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Abstract. Current approaches to visual place recognition for loop clo-
sure do not provide information about confidence of decisions. In this
work we present an algorithm for place recognition on the basis of graph-
based decisions on deep embeddings and blur detections. The graph con-
structed in advance permits together with information about the room
category an inference on usefulness of place recognition, and in particu-
lar, it enables the evaluation the confidence of final decision. We demon-
strate experimentally that thanks to proposed blur detection the accu-
racy of scene recognition is much higher. We evaluate performance of
place recognition on the basis of manually selected places for recognition
with corresponding sets of relevant and irrelevant images. The algorithm
has been evaluated on large dataset for visual place recognition that con-
tains both images with severe (unknown) blurs and sharp images. Images
with 6-DOF viewpoint variations were recorded using a humanoid robot.

Keywords: Visual place recognition, CNNs, images with unknown blur

1 Introduction

Simultaneous localization and mapping (SLAM) is the computational problem
aiming at constructing and updating a map of an unknown environment while
simultaneously keeping path of an agent’s location within it [1]. Although SLAM
is used in many practical applications, several challenges prevent its wider adop-
tion. Since SLAM is based on sequential movement and measurements that are
contaminated by some margin of error, the error accumulates over time, caus-
ing substantial deviation from actual agent’s locations. This can in turn lead to
map distortion or even collapse and thus making subsequent searches difficult.
Loop closure is a task consisting in recognition of previously-visited location and
updating the constructed map accordingly. Therefore, detecting loop closure (or
previously visited places) in order to correct the accumulated error during the
exploration is very important task [2]. This permits the SLAM system to re-
localize the sensor after a tracking failure, which might happen in unfavorable
circumstances, like severe occlusion or abrupt movements.
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The aim of visual place recognition (VPR) is to retrieve correct place matches
under viewpoint and illumination variations, while requiring as less as possible
computational power and memory storage [3]. Over the past years several meth-
ods for visual place recognition have been developed [3,2]. Although most of
visual place recognition methods were developed for SLAM, VPR algorithms
also found applications in monitoring of electricity pylons using aerial imagery
[4], brain-inspired navigation [5], and image-search based on visual content [6].
VPR is very challenging problem because images of the same place but taken at
different times may differ notably from each other. The differences can be caused
by factors such as varying illumination, shadows as well as changes resulting from
different passing the same route.

In robotics, most of evaluations of VPR systems were performed using data
acquired by ground-based mobile platforms or robots. The degree of viewpoint
variation that takes place during scene perception by a humanoid robot is far
more complex than viewpoint variations experienced by mobile robots [7]. When
a humanoid robot is walking, turning, or squatting, its head mounted camera
moves in a jerky and sometimes unpredictable way [8]. Motion blur, one of the
biggest problems for feature-based SLAM systems, causes inaccuracies and loca-
tion losses during map construction. Most of datasets for visual place recognition
provide lateral or 3D variations of viewpoint. The 24/7 Query dataset [9] con-
tains outdoor images with 6-DOF viewpoint variation. Recently, the Shopping
street dataset targeted for aerial place recognition with 6-DOF viewpoint change
has been introduced in [10]. Most of VPR benchmark data are time-based, as
frames are acquired and stored at a fixed FPS (frames per second) rate of a
video camera. Typically, they are recorded under assumption of non-zero speed
of the robot. In [11] a frame is picked every few meters to represent a new place.
A disadvantage of both time- and distance-based approaches are huge require-
ments for data storage. Moreover, they lead to visually similar frames at different
places and thus to inaccuracies and impracticality for long-term robot missions.

VPR is typically cast as image retrieval problem. Several handcrafted local
and global feature descriptors were proposed for place recognition [3]. CNNs for
visual place recognition were proposed in [12]. Since publication of this seminal
work, more and more data-driven image description approaches have emerged.
Performance of these algorithms has been studied in [13]. In [14], a VLAD [15]
layer for CNN architecture that could be trained in end-to-end fashion, specif-
ically for place recognition task has been proposed. The experimental results
achieved by NetVLAD on very challenging datasets significantly outperformed
results achieved by pre-trained CNNs. Very high potential of VLAD has recently
been confirmed in [16], where a comprehensive comparison of 10 VPR systems
identified the NetVLAD as the best overall performing method.

Motivated by lack of a dataset with variations arising during typical move-
ment of humanoid and walking robots, particularly containing images with se-
vere (unknown) blurs we recorded a dataset using camera mounted on head of
humanoid robot. To cope with place recognition on the basis of images with un-
known blur we propose an effective algorithm for blur detection. We demonstrate
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experimentally that the proposed algorithm considerably outperforms state-of-
the-art algorithms on images with severe and unknown motion blur. We demon-
strate also that owing to use of the proposed algorithm, considerable gains of
performance in scene categorization can be achieved. We employ minimum span-
ning tree (MST) for place recognition purposes and show its usefulness. Thanks
to information extracted on the basis of MST like proportion of images belong-
ing to given class with respect to number of images from remaining classes in a
given tree branch the system can infer about confidence of place recognition.

2 Relevant work

Scene recognition is very challenging problem [17,18] and variety of approaches
have been proposed during the last years. The most frequently used hand-crafted
global descriptor is GIST [19]. With the rise of deep learning, learned fea-
tures become increasingly widely used in localization algorithms. This resulted
in a paradigm shift in VPR research consisting in focusing on neural network
activations-based descriptors. Considerable potential of features extracted from
CNN layers and used as global descriptors has been demonstrated in [20]. Scale
Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF)
are two of the most commonly used local descriptors [21]. These local techniques
extract invariant keypoints from an image and provide descriptions of these key-
points by an underlying low-level gradient-based descriptors. They have been
applied in several algorithms for visual place recognition [3]. However, as ob-
served in [9], SIFT can cope with large changes in appearance and illumination,
but only when there is no large view point change [22]. On the other hand, ge-
ometric features like vertical lines can be very useful to represent buildings [23]
or objects like doors in outdoor/indoor environments.

Pretrained CNN-based approaches to VPR can be roughly divided into two
main categories in which: (i) responses from convolutional layers are extracted
on the basis of the entire image [12], (ii) salient regions are identified through
distinguishing patterns on the basis of convolutional layers responses to entire
image [24]. High level features like object proposals have demonstrated remark-
able potential in VPR [25]. Philbin et al. [26] learn a non-linear transformation
model for descriptors that leads to greatly better matching performance. Tolias
et al. [27] use max-pooling on cropped areas in CNN layers’ features in order to
extract ROIs. Mao et al. [28] propose multi-scale, non-rigid, pyramidal fusion of
local features to improve VPR. In [29] a global matching-based, less-intensive
place candidates selection is followed by local feature-based, more-intensive fi-
nal candidate selection with focus on spatial constraints. Deep neural networks
such as GoogLeNet, ResNet-152, VGG-16 and DenseNet-161 achieved classifica-
tion accuracies of 53.6%, 54.7%, 55.2% and 56.1%, respectively on challenging
Places-365 dataset [17]. The classification accuracies are lower in comparison
to accuracies achieved by those networks on ImageNet dataset. The images ac-
quired by mobile robots, and in particular humanoid robots or drones are even
harder to classify. In [30], the transfer learning technique to retrain the VGG-F
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network in order to categorize places among 16 rooms on images acquired by a
humanoid robot has been discussed.

3 Algorithm and Experimental Setup

At the beginning of this Section we propose an algorithm for blur detection.
Afterwards, we present minimum spanning tree for place recognition. Then, in
the next Subsection we describe our dataset. In the last Subsection we present
the whole algorithm for place recognition.

3.1 Blur Detection

The basic idea of current approaches in robotics to visual place recognition is
to search a database of indoor images and return the best match. Considerable
attention is devoted to algorithms trained in end-to-end manner. Despite con-
siderable research efforts, robust place recognition in indoor environments on
the basis of on-board robot camera is an unsolved problem. The classification
accuracies achieved by deep neural networks on challenging Places-365 dataset
are lower in comparison to accuracies achieved by those networks on ImageNet
dataset. The accuracies on real images acquired during robot motion are either
too low for the purposes of loop-closure or are obtained with a high computa-
tional cost that prevents real-time applications. A dominating approach consists
in learning or embedding features. One of the exceptions is a recent approach
[29] in which a global matching-based, less-intensive place candidates selection
is realized in advance, and then a local feature-based, more-intensive final can-
didate selection with focus on spatial constraints is executed. It is also worth
noting that most of the approaches to visual place recognition do not consider
scenarios with significant motion blur or, as a last resort, neglect motion blur,
especially when the robot or camera rotates.

At the beginning we generated a dataset with images contaminated by motion
blur. We employed MIT Indoor scene database [31] that consists of 15620 im-
ages with 67 indoor categories. The number of examples varies across categories,
but there are at least 100 images per category. A Matlab function fspecial has
been used to approximate the linear motion of a camera with provided lengths
(5, . . . , 10) and directions (0, . . . , π/2). Motivated by recent research findings
showing that CNN-based description of places or images using only regions of
interest (ROI) leads to enhanced performance compared to whole-image descrip-
tion [32] we based our algorithm on such an approach. In [32] the ROI-based
vector representation is proposed to encode several image regions with simple
aggregation. An approach proposed in [24] employs a late convolutional layer as
a landmark detector and a prior one in order to calculate local descriptors for
matching such detected landmarks. For such a regions-based feature encoding
a 10k bag-of-words (BoW) [33] codebook has been utilized. The proposed ap-
proach to blur detection is based on salient CNN-based regional representations.
The layers conv5 3 and conv5 2 of VGG-16, pre-trained on ImageNet dataset
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were used to extract the features representing regions. This means that in our
approach we perform blur detection not on the whole image but instead we em-
ploy only salient CNN-based regional representations of the image. As in [24] we
utilize a higher convolutional layer to guide extraction of local features and to
create multiple region descriptors representing each image. At the training stage
for each image with and without blur we extracted ten descriptors of size equal
to 512, representing image regions with highest average activations. We trained
a neural network with one hidden layer to classify the mentioned above image
descriptors into two categories. The number of neurons in the hidden layer was
equal to 20. The trained neural network has then been used to detect the noise.
In testing stage for each image we extracted 200 descriptors as a representation
of image regions with highest average activations. The responses of the neural
network for such descriptors were averaged. The average values were then used
to label the images as blurred or sharp. For visualization purposes the outputs
of the classifiers were also projected onto the input images, see Fig. 1 that de-
picts sample images. For the discussed images the averaged outputs are equal to
0.1476, 0.5333 and 0.8532, respectively.

Fig. 1: Heat maps of images with increasing blur intensity.

We experimented with various numbers of descriptor vectors extracted on
the test images. Figure 2 depicts sample images with some considered number
of descriptors. As we can observe, the depicted heat maps change depending on
number of descriptor vectors. Thus, we experimentally determined the number
of descriptors leading to best blur detections and then determined the threshold
to decide on the basis of averaged predictors if image is blurred or sharp one.
This problem is an example of multi-objective optimization and in a future work
the trade-off between number of descriptors and noise level will be determined
automatically.

Fig. 2: Blurry input image (left) and heat maps for various number of descriptor
vectors (50, 100, 200 and 300) extracted on the blurred image.
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3.2 Minimum Spanning Tree-Based Place Recognition

By constructing a minimum-spanning tree the original dense graph is simplified
into a minimum weight subgraph, which greatly reduces the number of edges
and provides subgraphs of vertices of different degrees. Conventional minimum
spanning tree-based clustering algorithms employ information about edges con-
tained in the tree to partition a data set. A minimum spanning tree is a subset of
edges of undirected graph that connects all vertices together, without any cycles
and with the minimum total edge weight [34]. The property that there are no
cycles means that there is only one path among any two nodes in the tree. In this
work we compute a MST that connects all images of the training set. Nodes are
connected by edges while weights express similarities between them. The edges
were determined upon cosine similarity between global descriptors of images. In
the proposed approach the MST has been utilized to support the place recogni-
tion. For each landmark place a number of relevant images has been determined.
The MST has been built upon a selected global descriptor of the images. Given
a MST created in advance on the training dataset, for each new image the al-
gorithm seeks for the MST edge that is closest to this new image. The query
images were classified as relevant or irrelevant on the basis of their similarities
with the closest edges of the tree. Additional information about the room as
well as blur of the images has been considered to enhance the place recognition.
Moreover, a confidence of the place recognition has also been estimated.

3.3 The Dataset

The dataset has been recorded using a RGB camera mounted on the head of a
humanoid robot. The dataset contains 9000 images, which were acquired in nine
indoor rooms. Each image has been manually classified as sharp or blurred or
considerably blurred. The training sequence contains 5287 blurred images and
1913 sharp images. A test sequence contains 1366 blurred images as well as 434
sharp images. For place recognition we also manually determined twenty two
reference images with corresponding relevant and irrelevant images.

3.4 Algorithm

We trained the neural network to estimate the blur intensity and then used its
outputs to detect if the input image is blurry or sharp one. Having on regard that
the NetVLAD offers a powerful pooling mechanism with learnable parameters
that can be easily plugged into any other CNN architecture or classifier we
trained and then evaluated a set of classifiers for room recognition. A selected
classifier is then used to recognize the room. We utilized VGG16 and added the
NetVLAD layer after the conv 5 layer in order to extract the VLAD features.
Given this and other selected features we precalculated the minimum spanning
trees and evaluated them for place recognition.

Given all N training images and global descriptors, a pairwise similarity
matrix of size N × N is determined for each descriptor. Afterwards, a MST is
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built on NetVLAD descriptor. The edges are determined upon cosine similarity
between global descriptors of images. Then, blur information as well as room
class are included in nodes of the MST built on the NetVLAD. Subsequently,
the stored MST tree is processed using query images. Given a query image, only
nodes of degree higher than two are assessed with respect to similarity with the
query descriptor. Only 0.3 of the most similar nodes with the query descriptor are
retained for further analysis. Afterwards, on the basis of the NetVLAD the most
similar forty descriptors to the query descriptor together with corresponding
node information are selected. Only nodes labeled as sharp as well as with the
same class as the query image are included in the subset mentioned above. Such
descriptors (images) are then sorted with respect to similarity with the query
descriptor (image). Three sorted lists of images are determined for the NetVLAD
descriptor and two additional global descriptors. Finally, the order of the images
is updated upon the similarities of three global descriptors with the query image.
As a result, the two descriptors (for instance Resnet-50 and GoogleNet), which
individually get worse results than NetVLAD, in tandem may provide more
relevant images to the query images and thus improve the average precision
(AP) score of place recognition for a given query image.

Let us assume that we have a sorted list of similarities between the NetVLAD
descriptors for the query image and the most relevant images. Let us also as-
sume that we have also an ordered list of similarities between the ResNet50
descriptors and the most relevant images as well as ordered list of similarities
between the GoogleNet descriptors and the most relevant images. For the image
corresponding to the most similar NetVLAD descriptor with the query descrip-
tor we determine the positions (indexes) in the ordered lists of ResNet50 and
GoogleNet descriptors, which were determined for this considered image. We re-
peat this operation for the remaining descriptors and store indexes in subsequent
rows of three column table. After computing the averages for all rows we obtain
values which are used to reorder the relevant images with the query image.

We experimented with various configurations of the algorithm to evaluate
the usefulness of blur detection as well as influence of classification scores on the
performance of place recognition. We observed that knowledge about motion
blur and room category has considerable influence on the final decision because
in rooms like corridors the place recognition performance and ability do precisely
determine the previously visited place for loop closure is lower. Finally, a classifier
built on the MST has been utilized in image retrieval for the most similar image.
This means that final decision is taken using high-level information from noise
detector, room recognition and information extracted on the basis of the MST.

By calculating the similarity measures between descriptor extracted from the
current image and descriptors from the edges we can quickly determine the rel-
evant sub-tree. Usually, descriptors in the same cluster have similar properties
and tend to be in the same class. However, when in the same cluster there are
exemplars belonging to different classes then the confidence of final decision is
lowered. In our approach the confidence of place recognition is determined using
the most relevant image found in the place recognition. Using the global descrip-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_14

https://dx.doi.org/10.1007/978-3-030-77977-1_14


tor of this image we searched for fifty most similar images. Such a pool of the
most similar images has been determined on the basis of the MST edges holding
cosine similarities between NetVLAD descriptors. When the decision confidence
is below a threshold it is marked as not valuable for the loop-closure. In the ba-
sic approach the confidence has been determined as the ratio of sharp images to
total number of images in the pool. We investigated also approaches combining
blur information with class information. The MST have been calculated using
dd tools [35]. Aside of the NetVLAD we employed the descriptors extracted from
Resnet-50 and GoogleNet backbones.

4 Experimental Results

At the beginning we conducted experiments consisting in motion blur detection
as well as deblurring real-world images. We ran our algorithm for blur detection
on real images with severe (unknown) blurs and compared it with state-of-the-
art algorithms, including [36,37]. Table 1 presents experimental results that were
achieved on test sequence Seq. #2 from our dataset. As we can observe, the
best results were achieved by our algorithm. Taking into consideration that the
decision whether the image is sharp is done on the basis of averaging the classifier
output we evaluated also SVM with the calibrated output as well as the logistic
regression (LR), which generates the calibrated output by default. It is also worth
mentioning that the results achieved by CNNs specialized for non-uniform blur
detection [38] are better in comparison to results achieved on the basis of method
[37]. The discussed result has been achieved using neural network trained in 50
epochs. It has been trained on about 250 000 image descriptors randomly selected
from the whole pool of training descriptors, whereas SVM and LR classifiers were
trained on 50 and 150 thousand of descriptors, respectively. A recently proposed
algorithm [39] achieved accuracy equal to 85.6%.

Table 1: Blur detection on images from Seq. #2 with severe (unknown) blur.

method Accuracy Precision Recall F1-score

var. Laplacian 0.8589 0.8114 0.7931 0.8015

SVM calibrated 0.9078 0.8650 0.8992 0.8798

Logistic regression 0.9194 0.8984 0.8770 0.8870

MB-det-CNN [37] 0.8720 0.8412 0.8231 0.8126

Our method 0.9206 0.8869 0.9005 0.8934

Afterwards, we determined descriptors representing images and calculated
minimum spanning trees. The MSTs were visualized for images from each cate-
gory as well as all images from the training set. Figure 3 depicts a sample MST
that was obtained on the NetVLAD descriptor on all images from the training
subset. We calculated, visualized and analyzed minimum-spanning trees on all
images, images classified as sharp, and only blurry images. The discussed anal-
ysis of linkage maps was conducted with aim to collect the knowledge about
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dataset, and in particular to investigate influence of the blur on the performance
of scene classification as well as place recognition on images with severe blurs.

Fig. 3: Minimum spanning tree determined on NetLAD descriptor from training
subset (plot best viewed in color).

Next, we evaluated state-of-the-art global descriptors in indoor scene recog-
nition, where the set of scenes was a list of nine different room types. Table 2
presents experimental results which were achieved on sequence #2 from our
dataset. We compared the performances achieved by the SVM with the linear
kernel as well as k-NN. Table 2 presents only better result for each considered
case. As we can observe, the categorization performance achieved on the ba-
sis of HOG and LBP descriptors is worse in comparison to remaining results.
Classification performances achieved in transfer-learning based approach [30] are
far better, see results C-E. Moreover, accuracies achieved upon the ReNet50 and
SVM are noticeably better in comparison to results achieved on the basis of other
deep neural architectures, including GoogleNet trained on Places-365 dataset.
The classification results achieved by the k-NN on NetVLAD features are better
in comparison to results mentioned above. The features were calculated using
VGG-16, NetVLAD with whitening, trained on Tokyo Time Machine dataset
[14] (downloaded from https://www.di.ens.fr/willow/research/netvlad/).
The recognition of rooms only on images without blur, i.e. images automatically
classified as non-blurry leads to considerable improvement of the results. This
means that in such a scenario the robot first classifies the acquired image as
blurry or non-blurry and then in case the image is blurry it acquires next one.
As we can observe, costly and time consuming deblurring images with severe (un-
known) blurs did not lead to better results. The discussed results were achieved
using recently proposed deblurring algorithm [40]. Blur detection and then de-
blurring the images contaminated by blurs leads only to slightly better results,
see results in the last row.
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Table 2: Performance of room categorization on Seq. #2 from our dataset.

Accuracy Precision Recall F1-score
[A]HOG+SVM 0.6872 0.7063 0.6872 0.6921
[B]LBP+SVM 0.7639 0.7867 0.7639 0.7655
[C]VGG19+SVM 0.9056 0.9072 0.9056 0.9050
[D]GoogleNet Places-365+SVM 0.8939 0.8956 0.8939 0.8936
[E]ResNet50+SVM 0.9428 0.9474 0.9428 0.9434
[F ]NetVLAD+KNN 0.9583 0.9600 0.9583 0.9583
[G]NetVLAD+MST 0.9544 0.9567 0.9544 0.9545
[H]NetVLAD+SVM+BlurDet. 0.9652 0.9687 0.9652 0.9662
[I]NetVLAD+SVM+Deblur 0.9528 0.9570 0.9528 0.9532
[J]NetVLAD+SVM+BlurDet.+Deblur 0.9550 0.9585 0.9550 0.9556

In last part of experiments we focused on place recognition. As mentioned
above, basic idea of current image-based approaches to place recognition is to
search a repository of indoor images and return the best match. In the first phase
of this part of the research, we analyzed the performance of place recognition on
images from Seq. #2 using the NetVLAD, GoogleNet and ResNet50 features.
The NetVLAD features have been extracted using VGG-M network trained on
TokyoTM dataset. The size of the feature vector extracted upon conv5 3 layer
is 1× 4096. We utilized GoogleNet trained on Places-365 dataset and ResNet50
trained on the ImageNet. The size of the GoogleNet-based feature vector is
1 × 1024 and it was extracted from pool5-7x7 s1 layer. The ResNet50-based
feature is of size 1×2048 and it was extracted from GlobalAveragePooling2DLayer,
avg pool layers. Table 3 presents mean average precision (mAP) scores as well
as their average values, which were achieved in recognition of 22 places in nine
rooms. The last two columns of the table contain the results that were achieved
using the MST and a combined descriptor. For each descriptor we determined the
pairwise similarity matrix. The similarity matrixes have then been normalized to
0-1 range. Afterwards an average similarity matrix for all descriptors has been
calculated. Finally, we determined the MST of a complete undirected graph
with weights given by the averaged similarity matrix. As we can observe, such
an algorithm achieved the best mAP scores. Thanks to considering information
about blur far better mAP scores can be obtained in place recognition.

Figure 4 depicts precision-recall plots for selected rooms. The precision is
the fraction/percentage of retrieved images that are relevant. The recall is the
fraction/percentage of relevant images that were retrieved. For the analyzed
rooms: D3A, D7, F104 and F107 the number of landmark points was equal to
three. For the remaining rooms the precision-recall curves were perfect.

First row of Figure 5 depicts query image and then relevant images, which are
sorted from most similar to less similar. Second row contains example irrelevant
images. The discussed images except query one were manually selected taking
into account perceptual similarity/dissimilarity with the query image. Third
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Table 3: Performance of place recognition (bd. - blur detection).

k-NN k-NN k-NN MST

VGG-M GoogleNet ResNet50 combined

NetVLAD Places-365 desc.

bd. - bd. - bd. - bd. -

Cor 1 1.0000 0.8638 0.9205 0.6742 0.9135 0.8242 1.0000 0.8633

Cor 2 1.0000 0.5804 1.0000 0.8029 1.0000 0.7501 1.0000 0.5804

Cor 3 0.9750 0.8007 1.0000 0.7369 0.7667 0.7962 1.0000 0.7857

D3A 0.6549 0.7832 0.6147 0.6403 0.5939 0.6906 0.6612 0.7852

D7 0.8193 0.8016 0.8570 0.7277 0.9810 0.8071 0.8193 0.8041

F102 1.0000 0.7144 0.6293 0.4635 0.9167 0.5764 1.0000 0.7833

F104 0.8537 0.8504 0.4815 0.4471 0.7704 0.7114 0.8537 0.8632

F105 1.0000 0.8813 0.8296 0.6392 0.9722 0.6380 1.0000 0.8851

F107 0.8772 0.7239 0.2875 0.2526 0.5326 0.4596 0.8963 0.7224

av. mAP 0.9089 0.7778 0.7356 0.5983 0.8274 0.6948 0.9145 0.7859

Fig. 4: Precision-recall plots for selected rooms (D3A, D7, F104, F107).

row shows some correctly matched reference images with the query image, i.e.
retrieved relevant images.

Fig. 5: Query image and relevant images (upper row), irrelevant images (second
row), images retrieved using NetVLAD features (images acquired in room F102).
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In the second phase of this part of the research, we performed experiments
consisting in estimating the confidence of place recognition. The confidence of
place recognition has been estimated as ratio of sharp images to total number
of images in a pool of fifty most similar images with the image most similar to
the query image, see Fig. 6a) that contains sample sub-tree. Figure 6b) illus-
trates the estimated confidence for all 22 landmark points. It turned out also
that information about room category is important in context of confidence of
robot decisions since spatial accuracy of place recognition in long and narrow
corridors with similar scene content is much smaller. As we can observe, the
lowest confidences are for Corridor 3 in 2nd landmark point and for Corridor 1,
1st landmark point. Experiments consisting in determining if acquired image is
representative enough for scene recognition were conducted as well. For instance,
if acquired image is blurry but the robot knows that it belongs to tree branch
in which there are only images belonging to single room then it can decide to
perform deblurring the image and then use it for place recognition.

a) b)

Fig. 6: Sub-tree with most similar image to the query image (green) and fifty
most similar images with it (red), a), estimated confidence for all landmark
points, b).

5 Conclusions

In this work we introduce an algorithm for blur detection on images with severe
(unknown) blur. We demonstrate experimentally that the proposed algorithm
outperforms recent algorithms. We propose a new algorithm which on the basis of
graph-based decisions on deep embeddings and blur detections permits robust
place recognition as well as delivers decision confidences. The algorithm has
been evaluated on challenging dataset for visual place recognition with images
acquired by a humanoid robot.
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