
Procedural Level Generation with Difficulty
Level Estimation for Puzzle Games

 Lukasz Spierewka1, Rafa l Szrajber1[0000−0003−2777−0251], and Dominik
Szajerman1[0000−0002−4316−5310]

Institute of Information Technology, Lodz University of Technology, Lódź, Poland
dominik.szajerman@p.lodz.pl

Abstract. This paper presents a complete solution for procedural cre-
ation of new levels, implemented in an existing puzzle video game. It
explains the development, going through an adaptation to the genre of
game of the approach to puzzle generation and talking in detail about
various difficulty metrics used to calculate the resulting grade. Final part
of the research presents the results of grading a set of hand-crafted levels
to demonstrate the viability of this method, and later presents the range
of scores for grading generated puzzles using different settings. In con-
clusion, the paper manages to deliver an effective system for assisting a
designer with prototyping new puzzles for the game, while leaving room
for future performance improvements.

Keywords: Procedural content generation · Puzzle game · Difficulty
level estimation.

1 Introduction

This paper presents a complete solution for procedural generation of levels in an
existing puzzle video game called inbento. It is a mobile puzzle game released in
September 2019 for the iOS and Android platforms. In this game the player is
tasked with finishing over a hundred levels. They are introducing new concepts
and gradually rising in difficulty.

The theme of the game is based on the idea of preparing bento: a type of
Japanese cuisine where the meal is packed tightly in a container. Bento boxes
can usually contain various ingredients: boiled rice, raw or cooked fish, prepared
egg, vegetables, sandwiches or more [13].

1.1 Game rules

inbento is centered around the idea of preparing a complete bento box in accor-
dance with a recipe given to the player in each level. The game view consists
of three main elements: the recipe book, the bento box and the cutting board,
each serving a distinct purpose. Figure 1 presents three example game views.
The right side of the recipe book contains the desired end state of the puzzle –
a solution that has to be replicated by the end user. In the middle of the game

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

2 L. Spierewka et al.

view sits the bento box. Figure 1 on the left shows the initial state of the level.
The goal of the game is making this box look exactly like the reference image
shown in the recipe book.

Fig. 1. Various stages of trying to place a piece into the box; Left: initial state (not
picked up); Middle: valid placement (indicated by black markers displayed in the box);
Right: invalid placement.

On the very bottom sits the cutting board, serving as a collection of interac-
tive pieces: composites of one or more blocks that can be placed into the bento
box. Using all available pieces to complete a puzzle is one of the requirements
of the game. Upon dragging the piece into the box, the game validates whether
all of the blocks fit within the boundaries of the container. If the result is neg-
ative (e.g. Figure 1, right), the piece is sent back into the cutting board. If it is
positive, piece blocks are placed into the box replacing previous content.

Boxes in the game can take on various sizes, from a single-cell grid (1×1) all
the way up to a four-by-three grid (4 × 3). Similarly, the maximum size of the
cutting board was limited to up to 8 pieces. The maximum piece size is 3 × 3
blocks. As seen on Figure 2, each piece can be rotated to appear in one of four
different states which can later be placed into the box. Because of this, each
piece can allow the creation of up to four times as many different states upon
placement, which is utilized to increase puzzle complexity.

Despite the apparent simplicity of the game, it turns out that even small
differences in the size of the box, the number and size of pieces, the size of
cutting board translate into an exponentially growing number of combinations
of solutions, which makes the design process difficult. Procedural level generation

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

Procedural Level Generation with Difficulty Level Estimation. . . 3

Fig. 2. Each piece can be rotated to 0, 90, 180 and 270 degrees.

and the testing of its results are also made difficult by this. This paper shows
these issues and our way of addressing them.

Since finished bento boxes rarely contain empty space, all final solutions for
every level in the game do not contain any empty blocks. It was closely followed
during the design stage of inbento and preserving it for automatically generated
levels is also desirable.

1.2 Piece types and mechanics

In order to make the game more satisfying in later chapters, inbento continuously
introduces new piece types (Figure 3) that affect the gameplay in various ways:

1. Food Piece is the most basic piece type. Consists of ingredient blocks that
replace any blocks they’re placed on top of.

2. Swap Piece – by using it the user is able to switch positions of two blocks
inside the box. The piece needs to consist of exactly two non-empty blocks,
and at least one of them needs to be placed on a non-empty block.

3. Move Piece – upon use of it, all affected blocks will be moved by one grid
cell in accordance with directions of the arrows visible on each piece block.
After a block has been moved it leaves behind an empty space.

4. Grab Piece – after placement all affected box blocks are taken out of the
container and sent back into the cutting board, creating a new food piece
mirroring the shape of the affected box blocks. At least one targeted block
must be non-empty for this piece to work.

5. Copy Piece consists of two block types – the “source” block and “target”
blocks. Upon placement, all target blocks (regardless of whether they are
empty or not) are replaced with the source block’s type. For this piece to
work, the source type must not be empty and the piece itself needs to contain
at least one source block and one target block.

6. Rotation Lock is a special mechanic that can be used together with all
other piece types. When enabled, the affected piece cannot be rotated and
has to be placed in the box as-is. Since using this mechanic reduces the
number of available states generated from each placement, it was used mainly
to lower the complexity of earlier levels in order to maintain a smoother
difficulty curve across chapters.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

4 L. Spierewka et al.

Fig. 3. Various piece types. From the left: swap, move, grab, copy, rotation lock.

2 Related work

2.1 Procedural content generation

With the complexity of games being on the rise since the start of the industry
there has also been an increasing demand for titles that provide more content,
and thus more playtime for the end user. While companies at the highest tiers –
the so-called AAA developers, which is a term referring to games with the largest
budgets for creation and marketing [8] – can fill their titles with more things to
do by scaling up the workforce, smaller developers often do not have the money
or the time that would allow them to catch up to their larger competitors. Thus,
the need for being able to generate new content without hand-authoring it was
born.

Through the employment of Procedurally Generated Content (PCG) [18],
developers can stretch out their game length almost indefinitely. Instead of cre-
ating all high-quality content such as levels, art assets or even game mechanics
or NPCs behavior by hand, programmers can instead define the boundaries of a
system governed by algorithms, which takes in certain pre-programmed inputs
in order to create entirely new outputs [16, 15].

There are various existing cases of using PCG to create large amounts of
in-game content in titles both big and small.

“Rogue” is one of the best-known early examples of using generation to
create unique maps on the spot, which resulted in a different playthrough for
the player each time they launch the game. This mixture of theoretically infinite
levels combined with challenging “permadeath” gameplay was so impactful that
it launched an entirely new subgenre of games called roguelikes [14] featuring
titles like “NetHack”, “Ancient Domains of Mystery” and “Angband”.

Another example of PCG can be found in No Man’s Sky. This title is a
space-exploration adventure game and one of the most recognizable releases of
last few years, mainly due to the fact that the title’s simulated universe contains
18 quintillion planets. Hand-crafting this amount of content would usually take
an enormous amount of time, which is why the developers of the game have
created a system that generates these planets based on an existing 64-bit seed
value [11].

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

Procedural Level Generation with Difficulty Level Estimation. . . 5

2.2 Difficulty estimation

When planning out player progression in a game, designers often strive for opti-
mal results in terms of introducing a new user into the experience and ensuring
that they are enjoying themselves during the entire duration of the title. This
desire is tightly coupled with the game’s difficulty presented through challenges
that are meant to counter the player’s abilities and knowledge that are growing
with each minute spent with the simulation.

The concept of flow state named by Cśıkszentmihályi [5] outlines that the
optimal state of happiness for a person appears when they are presented with
challenges matching their skill level. If the challenge is too low, the user experi-
ences apathy or boredom; if it is too high they might feel anxious and worried.

What sits in the middle of these two states is the flow channel. If the player
skills are met with the right amount of challenge, they should feel stimulated
and engaged by the game (Figure 4, left) [2].

Fig. 4. Left: A visualization of the flow channel [5]; Right: A graph depiction of the
difficulty and learning (player skill) curves; the sections when one of the curves rises
above the other exemplifies maneuvering within the flow channel [2].

One tool that can help the designers with ensuring that the experience stays
within the desired area for as long as possible is the concept of difficulty curves
(Figure 4, right), which serve as a graphical representation of how the game’s dif-
ficulty changes over course of the playthrough [6, 1]. Usually these are categorized
into two main types: time-based (based on how long the user was playing) and
distance-based (how much of the game has been finished by the user). Through
mapping out the title’s progression in this manner, the creators can aim to deliver
an optimal first time user experience (FTUX) [7] – a concept that is especially
important for games targeted for casual audience playing on platforms that do
not garner long-term attention from users, such as smartphones.

The biggest issue in applying these methods comes down to the fact that often
their data is supplied through user focus testing which can be time-consuming
and costly. Difficulty curves are usually formulated by the designer and then
refined through testing the game’s content on potential players [17]. However,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

6 L. Spierewka et al.

there have been multiple papers with different approaches to difficulty estima-
tion that is less reliant on user data; through genetic algorithms [3], constraint
satisfaction problem (CSP) solving [10] or calculating common features in games
into a single difficulty function [12] in order to lessen the burden on the creators.
The last-mentioned method has been adapted in our work to evaluate dfficulty
during the procedural level generation.

3 Method

3.1 Procedural level generation

PCG is usually based on random numbers. Our initial approach was to randomly
select from available piece types and try to generate a solution. The method
attempted to insert the piece into the box a specified number of times at various
positions and rotations, in order to try and näıvely match it to the grid. If the
function did not succeed within this possibility space, it was assumed that the
piece could not be properly placed under the existing conditions and discarded.
The main advantages of this method are its reliability and speed. Since the result
is generated through a simulated act of regular play (placing the pieces in the
box one-by-one), the end state is guaranteed to be achievable by the rules of the
game which avoids the need to verify whether a solution exists.

Unfortunately, because of the simplicity of this approach the finished levels
are usually of a poor quality. Final solutions often contain empty spaces and are
not visually pleasing. Furthermore, the possibility space of the level is not fully
explored during generation, the algorithm has no way of ascertaining whether
the end result can be achieved using a smaller amount of pieces than the en-
tire inventory available to the player. This directly contradicts the rules and
warranted the search for an alternative approach.

While the previous algorithm only tested a singular path from the initial
state to the solution, the second iteration fully examines the total possibility
space from the beginning to all potential end states of the graph tree in order
to later be able to remove unwanted solutions.

Given an initial state the algorithm tries to explore it, creating child nodes
in the tree and later examining them one-by-one, until all non-discarded states
have zero remaining pieces, after which undesired states are removed from the
final list.

The function is mapping out the entire tree of states using an approach
similar to how a BFS (Breadth First Search) algorithm works for undiscovered
graphs [9]. The algorithm keeps track of remaining nodes, removes elements from
it one by one and tries to map all of its children that can be explored further, until
the results (states without remaining pieces) are achieved. By using a queue, the
tree is traversed in linear fashion, level sequence after level sequence until the
bottom of the graph is reached.

During exploration the algorithm attempts to place each piece remaining
in the state into the box using the placement sets. These sets represent pre-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

Procedural Level Generation with Difficulty Level Estimation. . . 7

computed arrays of grid cells affected during piece placement (Fig. 5). By prepar-
ing this data beforehand for each piece the algorithm is able to perform faster
compared to a version where during each iteration for a given piece it would
have to search for all valid placements.

Fig. 5. Left: an example piece, and a 3x2 grid with coordinates in each cell; Right:
example placement sets for different positions and rotations of the example piece.

If the placement was unsuccessful – for example, if the piece could not be
placed in this location due to piece rules detailed in subsection 1.2 or because
the move did not generate any changes in the box (i.e. replacing blocks with
exact same ones) – the state is discarded.

However, if placement was successful the piece is removed from this newly
created state and based on the number of remaining pieces it is either added
back into the queue (if there are any pieces left) or added to the results (if there
are none remaining). If the newly generated result has already been achieved,
the duplicate counter of its predecessor is incremented in order to use this infor-
mation later.

Once the queue is emptied, unwanted duplicates – states that have been
found at earlier graph levels – are discarded in order to ensure that the final
solution can only be achieved through using up all available pieces.

In order to get the final results a filtering and sorting algorithm has been
implemented. This method takes in all gathered results, removes all solutions
containing any empty fields, and finally orders the list starting with solution
states containing the smallest number of duplicates.

Through testing it has been found that levels with the least amount of alter-
native paths towards the solution are usually the most interesting. The function
also outputs all potential alternatives for the designer to select the desired end
state.

The exhaustive nature of this solver-assisted generation method ensures that
any final state can only be found at the requested depth and is able to filter the
selection of results through the lens of solution uniqueness.

However, all of that comes at the expense of speed. The computational re-
quirements of this BFS-inspired algorithm increase exponentially based on initial
settings. Simple 2×2 levels with up to 4 pieces are usually generated in less than
a second, but raising the amount of pieces above that number brings in a roughly
tenfold increase in waiting times depending on pieces that are initially generated.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

8 L. Spierewka et al.

As the tool is not meant for consumer use and was designed mostly to assist
game developers, it was assumed that this was an acceptable compromise in
exchange for the improved end results.

3.2 Difficulty level estimation

In this work, a combination of all categories of difficulty measures [12] has been
adapted through metrics which have been outlined:

1. Search depth vsd is a metric of deductive iterations required to solve a
puzzle [4], and was calulated from the maximum number of states s that can
be generated for given puzzle:

vsd = min(1,
log100(s)

5
) (1)

2. Palette vpa is determined by the number of different food types t available
in the level:

vpa = min(1,
exp(t)

50
) (2)

3. Piece types vpt is based on the variety of different u mechanics present in
the puzzle:

vpt = min(1,
u

4
) (3)

4. Extra surface ves compares the total surface area ap of available pieces (the
number of non-empty blocks) with the level area al in order to determine
how many supplementary tiles are contained in the user’s inventory:

ves = min(1, log64(max(ap − al))) (4)

5. Duplicate solutions calculated using the BFS-inspired solver; first, the
tree of possible results is fully explored in order to determine the number of
paths (duplicates) d leading to the desired solution; afterwards, this value is
compared with the total number of states s in order to calculate a perceived
difficulty:

vds = (1 − logs(d)) · min(1,
s

1000
) (5)

The calculated values are later combined using a weighted linear function
(eq. 6) where each value is treated independently in order to achieve a result
that is simple to understand.

difficulty(L) =
∑

i∈{sd,pa,pt,es,ds}

(wi · vi(L)) + w0 (6)

In order to ascertain the difficulty grade for a level L in inbento, a number
of variables Vi with values ranging from 0 to 1 have been multiplied by their
respective weight values wi, and summed together with a base weight w0.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

Procedural Level Generation with Difficulty Level Estimation. . . 9

There are games and factors where a different relationship can be considered
– quadratic or even exponential. However, in the case of inbento, after a few
attempts, it turned out that the linear relationships are both simple and sufficient
(section 4). Moreover, the methods of calculating the coefficients vi themselves
contain non-linearities resulting from their characteristics.

The weights of this function have been selected in the process of optimizing
the function through a set of levels hand-crafted by the game’s design team. As
these puzzles have been hand-crafted and tested in the months leading up to the
game’s release and iterated post-launch in order to bring the players up to speed
with inbento’s mechanics, it is believed that this set serves as a decent example
for the algorithm.

4 Results

In this section, an overview of the results of the method will be presented, starting
with grading existing, hand-crafted levels to measure how close the results were
to the intent of the original designer. This will be followed by grading of puzzles
created by the generator in order to analyze the quality of the final solution.

First, the difficulty grades for man-made existing levels from Chapters 1
through 4 of the game (36 levels in total) were measured.

The guiding principle behind the design of these levels was to present the
player with an optimal FTUX [7] that would ease them into the game and
explain mechanics without overly large increases in difficulty.

Each chapter in inbento contains 9 levels, only 7 of which need to be com-
pleted to be able to proceed into the next set. Furthermore, a chapter can also
contain multiple “tutorial” levels that purposefully lower their difficulty in order
to focus on explaining a new game system.

Table 1 shows that the difficulty grade does indeed gradually rise between
each chapter, showing large dips for tutorial levels that are deliberately simpler
in order to teach users new concepts. One outlier in that trend is the existence
of two levels: 2-1 and 2-2, which have been specifically designed as more complex
in order to highlight the difference between regular blocks, and ones with the
rotation lock mechanic.

The method showed promising results when applying the algorithm to puzzles
created by a human designer. This part focuses on applying it to a collection of
levels generated using the second (BFS-based) algorithm.

To validate the solution a sample of initial generator settings has been se-
lected. For each collection of settings, 20 complete levels (meaning that the level
can be solved in at least one way) have been generated and the resulting grades
have been presented in Table 2. The final grade is a median of all resulting scores
and has been presented along with a median generation time for the chosen set-
tings.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

10 L. Spierewka et al.

Table 1. Difficulty grading for Chapters 1-4. The charts are showing final weighted
difficulty scores for each level. Green color indicates tutorial levels which in most cases
are accompanied by a drastic drop in difficulty.

Level index 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9
Tutorial stage yes - - yes - yes - - -
Search depth score 0 0.06 0.12 0 0.12 0.09 0.09 0.18 0.27
Palette score 0.02 0.05 0.05 0.02 0.05 0.05 0.05 0.05 0.02
Piece types score 0 0 0 0 0 0 0 0 0
Extra surface score 0 0 0 0 0 0 0 0 0.26
Solution score 0 0.01 0.01 0 0.01 0.01 0.01 0.08 0.47
Final score 0.02 0.12 0.18 0.02 0.18 0.15 0.15 0.31 1.04
Final weighted score 0.03 0.35 0.64 0.03 0.64 0.49 0.49 1.00 2.22

Level index 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9
Tutorial stage yes yes - yes yes - - - -
Search depth score 0.21 0.21 0.18 0.06 0.12 0.09 0.27 0.3 0.46
Palette score 0.05 0.05 0.15 0.05 0.15 0.15 0.15 0.15 0.15
Piece types score 0 0 0 0 0 0 0 0 0
Extra surface score 0.26 0.26 0.17 0 0.17 0.33 0.17 0.26 0.17
Solution score 0.37 0.27 0.25 0.01 0.03 0.04 0.77 0.69 0.62
Final score 0.9 0.8 0.75 0.12 0.46 0.61 1.35 1.04 1.39
Final weighted score 1.85 1.73 1.56 0.35 0.99 1.09 2.62 2.08 3.33

Level index 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9
Tutorial stage yes - - - - - - - -
Search depth score 0.03 0.11 0.23 0.29 0.29 0.28 0.3 0.34 0.49
Palette score 0.05 0.05 0.05 0.15 0.15 0.15 0.15 0.4 0.4
Piece types score 0 0 0 0.25 0.25 0.25 0.25 0 0
Extra surface score 0 0 0 0.17 0 0.26 0 0 0
Solution score 0 0.01 0.05 0.46 0.7 0.69 0.82 0.41 0.56
Final score 0.08 0.17 0.33 1.31 1.39 1.63 1.52 1.15 1.45
Final weighted score 0.2 0.6 1.18 2.71 2.81 3.09 3.01 2.59 3.05

Level index 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9
Tutorial stage yes - - - - yes - - -
Search depth score 0.22 0.42 0.47 0.59 0.62 0.38 0.51 0.51 0.59
Palette score 0.05 0.15 0.15 0.4 0.15 0.15 0.15 0.4 0.15
Piece types score 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Extra surface score 0 0 0 0 0 0 0 0 0
Solution score 0.04 0.78 0.95 0.82 0.76 0.8 0.87 0.92 0.91
Final score 0.56 1.06 1.81 2.06 1.78 1.58 1.78 2.08 1.09
Final weighted score 1.05 3.51 3.94 4.67 4.43 3.37 4.04 4.43 4.45

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

Procedural Level Generation with Difficulty Level Estimation. . . 11

Table 2. Median grades and generation times for each collection of generator settings,
averaged from 20 solvable, generated levels for each set.

Level size 2×1 2×1 2×2 2×2 2×2 3×2 3×2 3×2

Case 1 2 1 2 3 1 2 3

Food type count 2 2 2 2 4 2 2 2
Piece count 2 2 2 2 3 3 3 4
Piece type count 1 3 1 3 1 1 3 1

Median grade 0.42 0.82 0.38 0.96 1.83 0.97 2.51 2.05

Med. generation time [in ms] 0.02 0.03 0.14 0.22 2.47 4.43 7.37 168.07

Level size 3×2 3×2 3×2 3×3 3×3 3×3 3×3

Case 4 5 6 1 2 3 4

Food type count 4 4 3 2 2 4 4
Piece count 3 4 5 3 3 3 4
Piece type count 1 1 3 1 3 1 3

Median grade 2.63 3.64 4.69 2.59 3.42 3.34 4.67

Med. generation time [in ms] 6.99 240.98 16674.81 30.19 100.69 61.3 3169.38

5 Discussion

The results show that as has been anticipated, increasing level complexity through
modifying the settings results in a rise in perceived puzzle difficulty. Different
settings contribute to the final results in various ways. For example, while 2× 1
and 2 × 2 levels have very similar perceived difficulty levels for basic settings
(two types of food, two food pieces each), using a different set of values for the
same sizes results in a much more noticeable difference that only grows as the
scale of the puzzle grows (e.g. cases 1 and 2 for 3 × 2 level).

The largest jumps in difficulty grade usually occur with increasing the number
of available pieces – as each additional option available to the player contributes
greatly to the search depth measure, levels with more pieces usually score much
higher compared to others. This can be seen in the comparison of cases 1 and 3
for level 3 × 2.

An interesting observation in the analysis of the 3× 3 level is a similar jump
in difficulty grade when comparing case 1 to case 2, to case 3 and to case 4,
respectively. In each of these cases, only one of the three initial parameters was
increased.

In turn, comparing the differences between cases 1 and 2 and the differences
between cases 1 and 3 for 3× 3 levels shows that it is possible to compensate for
a change in one of the initial parameters by changing the other so that the final
grade remains approximately the same. This allows the designer to experiment
with the level parameters despite the need to set it at specific (increasing) levels.

Table 2 also includes median generation times for the levels with given pa-
rameters. It is obvious that the piece count parameter has a very large influence
on the generation time. Unfortunately, in the case of using an algorithm that
searches the entire solution space, which gives accurate results, it is inevitable.
There are two possible solutions to this problem if it were to become significant.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

12 L. Spierewka et al.

Heuristic approach, available as an option or technical based on parallel or GPU
assisted processing.

Examples of the levels from each generator settings have been shown in Fig-
ure 6.

Fig. 6. Example levels generated for each collection of settings from Table 2
.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

Procedural Level Generation with Difficulty Level Estimation. . . 13

6 Conclusions and future work

This work has proposed a complete solution for generating new puzzles for in-
bento and grading their perceived difficulty levels. The final result allows the
designer to generate levels for the game using an easily modifiable set of param-
eters and receive information about the difficulty grade for that level.

Because the rules of the game and selected difficulty variables require full
exploration of the possibility space of a given level, the algorithm’s computation
time increases exponentially as puzzle complexity goes up. Further work could
focus on increasing the performance of this solution through data layout opti-
mization and parallelizing the solver in order to cut down on the computation
time. A best-case result here would allow for this solution to be used in the
actual game as a separate mode that would allow players themselves the access
to new, well-designed stages within a fraction of a second.

The future work could also include a comparison of the applied method with
alternative methods for procedural generation. Modern methods using machine
learning, for example, in LSTM or GAN networks, however, require much more
expenditure on manual making of levels to prepare training and test datasets.

While the selection of variables constituting the final equation for weighted
difficulty scoring looks satisfactory, there is space for deeper exploration of less
obvious metrics such as the different effects of combining multiple mechanics in
a single level and the relationship between the initial and final level states.

Another main conclusion of this study that could be learned from the process
shown is to highlight places where the processing time is not crucial. While the
runtime parts of game engines are thoroughly optimized, the tool side, which
supports the designer’s work, should rather focus on user convenience and maxi-
mum adjustment of the output data. PCG tools can take on as many operations
as possible so that the runtime part should perform as few tasks as possible in
order to run with the highest possible efficiency.

Acknowledgment

This work was supported by The National Centre for Research and Development
within the project “From Robots to Humans: Innovative affective AI system for
FPS and TPS games with dynamically regulated psychological aspects of human
behaviour” (POIR.01.02.00-00-0133/16). We thank Mateusz Makowiec, Marcin
Daszuta, and Filip Wróbel for assistance with methodology and comments that
greatly improved the manuscript.

References

1. Andrzejczak, J., Osowicz, M., Szrajber, R.: Impression curve as a new tool in
the study of visual diversity of computer game levels for individual phases of the
design process. In: Lecture Notes in Computer Science, pp. 524–537. Springer In-
ternational Publishing (2020). https://doi.org/10.1007/978-3-030-50426-7 39

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

14 L. Spierewka et al.

2. Aponte, M.V., Levieux, G., Natkin, S.: Measuring the level of difficulty in sin-
gle player video games. Entertainment Computing 2(4), 205–213 (jan 2011).
https://doi.org/10.1016/j.entcom.2011.04.001

3. Ashlock, D., Schonfeld, J.: Evolution for automatic assessment of the difficulty
of sokoban boards. In: IEEE Congress on Evolutionary Computation. IEEE (jul
2010). https://doi.org/10.1109/cec.2010.5586239

4. Browne, C.: Metrics for better puzzles. In: Game Analytics, pp. 769–800. Springer
London (2013). https://doi.org/10.1007/978-1-4471-4769-5 34

5. Csikszentmihalyi, M.: Flow: The psychology of optimal ex-
perience. Harper & Row 45(1), 142–143 (jan 1990).
https://doi.org/10.1176/appi.psychotherapy.1991.45.1.142

6. Diaz-Furlong, H.A., Solis-Gonzalez, C.A.L.: An approach to level design using pro-
cedural content generation and difficulty curves. In: 2013 IEEE Conference on
Computational Inteligence in Games (CIG). IEEE (aug 2013)

7. Feng, L., Wei, W.: An empirical study on user experience evaluation and
identification of critical UX issues. Sustainability 11(8), 2432 (apr 2019).
https://doi.org/10.3390/su11082432

8. Hillman, S., Stach, T., Procyk, J., Zammitto, V.: Diary methods in AAA
games user research. In: Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. ACM (may 2016).
https://doi.org/10.1145/2851581.2892316

9. Holdsworth, J.J.: The nature of breadth-first search. Tech. rep., School of Computer
Science, Mathematics and Physics, James Cook University (1999)

10. Jefferson, C., Moncur, W., Petrie, K.E.: Combination. In: Proceedings of the
2011 ACM Symposium on Applied Computing - SAC '11. ACM Press (2011).
https://doi.org/10.1145/1982185.1982383

11. Kaplan, H.L.: Effective random seeding of random number generators. Be-
havior Research Methods & Instrumentation 13(2), 283–289 (jan 1981).
https://doi.org/10.3758/bf03207952

12. van Kreveld, M., Loffler, M., Mutser, P.: Automated puzzle difficulty estimation.
In: 2015 IEEE Conference on Computational Intelligence and Games (CIG). IEEE
(aug 2015). https://doi.org/10.1109/cig.2015.7317913

13. Nishimoto, H., Hamada, A., Takai, Y., Goto, A.: Investigation of decision process
for purchasing foodstuff in the “bento” lunch box. Procedia Manufacturing 3, 472–
479 (2015). https://doi.org/10.1016/j.promfg.2015.07.210

14. Parker, R.: The culture of permadeath: Roguelikes and terror management
theory. Journal of Gaming & Virtual Worlds 9(2), 123–141 (jun 2017).
https://doi.org/10.1386/jgvw.9.2.123 1

15. Rogalski, J., Szajerman, D.: A memory model for emotional decision-making agent
in a game. Journal of Applied Computer Science 26(2), 161–186 (2018)

16. Sampaio, P., Baffa, A., Feijo, B., Lana, M.: A fast approach for automatic gener-
ation of populated maps with seed and difficulty control. In: 2017 16th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames). IEEE
(nov 2017). https://doi.org/10.1109/sbgames.2017.00010

17. Sarkar, A., Cooper, S.: Transforming game difficulty curves using function composi-
tion. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM (may 2019). https://doi.org/10.1145/3290605.3300781

18. Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is procedu-
ral content generation? In: Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games - PCGames '11. ACM Press (2011).
https://doi.org/10.1145/2000919.2000922

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_9

https://dx.doi.org/10.1007/978-3-030-77977-1_9

