,∆T ) is unknown. Numerical evaluation of the gradi-
ent is computationally expensive and moreover, FARSITE is known to produce
occasional erroneous results at some initial wind conditions due to numerical
problems in interpolation and reconstruction of the main fire perimeter (as will
be shown later). These reasons motivate the use of a gradient-free optimization
and the 2 dimensional size of u motivates a simple 2D gridding procedure over
which s(u) in (8) is evaluated. The 2D grid of u can be updated and refined
iteratively to improve the accuracy of the final optimized solution for u. The
pseudo-code for the iterative optimization can be summarized in Algorithm 2.

Algorithm 2 Optimizing algorithm

Input: θ, p(k), y(k), ∆T , minimum wind condition perturbation λ and stopping cri-
terion ε.
Output: Optimized u ∈ R2×1

1: Create n2 points of a symmetric 2D grid ui,j over a desired range i = 1, 2, . . . , n
and j = 1, 2, . . . , n around an initial estimate u0 of the wind conditions.

2: Parallel simulation in FARSITE with p(k), ui,j , θ and ∆T to obtain xi,j(k) for each
grid point.

3: Compute the n2 weighted least squares errors s(ui,j) defined in (8) over the grid
i = 1, 2, . . . , n and j = 1, 2, . . . , n

4: Find the smallest value î, ĵ = mini,j s(ui,j) to select the optimized wind condition
uî,ĵ

5: Set u0 = uî,ĵ and stop when |s(u0 + λ)− s(u0)| ≤ ε or go back to step 1 to refine
grid around u0.

The weighted least-squares error is used to determine the difference between
the simulated polygon and the measured polygon of wildfire. Simulations can be
performed in parallel to speed up the process of finding the optimal initial wind
conditions with the above mentioned algorithm.
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4 Numerical Results

4.1 Maria Fire

The Maria Fire ignited in the evening hours of Thursday, October 31, 2019
and consumed well over 4,000 acres (16 km2) within its first several hours of
burning. The optimization of the wind conditions is performed for this fire at
four different time stamps where measurements of the fire perimeter y(k) were
available. The objective of the optimization is to improve the fire simulations
of the fire perimeters x(k) with FARSITE in comparison with the observations
y(k) obtained at four time stamps.

Fig. 3. Evaluation of weighted least-squares error s(ui,j) between the simulated x(k)
and measured y(k) fire perimeter at one particular time stamp of the Maria Fire using
n2 = 100 points of a symmetric 2D grid for the wind conditions ui,j . The optimal wind
condition with the lowest value of s(ui,j) is indicated with a red dot.

First we illustrate the results of the gradient-free optimization algorithm
summarized in Algorithm 2 in Fig. 3. The numerical evaluation of the weighted
least-squares error s(ui,j) over n2 = 100 points of a symmetric 2D grid ui,j in
Fig. 3 clearly shows the non-differential behavior of s(u), motivating the use of
a gradient-free optimization. Sporadic large values for s(ui,j) for certain wind
conditions ui,j are explained by erroneous results due to numerical problems
in interpolation and reconstruction of the main fire perimeter by FARSITE, as
illustrated in Fig. 4. The simulation results show very similar fire perimeters for
two wind conditions that are very close to an erroneous result.
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Fig. 4. Simulation of the predicted fire perimeter x(k) with wind speed = 21 mph,
wind direction = 34 deg (red), wind speed = 21 mph, wind direction = 35 deg (green),
and wind speed = 21 mph, wind direction = 36 deg (cyan), with initial fire perimeter
p(k) (black).

Based on gradient-free optimization algorithm summarized in Algorithm 2,
the optimization can correct wildfire simulations when the initial guesses of the
prevailing wind conditions are not correct. Correction of the wildfire simula-
tions for the four different time stamps where measurements of the Maria fire
perimeter y(k) were available are summarized in Fig. 5. For each time stamp, the
simulated fire perimeter x(k) (green lines) based on an initial estimate u0 of the
wind conditions obtained from a weather station can be improved (yellow lines)
by the optimization of the wind condition via Algorithm 2. It can be observed
that the optimized wind conditions provide simulations of x(k) that are closer
to the measurements y(k) (red lines).

4.2 Cave Fire

Although the accuracy of the simulation is improved by using the optimized
wind conditions, there are still some parts of the optimized simulation x(k) that
are somewhat far from the measurement y(k). One reason may be the measure-
ment accuracy, as the combination of aerial surveillance and manually mapped
observations is likely to introduce measurement errors. It can also be observed
that as the fire perimeter becomes large enough, only using a prevailing wind
direction is inadequate for the accurate prediction of the wildfire propagation as
wind flow is shaped by topography and atmospheric interaction.
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(a) Fire perimeters at time 7:37 pm
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(b) Fire perimeters at time 7:58 pm

-2.089 -2.088 -2.087 -2.086 -2.085 -2.084 -2.083 -2.082 -2.081

eastern [m] 10
6

1.501

1.5015

1.502

1.5025

1.503

1.5035

1.504

1.5045

1.505

1.5055

n
o
rt

h
e
rn

 [
m

]

10
6

(c) Fire perimeters at time 8:31 pm
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(d) Fire perimeters at time 8:56 pm

Fig. 5. Comparison of measured y(k) and FARSITE simulated x(k) fire perimeters for
initial u0 and optimized u wind conditions via Algorithm 2 for the Maria fire at four
different time stamps. Initial ignition (blue); Simulation with initial guess u0 (green);
Simulations with optimized wind conditions u (yellow); Measurement at next time step
(red).
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The measurement data available for the Cave Fire included here can bet-
ter demonstrate the two issues of measurement errors and the assumption of a
single prevailing wind condition. The 2019 Cave Fire started on November 25
and burned a total of 3,126 acres before being contained on December 19. As
shown in Fig. 6(a), the top part of the first measurement (after the initial igni-
tion) can be assumed to be wrongly characterized when compared to the second
measurement. To be able to account for such errors on the measurement y(k),
the weighting radii w̃(k) defined in (3) on the vertexes in the top part of the
first measurement are adjusted to be zero. The effect of the weighting radii is
illustrated in Fig. 6(b)) and it can be seen that the measurements in the top part
of the first measurement are weighted with 0, while still allowing the remaining
points y(k) to be used for optimization of the prevailing wind conditions at this
time stamp.
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(a) Initial perimeter (blue); Measure-
ment at the first step (red) and the sec-
ond step (cyan) after the initial ignition.
Simulations with optimized wind condi-
tions (yellow);
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(b) Weighting radii w̃(k) (red circles) on
the measurement of the vertexes y(k) at
the first time step at 03:48 a.m (blue
stars).

Fig. 6. Simulation and measurements of the Cave Fire with measurement errors in the
measured fire perimeter y(k) at the first time stamp after the initial fire perimeter.

When the Cave fire grows to a large dimension, as illustrated in Fig. 7, it
becomes difficult to match the measured fire perimeter y(k) with a simulated fire
perimeter via single prevailing wind direction. The gradient-free optimization of
Algorithm 2 does a better job covering the east side of the fire, but the west side
of the fire cannot be covered with a single prevailing wind condition due to the
topography and atmospheric wind shear effects acting on the fire. This illustrated
the limitations of the proposed approach of optimizing only a prevailing wind
condition.
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Fig. 7. Comparison of measurement y(k) and FARSITE simulation when the Cave
fire reaches a large dimension. Initial ignition at time 05:15 a.m (blue); Simulation
with initial guess of wind conditions (green); Simulation x(k) with optimized wind
conditions (yellow); Measurement of fire perimeter y(k) (red).

5 Conclusions

This paper shows how fire perimeter measurements can be used to improve
the accuracy of a wild fire perimeter simulation, by using the measurements to
estimate and correct the prevailing wind speed and wind direction for the sim-
ulation. The estimation is based on a carefully defined weighted least-squares
error that measures the discrepancy between closed polygons. The weighting in
the least-squares error can account for measurement accuracy, and be adjusted
for a skewed weighting caused by unequally distributed vertexes on the closed
polygon of the fire perimeter. Using a gradient-free optimization that exploits
a grid of the two dimensional wind conditions and parallel computations with
FARSITE fire modeling, optimal wind conditions are obtained by an iterative
grid assignment approach. Numerical results on actual fire perimeter data ob-
tained from two recent destructive fires in California confirm the improvement
of the accuracy of a wild fire perimeter simulation. Limitations of the proposed
method are due to the optimization of a single prevailing wind condition – an
assumption that may not hold when a wild fire covers a large area with varying
topographical features.
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