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Abstract. Charts or scientific plots are widely used visualizations for
efficient knowledge dissemination from datasets. Nowadays, these charts
are predominantly available in image format in print media, the internet,
and research publications. There are various scenarios where these im-
ages are to be interpreted in the absence of datasets that were originally
used to generate the charts. This leads to a pertinent need for automat-
ing data extraction from an available chart image. We narrow down our
scope to scatter plots and propose a semi-automated algorithm, Scatter-
PlotAnalyzer, for data extraction from chart images. Our algorithm is
designed around the use of second-order tensor fields to model the chart
image. ScatterPlotAnalyzer integrates the following tasks in sequence:
chart type classification, image annotation, object detection, text de-
tection and recognition, data transformation, text summarization, and
optionally, chart redesign. The novelty of our algorithm is in analyzing
both simple and multi-class scatter plots. Our results show that our al-
gorithm can effectively extract data from images of different resolutions.
We also discuss specific test cases where ScatterPlotAnalyzer fails.

Keywords: Chart images · Scatter plots · Multi-class bivariate data ·
Spatial locality · Local features · Chart data extraction · Positive semidef-
inite second-order tensor fields · Structure tensor · Tensor voting · Chart
type classification · Convolutional Neural Network (CNN)

1 Introduction

Plots or charts are one of the simplest visualizations for data analysis, of which
bar charts and scatter plots are commonly used. Today, most charts are widely
available in image format in print media, the internet, research publications, etc.
Digitizing chart images is a pertinent requirement for automating chart inter-
pretation, which has applications in assisted technologies for STEM (Science,
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Fig. 1. Our proposed workflow for data extraction from a given image of a scatter
plot with six components (C1-C6), where C1-C3 are preprocessing steps, C4 is the
computational modeling step, C5 and C6 are postprocessing steps. The output is a
data table, which can be optionally used for chart reconstruction or redesign.

Technology, Education, and Mathematics) education of the visually impaired.
Recently, machine and deep learning solutions have been widely used for rea-
soning over [10, 13], and to a lesser extent, data extraction [16]. However, a
generalized computational model for such images can also alternatively lead to
data extraction and its applications, such as chart reconstruction for improving
image resolution or quality or chart redesign for improving interpretation.

The simple design of bar charts and scatter plots provide high levels of inter-
pretability for low-dimensional data, even with complex trends. However, uni-
or bi-variate data analysis is less efficient in the light of multivariate data collec-
tions being the norm. Hence, more complex forms of these chart types are used
to address the insufficiency of its simpler forms. While the simpler forms are used
widely in the early stages of chart graphicacy in school education, widely avail-
able chart images tend to be complex variants. The studies on both bar charts
and scatter plots publish results for accuracy in text detection and/or data ex-
traction [16]. The complex forms of bar charts, such as grouped bar charts, have
been used for chart image analysis [7, 18]. At the same time, limited studies
demonstrate similar analysis of complex forms of scatter plots, where one such
study looks at scatter points or marks with different types of formatting [6].
Overall, there is a gap in the analysis of complex variants of scatter plots. Here,
we consider such scatter plots, particularly those with color, as a visual encoding.

The simple scatter plot is where scatter points represent (x,y) tuples, and its
location encodes the data. Whereas the complex variants of scatter plots addi-
tionally use shape, size, and color of scatter points for encoding extra dimensions
of the data. One such variant is where color is used to encode different classes
or groups in the bi-variate data used, which we refer to as multi-class scatter
plots. Multi-class scatter plots are predominantly used to organize the display of
the clustering in datasets, correlation, etc. For example, such charts are used in
machine learning to visualize multi-class classification. In visualization parlance,
multi-class scatter plots can be considered to be two or more overlays of simple
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scatter plots using the same coordinate system and units and scales on the axes.
Hence, we hypothesize that the data extraction algorithm for a simple scatter
plot can be effectively extended to multi-class scatter plots using a data-parallel
construct. As a result, we propose a generalized algorithm that performs data
extraction from both simple and multi-class scatter plots.

Our algorithm uses perceptual information from the charts to extract data,
where preprocessing is implemented using widely used image processing and
artificial intelligence techniques. This perceptual information is represented using
a second-order tensor field, which is a computational model, as has been done
in our previous work [21]. These tensor fields exploit local geometry to extract
objects such as scatter points from the chart in pixel space. The next step in
data extraction is to devise an algorithm that uses these tensor fields to extract
data in pixel space, which is further used with text extracted from the images
to output a data table [7]. We propose such a data extraction algorithm from
images for simple and multi-class scatter plots, ScatterPlotAnalyzer (Figure 1).

2 Related Work

Chart analysis for data extraction depends on processes, such as chart type
classification, chart image annotation, feature extraction, and text recognition.
Several tools and techniques have already been devised to automatically interpret
charts from their images, where the outcomes correspond to different aspects of
chart analysis. ReVision is one of the earlier works that introduced the idea
of using feature vectors and geometric structures to extract visual elements and
data encoded in the chart [18]. In WebPlotDigitizer, the user is provided with an
option to use the automated or manual procedure for data extraction from the
given chart image [17]. The tool requires the user to select the chart type for the
uploaded image from a given list, align the axis and mask the chart component
by drawing multiple points on the graphical object.

Just as WebPlotDigitizer, Scatterscanner requires user interactivity for data
extraction from scatter plots, specifically [4]. Scatteract is an automated system
that extracts data from scatter plot images by mapping pixels to the coordinate
system of the chart with the help of OCR [6].

Similar to many computer vision problems, machine and deep learning mod-
els have been introduced for chart classification and object detection. A web-
based system Beagle takes charts in scalable vector graphics format and classifies
charts found as visualizations [3]. ChartSense uses GoogleNet to perform chart
classification for line, bar, pie, scatter charts, map, and table types [9]. Figure-
Seer uses a similar fine-tuning approach [19] to localize and classify result-figures
in research papers. Text interpretation is equally important for data extraction.
A Darknet neural network as an object detection model in combination with
OCR for text detection is used from bar charts, whereas the pixels of a specific
color within the periphery of the circle are utilized for pie charts [5].
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3 Tensor Field as a Computational Model

Tensor fields have been widely used to exploit geometric properties of objects for
edge detection in natural images using structure tensor and tensor voting [12].
In our previous work, we have used tensor voting for extracting bars and scatter
points in images of simple charts, thus generating a computational model using
second-order tensor fields [21]. This model has shown promising results for
data extraction using perceptual information in pixel space. Hence, we use this
tensor-based computational model for extracting data from both simple and
multi-class scatter plots. The computational model is one of the components
of ScatterPlotAnalyzer, which completes the step of converting the extracted
values in pixel space to data space.

Tensor Voting Using Gradient Tensor: We use a local geometric descriptor
in the form of a second-order tensor, which is required for tensor voting compu-
tation [22]. Tensor voting itself returns a second-order tensor that is geometry-
aware in a more global context [12]. Hence, the tensor voting field is used for
scatter point extraction from a scatter plot image. Structure tensor Ts at a pixel
provides the orientation of the gradient computed from the local neighborhood.

Ts = Gρ ∗ (GTG), where G =
[
∂I
∂x

∂I
∂y

]
is the gradient tensor at the pixel with the intensity I; convolved (using ∗ oper-
ator) with Gaussian function G with zero mean and standard deviation ρ. The
tensor vote cast at xi by xj using a second-order tensor Kj in d-dimensional
space is, as per the closed-form equation [25]: Sij = cijRijKjR

′
ij ,

where Rij = (Id − 2rijr
T
ij); R

′
ij = (Id − 1

2rijr
T
ij)Rij ,

Id is the d-dimensional identity matrix; unit vector of direction vector rij = d̂ij ,
with dij = xj − xi; σd is the scale parameter; and cij = exp

(
−
(
σ−1d .‖dij‖22

))
.

The gradient Tg can be used as Kj [15].

Anisotropic Diffusion: As the tensor votes Tv in normal space has to en-
code object geometry in tangential space, we perform anisotropic diffusion to
transform Tv to tangential space [21, 22]. The eigenvalue decomposition of the
two-dimensional Tv yields ordered eigenvalues, λ0 ≥ λ1, and corresponding eigen-
vectors v0 and v1, respectively. Anisotropic diffusion of Tv using parameter δ is,

Tv-ad =
1∑
k=0

λ′k.vkv
T
k , where λ′k = exp

(
− λk

δ

)
.

Diffusion parameter value (δ = 0.16) is widely used [24, 21].

Saliency Computation: The saliency of a pixel belonging to geometry features
of line- or junction/point-type is determined by the eigenvalues of Tv-ad [21]. We
get the saliency maps at each pixel of an image of its likelihood for being a line-
or junction-type feature, Cl and Cp, respectively, Cl = λ0−λ1

λ0+λ1
and Cp = 2λ1

λ0+λ1
,

using eigenvalues of Tv-ad of the pixel, such that, λ0 ≥ λ1. The pixel with Cp ≈
1.0 is referred to as a critical point or degenerate point, in the parlance of tensor
fields. Our goal is to find all the critical points in the chart image in the C4 step
(Figure 1), as a few of them are significant for data extraction in pixel space.
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4 Components of ScatterPlotAnalyzer

Fig. 2. The preprocessing steps of chart classification and annotation of ScatterPlot-
Analyzer. (Left) The architecture diagram of our CNN-based classifier for identifying
bar chart subtypes. (Right) Human-guided annotation of the chart image, using an
example of scatter plot, to extract the chart canvas, legend, and text needed for object
detection, multi-class inferences, and contextualization.

We propose an algorithm, ScatterPlotAnalyzer, that extracts data from a
given chart image after determining it is a scatter plot. ScatterPlotAnalyzer has
six main components to meet this requirement (Figure 1), namely, chart type
classification, chart image annotation, canvas extraction, tensor field computa-
tion, text recognition, and data table extraction.

Chart Type Classification (C1): Different types of charts, e.g., bar chart,
scatter plot, pie chart, etc., encode data differently. Hence, data extraction from
their images needs to exploit these characteristics of visual encoding for reverse
engineering. Visual encodings include the location of scatter point for data tuple
(x,y), the height of the bar for y-value, and sector size in a pie chart for per-
centage value. Separating these visual encodings is important for abstractions
leading to a generalized data extraction from different chart types, which unifies
a data extraction system for all charts.

The chart objects such as bars, scatter points, and lines have specific geomet-
ric structure that can be exploited, unlike the objects found in natural images.
The chart subtypes for bar charts are grouped, stacked, column, bar charts, and
histograms as a special case. We now consider simple and multi-class scatter
plots as chart subtypes in scatter plots. We observe that chart subtypes pre-
serve the geometry in chart objects, as is in the parent chart type. While this
similarity helps in generalizing data extraction workflow, the differences in ge-
ometry help in classification. Overall, the similarity in geometry across subtypes
limit the applicability of contour-based techniques for chart type classification,
which provides the granularity of subtypes. Hence, we use a convolutional neu-
ral network (CNN) for generic chart type classification, which is widely used for
similar applications. Some of the pre-trained models have been used for chart
type classification of images by imposing certain constraints, e.g., training with
a small image corpus. However, these classifiers have been found to perform with
low accuracy. The classifier in ChartSense has used GoogleNet [9] and has been
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trained on different chart types, but performs well for six out of ten types (bar
chart, line chart, map, pie chart, scatter plot, and table) with the small corpus.

We build our classifier using an architecture inspired by VGGNet (Figure 2).
VGGNet architecture is popularly used for object detection tasks, and it requires
the convolutional layers to be stacked. We add convolutional layers, followed by
pooling layers, and finally, fully connected layers, kernel size of (5,5). We train
the CNN model on our chart image dataset containing more than 1000 images
of four chart types, namely, bar chart, scatter plot, pie chart and line chart. Our
CNN based classifier is constrained by the requirement of input images of fixed
size for training. Hence, we first resize the images in the dataset to 200×200 size.
The image resizing and classifier implementation has been done using Python
imaging (PIL) and Keras libraries, respectively.

Our classifier is sufficient for ScatterPlotAnalyzer to identify scatter plots,
without the granularity of simple or multi-class typification. This is because
this typification can be implemented more efficiently by interpreting the legend
rather than using CNN.

Image Annotation (C2) and Canvas Extraction (C3): Image annotation
is required to prepare a training dataset for object detection, segmentation,
and similar computer vision applications. Image annotation provides labels to
different regions of interest (ROI). The ROIs are detected and extracted using the
predefined labels for such regions. Image annotation strictly requires contextual
labels and appropriate associations between labels and ROIs. Automation of
annotation is not a completely solved problem, owing to which human-guided
annotation of images is widely used in practice.

Manual marking and annotation of bounding boxes for ROIs have been widely
used for chart image analysis [5, 13]. We specifically use the following labels for
specific ROIs needed for tensor field computation. These labels include can-
vas, x-axis, y-axis, x-labels, y-labels, legend, title, x-title, and y-title. We use
LabelImg [23], a Python tool, for marking and annotating bounding boxes for
ROIs. LabelImg has a graphical user interface (GUI) to select an image, trace a
bounding box for an ROI, and label the ROI appropriately. We label the ROI
that contains the chart objects such as bars, lines, or scatter points as Canvas.
The extracted ROI is referred to as chart canvas, which is one of the chart im-
age components [21]. LabelImg generates the annotation in an XML file that
can be used further to automate the extraction of the canvas region and text
localization. The former is used for chart extraction (C3), and the latter for text
detection (C5). Figure 2 (right) shows an annotated scatter plot.

The canvas extraction step (C3) is implemented using image preprocessing
methods to remove the remaining elements other than chart objects such as
gridlines, overlaid legends, etc. This is required as tensor field computation in C4
is sensitive to the presence of these extraneous elements. Marker-based watershed
segmentation and contour detection algorithm have been used in combination to
remove these extraneous components in the chart canvas effectively [21]. These
steps also fill hollow bars and scatter points, as required, since the tensor field
is computed effectively for filled chart objects. Highly pixellated edges in aliased
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images lead to uneven edges in each chart object. This issue is addressed by using
the contour detection method to add a fixed-width border to chart objects [21].
Overall, the processes in chart canvas extraction are chosen specifically to extract
chart objects using tensor fields.

Tensor field Computation (C4): We use tensor voting on gradient ten-
sor to compute a second-order tensor field Tv, which is further improved using
anisotropic diffusion (Section 3). The resulting field, Tv-ad, is then analyzed by
identifying its critical points using the saliency map values (Cl, Cp) at each pixel.
We use a threshold on the trace of the tensor T < 0.01 for scatter plots to discard
weak critical points. The thresholding is tensor-based, as the trace is a tensor in-
variant. CIE-Lab used for perceptual modeling of color is better suited for tensor
voting than the RGB model [14]. Hence, the chart image is converted from the
RGB model to the CIE-Lab model prior to the actual tensor field computation.

DBSCAN Clustering: We observe that the critical points of chart image
computed from tensor field computation form sparse clusters along the boundary
of a scatter point as well as it’s interior [21]. Since the scatter point interior gives
its location, that is the data, and we extract the cluster in the interior. We use
density-based clustering, DBSCAN [8], to localize these clusters. We adjust the
hyperparameters of DBSCAN clustering to give the best clusters corresponding
to specific chart types, e.g., clusters in the corners of bars for a bar chart and
clusters near the scatter point centroid for scatter plots. These hyperparameters
influence the location of the cluster centroids. The cluster centroid gives the data
tuple (x,y) corresponding to the scatter point but in pixel space.

Text Recognition (C5): The data extracted using tensor fields are in pixel
space and have to be contextualized to the data space for extracting the data
table. Hence, we now combine the data in pixel space with the text information
in the image. We perform text detection to get x-axis and y-axis labels and
compute the scale factor between the pixel and data spaces. The recognition of
other textual elements, namely, plot title, legend, x-axis, and y-axis titles, also
plays a crucial role in analyzing chart images.

We use deep-learning-based OCR, namely Character Region Awareness for
Text Detection, CRAFT [2] for effective text area detection, including arbitrarily-
oriented text. This approach is designed for relatively complex text in images,
and it works by exploring each character region and considering the affinity be-
tween characters. A CNN designed in a weakly-supervised manner predicts the
character region score map and the image’s affinity score map. The character
region score is used to localize individual characters and affinity scores to group
each character to a single instance. So, the instance of text detected is not af-
fected by its orientation and size. From the detected text boxes, its orientation
is computed and then rotated.

A unified framework for scene text recognition that fits all variants of scenes
called the scene text recognition framework, STR [1] is implemented subsequent
to CRAFT. Being a four-stage framework consisting of transformation, feature
extraction, sequence modeling, and prediction, STR resembles the combination
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of computer vision tasks such as object detection and sequence prediction task.
Hence, it uses a convolutional recurrent neural network (CRNN) for text recog-
nition. We find that the CRAFT model, along with the STR framework, works
efficiently to retrieve labels and titles of the chart image better than other avail-
able text recognition tools, e.g., Tesseract OCR [20].

Information Aggregation for Data Extraction (C6): For multi-class scat-
ter plots, interpreting the legend is an essential step. In the absence of legend,
we consider the chart to be a simple scatter plot. In the presence of a legend, the
number of classes specified in it is used to determine if the chart is a simple or a
multi-class scatter plot. We use CIE-Lab color space to identify the colors cor-
responding to the classes in the legend. The legend’s colors are extracted using
the morphological operations used in image preprocessing in the legend ROI, as
done on the chart canvas in C3.

We use the pixel color at the cluster centroid extracted in C4 to indicate the
class corresponding to the scatter point. The actual class label is extracted from
the text recognition in the legend in C5. Thus the data table now has a class
label along with the (x,y) tuple extracted in the pixel space.

As a final process in ScatterPlotAnalyzer, the data extracted in pixel space
is transformed into data space by using the text recognized for axis and cor-
responding tick labels. The labels add appropriate textual information for the
variable along each axis by providing its name and unit value. The unit value
of the variables and scatter point location, along with its class information, are
used to extract the data table in C6.

5 Experiments and Results

We have used ∼1000 images from the FigureQA dataset [10] containing bar
charts and its subtypes, scatter plots, pie charts, and line charts for training our
model. Our model works with ∼90% accuracy.

We perform experiments to analyze the performance of ScatterPlotAnalyzer
that answer the following questions:

– Is the choice of the tensor field from tensor voting, Tv-ad, better than the
conventionally used structure tensor Ts for data extraction?

– How accurate is the data reconstruction for both simple and multi-class
scatter plots?

We consider the structure tensor Ts and tensor voting field Tv-ad for dif-
ferent multi-class scatter plots by studying the shape of the tensor using ellip-
soid glyphs [11]. Ellipsoid glyphs in three-dimensional space reduce to elliptical
glyphs in two-dimensional, as in our case. The elliptical glyphs are drawn with
the major and minor axes of the ellipses oriented along the major and minor
eigenvectors of the tensor. The eigenvalues of the tensor give the major and
minor lengths of axes of the ellipse. Thus, the degenerate points with almost
equal eigenvalues are closer to the circular shape. Our results in Figure 3 show
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Fig. 3. The tensor field computation step in ScatterPlotAnalyzer (C4) uses the images
of multi-class scatter plots (A) to compute the structure tensor Ts (B), and the tensor
voting field we use, Tv-ad (C). While (B) and (C) show tensor field visualization using
ellipsoid glyphs, colored using saliency map, (D) shows the dot map of the saliency
map. The color bar shows the coolwarm color mapping used for saliency map of the
tensor field. The glyph visualization is demonstrated on a 1:3 subsampled image for
clear visualization.

that the degenerate points are stronger when using the tensor voting field as
opposed to the structure tensor. We can conclude that the degenerate points
are strengthened by performing tensor voting on gradient tensor and subsequent
anisotropic diffusion.

In terms of the accuracy of the data table given by ScatterPlotAnalyzer, we
analyze the qualitative and quantitative results. Figure 4 shows the different
steps in ScatterPlotAnalyzer for both simple and multi-class scatter plots. We
observe that the overlapping points in scatter plots do not get extracted accu-
rately, as only perceptually visible scatter points are extracted. At the same time,
we observe that the human eye can detect partial overlaps; however, our tensor
field is not able to extract the overlapping points as multiple points. Hence, we
observe omission errors or type-II errors, as has been reported in our previous
work [21]. For the extracted points, the data extracted is mostly accurate. Our
experiments include a simple scatter plot without legend, a 3-class scatter plot,
and 2-class scatter plots, shown in Figure 4 (i)-(iv). We have highlighted the
type-II errors in row D in Figure 4 in translucent red highlights.
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Fig. 4. The outcomes of the key steps in our ScatterPlotAnalyzer, namely, tensor field
computation (C4), text detection (C5), and data extraction (C6), implemented on the
source input chart images. The dataset includes available source images of (i) a simple
scatter plot, and (ii-iii) multi-class scatter plots, and an image of multi-class scatter
plot created by plotting available data in (iv).

In terms of quantifying the error in our data extraction, we use synthetic
datasets for both simple and multi-class scatter plots. We plot the data using
matplotlib, a Python plotting library, extract the data table and reconstruct
the image using ScatterPlotAnalyzer. We compute the Pearson’s correlation of
synthetic datasets and their extracted counterparts. We have reported the differ-
ences in correlation coefficient r for simple scatter plots in Figure 5 and the same
for multi-class scatter plots in Figure 6. We observe that the errors in correlation
coefficients are proportional to the density of scatter points in the plot. In the
case of multi-class scatter plots, the errors in correlation coefficients are addition-
ally proportional to the density of points in regions where both classes overlap
in the image. We observe that comparing correlation coefficients in original and
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Fig. 5. Correlation coefficient (r) values in both original and ScatterPlotAnalyzer re-
constructed images of simple scatter plots.

Fig. 6. Correlation coefficient (r) values in both original and ScatterPlotAnalyzer re-
constructed images of multi-class scatter plots.

reconstructed charts helps in comparing the overall appearance of the charts,
which is more significant for text summarization than exact data extraction.

We observe that the quality of the images, irrespective of their source, per-
form the same using ScatterPlotAnalyzer. The images from the internet in Fig-
ure 3 and Figure 4 (i)-(iii) show outputs comparable to the images generated
by plotting from available datasets, in Figures 4 (iv), 5, and 6. Thus, our image
preprocessing methodology helps in improving the quality of the image to be
used with ScatterPlotAnalyzer, even though the images from the internet tend
to have lower resolution, noise, and aliasing.

Scatteract reports a maximum of 89.2% success rate, where F1 score > 0.8
for a plot implies success in data extraction. In our experiments, we do not get
F1 score distribution similar to that of Scatteract, i.e. very low and very high
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values. Instead, we get a continuous uniform distribution for F1 ≥ 0.4. Hence,
we relax the constraint appropriately to F1 > 0.5, then Scatteract with the use
of RANSAC regression for mapping pixel-to-chart coordinates has 89.5% success
rate for simple scatterplots for procedurally generated ones, 78% for simple scat-
terplots from the web, and with other regression methods has 70.3% at its best.
In comparison, our method has 73.3% success rate for simple scatterplots, which
improves to 93.3% for F1 > 0.4. We can likewise improve the success rate of our
method by refining the pixel-to-chart coordinate mapping using RANSAC re-
gression. The chart classification accuracy for scatter plots is at 81% in our work,
comparable to 86% in ChartSense [9], while the best is at 98% in the method
by Choi et al. [5]. Our chart classifier, which has been trained and tested with
images from the web, requires more pre-training to improve the accuracy rate.
Despite the mismatches in quantitative assessment, our results are comparable
to those from Scatteract and the method by Choi et al., qualitatively.

Pre-training the CNN is the most time-consuming process in our algorithm.
The tensor field computation is also compute intensive. Its implement ion can
be made more efficient by using parallel implementation, owing to its embarrass-
ingly parallel characteristic. Sparsification of the degenerate points is required
for improving the accuracy of our data extraction process. However, sparsifica-
tion itself can be improved using an analytical choice of threshold, as opposed
to the heuristic we use generically. Thus, the scope of our future work includes
improving the overall performance and accuracy of ScatterPlotAnalyzer.

6 Conclusions

In this work, we have proposed ScatterPlotAnalyzer, an algorithm for extract-
ing data from images of scatter plots. We have focused on both simple and
multi-class scatter plots, where the class information of the scatter points is
encoded using color. We have designed ScatterPlotAnalyzer with the central
theme of second-tensor fields using tensor voting for geometry extraction. We
use a Convolutional Neural Network inspired by VGGNet architecture to clas-
sify the scatter plots. We then use human-guided image annotation to extract
the canvas containing chart objects, where the interactive annotation makes our
algorithm semi-automated. We use image preprocessing to complete the extrac-
tion, and scatter points themselves are extracted from the topological analysis
of the tensor field. The postprocessing involves the use of deep-learning OCR
to localize and detect text. Text is an important ingredient for contextualizing
the dataset and converting the extracted data from pixel to the original data
space. For identifying the class information from the extracted scatter points,
we use information extracted from the legend. Overall, ScatterPlotAnalyzer is
an end-to-end algorithm for extracting data from images of scatter plots.

Performance characterization and improving accuracy are organically the
next steps to improve ScatterPlotAnalyzer. We require metrics such as the den-
sity of scatter points and overlap between multiple classes to determine the
accuracy of ScatterPlotAnalyzer implemented on such an image. ScatterPlot-
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Analyzer is a good proof-of-concept of exploiting image properties for extracting
information from chart images. ScatterPlotAnalyzer will be beneficial for aiding
other learning approaches as an integrated solution.
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