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Abstract. In the paper we address a problem of estimating a physical
state of an observed person by means of analysing facial portrait captured
in thermal spectrum. The algorithm consists of facial regions detection
combined with tracking and individual features classification. We focus
on eyes and mouth state estimation. The detectors are based on Haar-
like features and AdaBoost, previously applied to visible-band images.
Returned face region is subject to eyes and mouth detection. Further,
extracted regions are filtered using Gabor filter bank and the resultant
features are classified. Finally, classifiers’ responses are integrated and
the decision about driver’s physical state is taken. By using thermal im-
age we are able to capture eyes and mouth states in very adverse light-
ing conditions, in contrast to the visible-light approaches. Experiments
performed on manually annotated video sequences have shown that the
proposed approach is accurate and can be a part of current Advanced
Driver Assistant Systems.

Keywords: thermal imaging · face detection · eyes detection · mouth
detection · Haar-like features · Gabor filtering · drowsiness estimation

1 Introduction

Most traffic accidents, according to the road safety research [33], come as a result
of drivers’ behaviour, often associated with fatigue and drowsiness [29]. Accord-
ing to [32], approximately 20% of accidents are caused by loss of concentration
hindering drivers in terms of immediate and right decisions [19]. A majority of
techniques aimed at driver fatigue assessment is based on an analysis of signals
captured by external sensors that are carried by observed persons. On the other
hand, there is also an alternative possibility to perform a continuous observation
of the driver without his/her cooperation - it is often realized by machine vision
techniques applied to video streams captured in the cabin. The research [19]
show that some characteristic behaviours are associated with different activity
of head, eyelids and mouth [9].

In this paper we present a research devoted to the methodology for acquir-
ing, integrating and analysing selected visual data in the context of assessing

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_12

https://dx.doi.org/10.1007/978-3-030-77977-1_12
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the psychophysical state and the degree of fatigue of drivers or operators of mo-
tor vehicles. The proposed algorithm is based on the analysis of visual premises
captured in uncontrolled environmental conditions (e.g. in severe lighting con-
ditions or in complete darkness) [20]. While there are many algorithms that are
able to detect driver fatigue and drowsiness based on eyes state and blink analy-
sis (e.g. [8, 19, 24]), they work in visible light, or in infrared band, only. It should
be noted, that during travelling, drivers encounter dynamic lighting conditions
(blinding sun, low-level ambient illumination) and various environmental con-
ditions impairing the observation (e.g. passing through a shaded forest or dark
tunnel). Hence, the obvious weaknesses of traditional imaging means.

Typical machine vision-based techniques allowing for a constant observation
of a driver work often in the following manner. The first stage is face detec-
tion followed by facial features extraction [22]. Such regions-of-interest are then
analysed in order to collect relevant spatial and temporal characteristics which
are subjected to inference mechanism. Face and face features detection problems
are considered solved under controlled conditions [10, 31], yet when we deal with
severe lighting, there are still many difficulties to overcome.

It is evident, that the analysis of the visible band image of a face recorded in
the unfavourable illumination leads to the high error rate or it can be completely
impossible. On the other hand, under the same environmental conditions, using
thermal imaging, we are able to detect eyes blinking and yawning. Hence, we
propose a method to detect eyes and mouth state in video sequences captured
in thermal spectrum. Although the detection and tracking of facial landmarks
can be performed with almost 100% accuracy, it should be remembered, that
they are oriented at visible band images. Their accuracy for other modes, e.g.
thermal images or depth maps, is not often explored. It is caused by unpopular
and expensive thermal acquisition devices. However, it may change in future.

The authors of [17] presented a method of detecting yawning in thermal
images for estimating driver’s fatigue level. They focus on detecting thermal
anomalies in the image area where a mouth is located. This approach may be
sensitive to an unexpected phenomenon, unforeseen while determining their pa-
rameters empirically. In our approach we detect mouth state based on visual cues
only, assuming that the appearance of the lips changes during yawning. Another
exemplary system presented in [24] uses OpenCV face and eye detectors sup-
ported with the simple feature extractor based on the two dimensional Discrete
Fourier Transform (DFT) to represent eyes regions. Similarly, the fatigue of the
driver determined through the duration of the eyes’ blinks is presented in [8].
It operates in the visible and near infra-red (NIR) spectra allowing to analyse
drivers state in the night conditions and poor visibility. A more complex, multi-
modal platform to identify driver fatigue and interference detection is presented
in [7]. It captures audio and video data, depth maps, heart rate, steering wheel
and pedals positions. The experimental results show that the authors are able to
detect fatigue with 98.4% accuracy. There are solutions based on mobile devices,
especially smartphones and tablets, or based on dedicated hardware [14, 18, 34].
In [1] the authors recognize the act of yawning using a simple webcam. In [12] the
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authors proposed a dynamic fatigue detection model based on Hidden Markov
Model (HMM). This model can estimate driver fatigue in a probabilistic way
using various physiological and contextual information. In a subsequent work
[3] authors monitor information about the eyes and mouth of the driver. Then,
this information is transmitted to the Fuzzy Expert System, which classifies the
true state of the driver. The system has been tested using real data from various
sequences recorded during the day and at night for users belonging to differ-
ent races and genders. The authors claim that their system gives an average
recognition accuracy of fatigue close to 100% for the tested video sequences.

The analysis shows that many of current works are focused on the problem
of recognizing driver’s fatigue, yet there is no common methodology of acquisi-
tion of signals (from various sources) used to evaluate vehicle operator physical
condition and fatigue level. Moreover, most of works focus on single feature, not
taking into consideration joint observations. Even though, if joint features are
used (e.g. [27]), the analysis is performed on visible-light-only images.

On the other hand, to achieve the most accurate results, researchers use
additional data sources such as EEG, ECG, heart rate, vehicle behavior on the
road, etc. Unfortunately, in real conditions, obtaining this type of data is difficult
or even impossible. Therefore, in their research, the authors focus on non-invasive
methods of image analysis of various spectra [15, 28, 30].

2 Method description

2.1 Assumptions

Capturing image in visible-band light is the most straightforward and widespread
method of visual data acquisition. The sensors of photo cameras are rather cheap
and their performance can be high, in terms of sensitivity, dynamic range and
spatial resolution. Unfortunately, their parameters are preserved only in good
and stable lighting conditions. It should be remembered that car’s cabin is often
illuminated by directional light, coming from the windows (sun, street and lamps
of other cars). What is more, additional (stable) lighting of driver’s face during
driving is impossible, since it could disturb his/her functioning. The natural
way of solving this dilemma is using other capturing device, working in differ-
ent lighting spectra, e.g. near infrared (NIR with wavelength of 0.75–1.4µm) or
thermal (also known as long-wavelength infrared - LWIR with wavelength of
8–15µm). Since NIR is associated with so called reflective infrared, it requires
an illumination with infrared illuminator. Such a prolonged illumination may be
hazardous to the driver’s health [4]. Therefore, the LWIR spectrum has been
selected, since it is free of the above mentioned weak points [17]. Thermal sen-
sor captures drivers’s facial image in a completely passive manner and it does
not depend on the lighting conditions, which is important when dealing with an
observation of a driver in uncontrolled environment.

Using the same methodology, as in case of visible-band video, certain facial
areas in the thermal portraits can be detected and extracted using specially
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trained detectors based on hand-crafted features, e.g. Haar-like features [13],
Histogram of Oriented Gradients [13] and Local Binary Patterns [34]. The de-
tectors are often trained by means of some variant of AdaBoost approach [6, 14].
It should be also noted that recently proposed deep-learning applications [26]
require significant computing power to operate in near-real-time.

2.2 General overview

The algorithm consists of six main modules: (i) face detection and tracking,
(ii) eyes detection and tracking, (iii) eyes state analysis, (iv) mouth detection
and tracking, (v) mouth state analysis, and (vi) data integration, leading to the
estimation of driver state detection. It works in a loop iterated over the frames
from the video stream (see Fig. 1).

Fig. 1. Algorithm of drowsiness estimation by means of eyes and mouth state analysis.

2.3 Region detectors

The input video stream is processed in frame-by-frame manner. Each frame is
a subject of independent face, eyes and mouth detection. Firstly, a pretrained
Viola-Jones detector [10] is used to detect faces. A successful detection triggers
simple face tracker, that assumes only small movement of the head in consecutive
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frames and approximates position between successful detections. The previous
research [10, 11, 25] showed, that it is possible to perform an efficient and pre-
cise face detection in images taken in non-visible bands. Previous experiments
involving thermal images [10] showed also, that although traditional Viola-Jones
detector using hand-crafted features is not so strong as many recently proposed
deep-learning approaches, it requires less computations and is capable of working
in real-time.

Detected face’s boundaries are the subject of parallel eyes and mouth de-
tectors. Actually, there are three separate detectors, one for each eye and for
mouth, all based on Viola-Jones approach, trained on a set of over 1700 eyes
and 1450 mouth samples extracted from benchmark video streams captured in
our simulated cabin [20]. Since the detection may not always precisely estimate
the position of eyes and mouth, we introduced a tracker that is based on po-
sition approximation [11], assuming that under regular driving conditions eyes
and mouth positions should not change significantly across a small number of
neighbouring frames.

Taking into consideration the above mentioned assumptions, the resulting
coordinates of the face’s, eyes’ and mouth’s bounding boxes are calculated over
the averaged 10 past detections. Final confidence level is normalized to the range
〈0, 1〉. Some exemplary detection results are presented in Fig. 2. As it can be
seen, face orientation does not influence the detection performance.

Fig. 2. Exemplary results of face tracking joint with eyes and mouth detection.
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2.4 Eyes and mouth state estimation

Extracted eyes and mouth regions are then predicted as open or closed. Both
stages work in the similar manner, hence they are described as a single universal
procedure. The classification is performed in the following steps (for each eye
and mouth separately):

1. Extract eye (mouth) region from detected face region;
2. Resample the image to a fixed rectangle of 100× 50 pixels;
3. Filter the image with Gabor filter bank (30 sets of parameters resulting in

30 output images);
4. Calculate energy and standard deviation for each resulting image (resulting

in 60 values);
5. Concatenate above coefficients into a singe feature vector;
6. Perform the classification.

Gabor filtering [2] is performed with kernel size equal to 20 × 10, standard
deviation of the Gaussian envelope equal to 2.5, spatial aspect ratio equal to 5.0
and phase offset equal to 3π/2. By altering the orientation angle of the normal
to the parallel stripes of a Gabor function in the range (0, 5π/6〉 with a π/6 step
and wavelength of the sinusoidal factor equal to {1, 2, 4, 8, 16} we get 30 output
images. These parameters are in line with the literature [5] and give the possi-
bility to obtain a compact textural representation. For every filtering result we
calculate energy (normalized by the image’s dimensions) and standard deviation.
Resulting feature vectors are then taken as input for the binary classifier.

Exemplary results of filtering for eye region are presented in Fig. 3. The left
part of the image shows closed eye, while the right one - open eye, respectively.
Similarly, the results of filtering for mouth region are presented in Fig. 4, where
the left part of the image is devoted to the closed mouth, while the right one to
the open mouth, respectively.

Fig. 3. Selected images of eyes regions after Gabor filtering.
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Fig. 4. Selected images of mouth regions after Gabor filtering.

2.5 Drowsiness factor estimation

We estimate fatigue state on a basis of eyelids closing time and mouth open-
ing time. We adopted PERCLOS indicator (PERcentage of eye CLOSure) [16]
in case of eye’s analysis. Despite the more frequent opinion about PRECLOS
cons, the method is still popular and the most accurate way to measure alertness
bases only on visual data. More complex approaches require to use of inconve-
nient devices like EEG, EOG, heart rate monitors, etc. [23, 30]. This indicator
is represented as a proportion of time for which eyes are more than 80% closed
(percentage of eye closure). It is usually calculated accumulatively over a pre-
defined interval. As drowsiness often occurs after fatigue, yawning detection is
an important factor to take into account because it is a strong signal that the
driver can be affected by drowsiness in a short period of time. We estimate it
by means of mouth opening time (we call it PEROPEN - PERcentage of mouth
OPENing), as the number of frames where mouth state is predicted as closed,
to the length of the examined time vector. The longer the time window is, the
smoother the PERCLOS and PEROPEN functions are.

3 Experiments

3.1 Dataset

The data were gathered in Computer Vision Laboratory, Faculty of Computer
Science and Information Technology, West Pomeranian University of Technology,
using a proprietary simulation stand (see Fig. 5). The acquisition protocol of
the benchmark data has been presented in [21]. All video materials have been
recorded using FLIR SC325 camera working in LWIR band, equipped with 16-bit
sensor of 320× 240 and a lens of 25× 18.8 degree FOV.
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Fig. 5. Experimental stand used for capturing video sequences

3.2 Evaluation protocol

All algorithms have been implemented in the Python environment together with
OpenCV, and SciKit-learn libraries. Original database includes records of 50
persons with different characteristics (women, men, people with and without
beards, with and without glasses, young ones and older). We selected records
of four persons of different physiognomy and manually annotated 10800 ground
truth frames [21]. The set contained the following number of samples: left eye –
5558 (opened), 2414 (closed) and right eye – 8192 (opened), 4013 (closed). The
respective numbers for mouth regions – 281 frames with open mouth, and 1170
with a closed mouth.

Initially, we experimented with typical binary classifiers on features extracted
from eyes and mouth regions, independently. This part of the experiment was
performed using Weka software. The hyperparameters for all classifiers was cho-
sen according to typical and default settings. The mean values for 10-fold cross-
validation for True Positive and False Positive rates are presented in Tab. 1. As
a compromise between accuracy and computational overhead, we selected kNN
(k = 1) to be implemented in further software.

The aim of both experiments was to verify the ability to identify images
containing open and closed eyes/mouth regions in connection with face and
eyes/mouth detection stages. The influence of the confidence level (responsible
for the detection accuracy) on the eyes/mouth state detection was also investi-
gated. It led to the observation that if we increase the confidence level (resulting
in more eyes’ candidates and more mouth’s candidates being rejected), the clas-
sifier performs quite well. At the same time, if the confidence level drops, the
overall accuracy also goes down.

3.3 Results

In comparison to the manually annotated video, our algorithm has an average
accuracy near 70% for eyes and 87% for mouth state detection, respectively.
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Table 1. The results of the experiments on the classification of eyes and mouth state
(the best results are highlighted).

True positive rate False positive rate
Classifier Mouth Eyes Mouth Eyes

1NN 0.989 0.962 0.035 0.053

Kstar 0.987 0.962 0.044 0.053

Random Forest 0.992 0.947 0.029 0.089
Bagging 0.985 0.909 0.044 0.155
MultiLayerPerceptron 0.989 0.889 0.027 0.172
j48 (C4.5 decision tree) 0.980 0.887 0.040 0.153
Random Tree 0.986 0.886 0.033 0.159

Classification via Regresion 0.988 0.876 0.025 0.193
REPTree 0.979 0.855 0.059 0.215
SimpleLogistic 0.989 0.748 0.032 0.435
SVM with SMO 0.989 0.728 0.032 0.586
NaiveBayes 0.975 0.637 0.052 0.283

It is important that most of the blinking eyes are detected, sometimes with a
small delay, which is caused by a proposed buffer analysis. Likewise, for yawning
detection algorithm we observe similar small delay, but comparing to the average
blinking time, this delay is not crucial. In Fig. 6 the impact of buffer size on the
detection accuracy is shown. For every single frame classification, the output
value of analysis was the majority of states in the buffer. Using the buffer solves
the problem of single frame misclassification, but in the long term it has a small
negative impact on overall accuracy level (0.2% - 0.6%). The accuracy results
were calculated as a weighted average of accuracies for both states according to
the number of frames.

Fig. 6. The influence of mouth state buffer size, confidence level on detection accuracy
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The accuracy changes following the detectors’ confidence. As it was antici-
pated, the confidence influences the detector performance. If the confidence is
lower, then the total number of detected eye candidates is higher. The lower the
detector confidence, the eyes state classifier’s accuracy is also lower (see Fig.7)
since detected eyes are of poorer quality. Hence, if the eyes are detected with
higher confidence, the eyes state classifier performs also with higher accuracy.
The characteristic shape of accuracy curve for mouth state detection is caused
by a significant decrease in the number of frames presenting open state at the
classification stage (in the worst case 0.1% of all collected samples).

Fig. 7. The influence of dataset size (based on confidence level) on detection accuracy.

In Fig. 8 a visualization of mouth state detection accuracy is shown for a
test sequence (frame numbers are on horizontal axis). The upper part of the
figure presents the close state, and the bottom part shows the open mouth
state. Blue blocks present ground true (annotated), while orange blocks present
detected state. Visible three gaps in the further part of the video are caused by
mouth occlusion (covering mouth with hand while yawning). The mouth was
not detected there (only approximated by the tracker) and low confidence factor
did not allow to make the prediction. An analogous visualization for eyes state
detection is in Fig. 9.

In Fig. 10 the PERCLOS and PEROPEN functions calculated for the test
sequence are presented. Given the short length of the test recording, a vector
length of 800 frames was assumed. In case of a prolonged time of observation,
longer buffers may be used. The analysis of above coefficients is based on the
threshold which is responsible for estimating the drowsiness factor. By threshold-
ing their values we can find the moments in time when the fatigue level increases
and the drowsiness occurs. For both PERCLOS and PEROPEN, it is advisable
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Fig. 8. Detection accuracy in time visualisation for mouth state detection.

Fig. 9. Detection accuracy in time visualisation for eyes state detection.

to set it to 0.15. As it can be seen, from frame nr 4500, the sequence of two yawns
and more frequent eyes blinking begins, which may indicate actual drowsiness.

Fig. 10. PERCLOS and PEROPEN indicators for eyes and mouth states, respectively.

In order to evaluate the possibility to implement the algorithm in the mo-
bile environment, we performed the tests involving three hardware platforms:
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PC-based desktop (as a baseline) and two single-board computers (Raspberry
PI 4 and NVidia Jetson AGX). It should be remembered that the algorithm
was implemented in Python, not being the most optimal solution for end-user
applications. Table 2 contains processing times of detection algorithm for the
test sequence. As it can be seen, prototype implementation is not dedicated to
single-board computers. On the other hand, for yawning detection only, the pro-
cessing time is acceptable results. Unfortunately, for blinking detection, some
optimizations should be performed to allow for real-time operation.

Table 2. Processing times on different hardware platforms

Platform/Device Time [s] FPS

PC (Intel Xeon E5645 @2.4GHz) 2665.59 4.06
nVidia Jetson AGX Xavier 3591.26 3.01
Raspberry pi4 6265.82 1.73

4 Conclusions

In the paper, we showed an algorithm of eyes and mouth state estimation based
on thermal image analysis that may by used to detect driver’s drowsiness. It con-
sists of face, eyes and mouth detection and eyes and mouth state classification.
It uses Haar-like features and Viola-Jones detector, while eyes and mouth states
are classified using Gabor-filtered images with k-Nearest Neighbour classifier.

Application of thermal images here is a new approach, making the results
resistant to many problems caused by visible spectrum imaging. A new contribu-
tion is also the introduction of the confidence coefficient that can be used to tune
final system reliability. It should be remembered, the analysis of thermal images
also has some limitations, e.g. the problem of eyes occlusion by thick transparent
materials (e.g. glasses). In such case, we are forced to use mouth-only classifier.

The experiments showed that it is possible to detect eyes and mouth state
in uncontrolled lighting conditions with significant accuracy. The results are
competitive with the other proposals [7, 8]. From the practical point of view,
when fatigue is detected, the Advanced Driver Assistance System can stimulate
the driver e.g. with acoustic or visual signals. What is more, in critical situations,
after detecting severe fatigue or sleep, such system may even stop the vehicle.

In order to create a final solution, resistant to the problems presented above,
future works in this area will include the integration of data from other imaging
modalities, e.g. depth maps. It is also planned to analyse more types of driver’s
behaviour, e.g. head tilting, changing the focal point of sight or covering the
mouth when yawning. These actions could be successfully recognized with help
of current deep-learning based detectors, like CNNs or LSTMs. Since those ap-
proaches require significantly higher computing power, they were not considered
at the present stage of development.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_12

https://dx.doi.org/10.1007/978-3-030-77977-1_12


Title Suppressed Due to Excessive Length 13

References

1. Alioua, N., Amine, A., Rziza, M.: Driver’s fatigue detection based on yawning ex-
traction. Int. J. of Vehicular Technology, vol. 2014, Article ID 678786, 7 pages (2014)

2. Andrysiak, T., Choras, M.: Image retrieval based on hierarchical Gabor filters, In-
ternational Journal of Applied Mathematics and Computer Science vol. 15, no.4,
471–480 (2005)

3. Azim, T., Jaffar, M. A., Mirza, A. M.: Fully automated real time fatigue detection
of drivers through fuzzy expert systems. Applied Soft Computing 18, 25–38 (2014)

4. Berglund, B., Rossi, G. B., Townsend, J. T., Pendrill, L. R.: Measurement With
Persons: Theory, Methods, and Implementation Areas, Psychology Press, 422 p.
(2013)

5. Bianconi, F., Fernandez, A., Evaluation of the effects of Gabor filter parameters on
texture classification, Pattern Recognition, vol. 40, Iss. 12, 3325–3335 (2007)

6. Burduk, R.: The AdaBoost Algorithm with the Imprecision Determine the Weights
of the Observations. Intelligent Information and Database Systems, Pt II, LNCS,
Vol. 8398, 110–116 (2014)

7. Craye, C., Rashwan, A., Kamel, M. S., Karray, F.: A multi-modal driver fatigue
and distraction assessment system. Int. J. of Intel. Transp. Syst. Res. 14(3), 173–
194 (2016)

8. Cyganek, B., Gruszczynski, S.: Hybrid computer vision system for drivers’ eye recog-
nition and fatigue monitoring. Neurocomputing 126, 78–94 (2014)

9. Daza, I.G., Bergasa, L.M., Bronte, S., Yebes, J.J., Almazán, J., Arroyo, R.: Fusion of
Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver
Drowsiness Detection. Sensors, 14, 1106–1131 (2014)
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