
Capsule Network versus Convolutional Neural
Network in Image Classification

Comparative Analysis

Ewa Juralewicz1[0000−1111−2222−3333] and Urszula
Markowska-Kaczmar2[0000−0001−7606−3057]

1 Wroclaw University of Science and Technology,Wroclaw, Poland
eva.juralewicz@gmail.com

2 Wroclaw University of Science and Technology,Wroclaw, Poland
urszula.markowska-kaczmar@pwr.edu.pl

Abstract. Many concepts behind Capsule Networks cannot be proved
due to limited research, performed so far. In the paper, we compare the
CapsNet architecture with the most common implementations of con-
volutional networks (CNNs) for image classification. We also introduced
Convolutional CapsNet - a network that mimics the original CapsNet
architecture but remains a pure CNN - and compare it against CapsNet.
The networks are tested using popular benchmark image data sets and
additional test sets, specifically generated for the task. We show that
for a group of data sets, usage of CapsNet-specific elements influences
the network performance. Moreover, we indicate that the use of Capsule
Network and CNN may be highly dependent on the particular data set
in image classification.

Keywords: Capsule Network · Convolutional Network · image classifi-
cation · comparative analysis

1 Introduction

Over past ten years, Deep Learning (DL) has introduced a huge progress in
computer vision. This great success is a result of convolutional neural networks
(CNNs) application [10]. They make predictions by checking if certain features
are present in the image or not. They do not posses ability to check spatial
relationship between features. The weakness of CNN is its need for a vast amount
of data to train.

A new attractive neural network has been proposed by Hinton [6] in response
to the convolutional neural network drawbacks. He indicated the pooling opera-
tion used to shrink the size and computation requirements of the network as the
main reasons for the poor functionality of CNNs. To solve this problem Capsule
Networks and dynamic routing algorithms have been proposed. Capsule Net-
works are characterized by translational equivariance instead of translational
invariance as CNNs. This property enables them to generalize to a higher degree

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

2 E. Juralewicz and U.Markowska-Kaczmar

from different viewpoints with less training data. Many successful alternatives
have been proposed for the routing process [6, 1, 9] to increase representation
interpretability and processing time, which proves there are possibilities for Cap-
sule Networks to improve in this area. The experiments conducted in [14] provide
an estimate on CapsNet capabilities while taking training time needed to achieve
relevant results into account. The experiment setup, however, leaves much space
for further improvement. The generalization capability, related to data efficiency,
has also been analyzed by training a network to recognize a new category based
on a network trained on a subset of initial categories [2]. By concept, capsules
hold a more complex entity representation compared to a single neuron and al-
low for more significant viewpoint variations. This leads to a hypothesis that
Capsules need less training data than CNNs to achieve a similar performance
quality, which has been confronted in [13]. In the comparison, apart from previ-
ously mentioned CapsNet architecture presented in [12] (CapsNet I), a variant
with EM (Expectation-Maximization) routing algorithm, which was introduced
in [6], is compared (CapsNet II). The new version of routing algorithm based on
EM is proposed in [3].

Most cited above publications aim to provide an improvement rather than
a comparison for the task they consider. This way, it is impossible to directly
move observations made in such experiments to contemplate comparative per-
formance, as the experimental setup is not valid. Our work tries to fulfill this
gap. In opposite to [8], we focus on a comparison of both specifically designed
for image processing neural networks – CNN and Capsule Networks with com-
parable number of parameters. Neural Networks and Capsule Networks in areas
and applications relevant to conceptual differences between the two in a highly
comparable environment. Notably, the research is aimed to verify whether Cap-
sule Networks introduce advances in the areas in which they are supposed to be
superior to CNNs by intuition and following the core concept differences. In the
experiments, we verify the influence of the routing process’s utility, increased
viewpoint variance coverage, and robustness of Capsule Network to randomly
shuffled images about Convolutional Network. The comparison covers the train-
ing process of the networks, their features emerging directly from architecture
design, and their performance under specified conditions. It allows an under-
standing of their performance better.

The paper consists of four sections. The next one presents details of com-
pared neural models. Section 3 describes conducted experiments and analysis of
obtained results. Conclusions finish the paper.

2 Methodology

In this section, we describe details of models evaluated in the experimental part.

2.1 Convolutional Neural Networks

Convolutional Neural Network (CNN) is especially suitable for image processing
because of its structure and the way of information processing. A simple CNN

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

Title Suppressed Due to Excessive Length 3

Fig. 1: Simple schema of processing information in CNNs with one convolutional
layer, one pooling layer and two fully-connected hidden layers

model with one convolutional and one pooling layer is presented in Fig.1. It
is composed of three different layer types: convolutional, pooling, and fully-
connected. Convolutional layers are composed of several feature maps, which
are two-dimensional matrices of neurons. Each feature map has its convolutional
filter applied to the input. Convolutional filters (also called kernels) are applied
locally sliding over its input. For each kernel position the convolution operation
is performed. Pooling layers typically follow convolutional layers. This operation
locally subsamples the output of the preceding convolutional layer. The most
commonly used is max-pooling, which is performed by sliding a window of a
specified width and height and extracting the current pool’s maximum value.
The fully connected layers end a processing pipeline in a convolutional network
(Fig. 1). The preceding layer output is transmitted to the fully-connected layer
after being flattened to form a vector.

Training a Convolutional Neural Network is made with the backpropagation
algorithm based on minibatch SGD. It iteratively searches the set of weights
W that minimizes the loss function for data D. For classification problems, the
network is trained using the categorical cross-entropy loss function.

It is worth noting that the pooling operation significantly reduces the number
of trainable parameters in the following layer allowing for minor input variation
while preserving the level of neural activation. In this way, they enrich CNNs
with a property referred to as translational invariance. It exists only in a limited
scope. It makes it necessary for CNNs to be fed with augmented data in terms
of rotation, scale, and varying perspective, causing a giant data volume needed
for training, which covers as many viewpoints as possible.

There are many convolutional neural networks architectures proposed so far.
Currently, the most common CNNs in use are: VGG-16 [14], DenseNet [7] and
Residual Neural Network (ResNet) [4].

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

4 E. Juralewicz and U.Markowska-Kaczmar

2.2 Capsule Network

A capsule network is a type of neural network in which the basic low-level node
is a capsule [5]. Capsule’s inputs and output are vectors. Each vector encodes a
representation of an entity. The vector’s direction indicates the pose of the object,
(position and orientation in a specified coordinate system), and the vector’s norm
indicates the network confidence of this representation. Capsules take vectors ui
from a lower capsule layer as input. Then, they multiply them by weight matrices
Wij and a scalar coupling coefficients cij , where i is the number of a capsule in
the lower layer, and j is the number of a capsule in a successive higher layer, as
in eq. 1.

sj =

N∑
i=1

Wijuicij (1)

The multiplication vector result sj is summed element-wise and normalised
using a squashing function, producing an output vector vj , (eq. 2).

vj = squash(sj) =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(2)

The squashing function reduces the original vector length to the range of [0, 1]
while maintaining vector’s orientation in space. It also brings a non-linearity to
the result.The coupling coefficients are modified proportionally to the level of
accordance aij between prediction vector ûj|i and capsule output vj . Accordance
aij is simply a scalar value acquired by cosine similarity, which is a product of
vectors ûj|i and vj (eq. 3).

aij = ûj|ivj (3)

The flow control is obtained by performing dynamic routing. Its version called
routing-by-agreement is presented in [12]. Routing-by-agreement is an iterative
process in which coupling coefficients cij are calculated. They are interpreted
as the probability that a part from the lower-level capsule i contributes to the
whole which capsule j should detect.

CapsNet is the first fully-trainable architecture following the ideas behind
Capsule Networks. It consists of two parts - an encoder and a decoder. The
encoder is the part that is responsible for building the vector representation of
the input. The decoder’s role is to achieve the input image’s best reconstruction
quality based on its representation vector from the encoder.

The encoder is visualised in Fig. 2. It is composed of 3 layers: a purely con-
volutional layer with ReLU activation function (ReLU Conv1), a PrimaryCaps
layer, which is a combination of a convolutional and a capsule layer, and a Dig-
itCaps layer - a pure capsule layer. The PrimaryCaps layer is very similar to the
standard convolutional layer with an output extension to a vector and vector-
wise application of the activation function. The DigitCaps layer is a capsule
layer responsible for producing a vector representation for each of the categories
available for the considered task (10 classes in MNIST). The routing operation
is applied only between the PrimaryCaps and the DigitCaps layers. The weights

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

Title Suppressed Due to Excessive Length 5

Fig. 2: Architecture of CapsNet encoder with an image from MNIST dataset

in other layers are modified exclusively during the backpropagation algorithm
based on minibatch SGD and remain constant in the network’s forward pass.

The decoder in CapsNet is presented in Fig. 3. The decoder’s input is a 16-
dimensional vector, which is the output from a capsule from the DigitCaps layer
responsible for encoding the true label of the image. The remaining outputs are
masked by inserting a value of 0. This masking mechanism and the reconstruction
loss incorporation to the entire network’s loss function force the separation of
label responsibility between capsules in the last layer of the encoder.

The output from the last layer is interpreted as pixel intensities of the re-
construction image. The reconstruction loss is calculated as a distance between
the input image and the reconstruction obtained from the capsule representation
vector. The loss function for the network training Lc is calculated as in eq. 4.

Lc = Le + αLd (4)

Fig. 3: Architecture of CapsNet decoder with an image from MNIST dataset

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

6 E. Juralewicz and U.Markowska-Kaczmar

where Le is a margin loss function for the classification task and Ld is the loss
from the decoder. The classification task loss function is expressed by eq. 5:

Le =

K∑
k=1

Tkmax(0,m+ − ||vk||)2 + λ(1− Tk)max(0, ||vk|| −m−)2 (5)

where: K is the number of considered categories; Tk is a logic value – 1 when
the correct label of the sample corresponds with capsule k and 0 – otherwise; λ
down-weights the loss function value for categories other than the true label. It
has a constant value of 0.5; vk is the squashed vector representation output by
capsule k; m+ is a margin for positive classification outcome and is equal to 0.9,
m− is a margin for negative classification outcome and is equal to 0.1.

The component Ld in eq. 4 refers to the decoder training. It is based on
the euclidean distance between the target input image and the output from the
decoder. It is scaled down by α hyperparameter that is set to 0.0005 as its initial
value is much higher than that coming from the margin loss of Le.

2.3 Convolutional CapsNet

Convolutional CapsNet is a self-designed architecture that aims to keep maxi-
mum possible similarity to the CapsNet architecture, while – opposite to [15] –
remaining a pure Convolutional Neural Network. In reference to Convolutional
CapsNet, a term capsule indicates groups of neurons and their similarity to
capsules in Capsule Networks. Routing Operation is entirely ignored. By intu-
ition, such maneuver removes the control of preserving the relationships between
parts and wholes in situations where they do exist in the image but are spatially
disturbed. In the Convolutional CapsNet, the capsule-specific vector-wise opera-
tion is replaced with an activation function applied neuron-wise. The activation
function can be set as ReLU or Sigmoid.

The differences between CapsNet and Convolutional CapsNet are summarised
in Table 1. Any element not mentioned in the Table is exactly the same in Con-
volutional CapsNet as it is in CapsNet.

Table 1: Characteristics of CapsNet and proposed Convolutional CapsNet archi-
tectures

Factor CapsNet Convolutional CapsNet

Routing algorithm Applied Not applied

Activation funtion after PrimaryCaps
and DigitCaps layers

Squashing Sigmoid or ReLU

Level of activation funtion application
after PrimaryCaps and DigitCaps layers

Capsule-wise Neuron-wise

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

Title Suppressed Due to Excessive Length 7

(a) Samples from Light VarMNIST (b) Samples from Strong VarMNIST

Fig. 4: Samples from Light and Strong VarMNIST test set for each category (by
columns)

3 Experiments

Experiments aim to explore the role of capsule network-specific elements on
the performance of CapsNet to understand better the mechanisms applied in
CapsNet and compare its quality of image classification to the results commonly
achieved by CNNs. The compared network architectures need to satisfy the
following criteria: maximum architectural similarity, similar number of trainable
parameters, comparable performance in terms of classification accuracy.

3.1 Datasets Description

In the experiments, we want to check the robustness of compared networks to in-
put translations and sensibility to spatial relationships between parts and wholes.
We prepared two modified datasets based on the original MNIST and CIFAR-10
datasets, to achieve our goal. Both datasets contain images of size 32x32 pix-
els, and in each case, the training dataset includes 50000, and the test dataset
contains 10000 samples.

In the first modification - VarMNIST and VarCIFAR-10 datasets arose as
the results of operation similar to those applicable in data augmentation. There
are two variants of each test set: Light VarMNIST (Light VarCIFAR) and Strong
VarMNIST (Strong VarCIFAR). They differ by the extent and amount of input
alternations performed, applied with usage of imgaug library [11]. Image samples
from both data sets for the MNIST dataset are visualized in Fig. 4.

The second group of test sets is N-Shattered MNIST and N-Shattered CI-
FARsets where N ∈ {2, 4, 8, 16}. These datasets are obtained by shattering the
original test image sample into N slices and combining them into one image in
random order. Samples from N -Shattered CIFAR data sets are visualized in Fig.
5. For VarMNIST and VarCIFAR test sets, the desirable outcome is maximum
classification accuracy. For N -Shattered MNIST and N -Shattered CIFAR sets it
is its minimum as samples in most cases do not preserve the spatial relationships
between parts and wholes.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

8 E. Juralewicz and U.Markowska-Kaczmar

3.2 Experiment1. Study on impact of capsule-specific elements on
performance quality

The experiment aims at checking the role of the routing by agreement procedure
and activation function in CapsNet. To perform such comparison, the CapsNet
architecture is compared to its sibling network - Convolutional CapsNet. The
test is run using Light Var and Strong Var sets, and finally on N -Shattered test
sets for MNIST and CIFAR-10 datasets.
CapsNet and Convolutional CapsNet setup: ReLU Conv1 Layer applies 256 filters
of shape 9× 9 with a stride 1. Its output consists of 256 feature maps of shape
20 × 20 with ReLU activation function; PrimaryCaps consists of 32 Capsules.
Each Capsule applies 8 filters of size 9 × 9 × 256 with stride of 2. Each filter
produces a 6 × 6 feature map. In total there are 8 such feature maps per each
capsule. The dimension of the output vector from a capsule is 8. The weight
matrix between the PrimaryCaps and the DigitCaps layer is thus of shape 6 ×
6× 32× 8× 16, resulting in a single 8× 16 matrix between every capsule in the
PrimaryCaps and the DigitCaps layers. The encoder network consists of 3 fully-
connected layers: 512 ReLU units, 1024 ReLu units and 784 sigmoidal units.
Convolutional CapsNet (CCapsNet) has identical architecture.

The hyperparameters value assumed based on tuning CapsNet architecture
are presented in Table 2. They were also applied to the Convolutional CapsNet
(assigned as CCapsNet). Performance of the model in terms of the number of pa-
rameters and processing time for the assumed hyperparameter values for MNIST
and CIFAR-10 datasets is presented in Table 3. Note that the value of decoder
loss is averaged over a number of pixels.

No hyperparameter tuning has been performed in this step. The training pro-
cess curves of CapsNet and CCapsNet on the MNIST dataset almost overlap.
Therefore we skip these charts here. Table 4 shows the results. Using MNIST the
CCapsNet network managed to outperform CapsNet in terms of accuracy with
0.9921±0.0011 compared to 0.9917±0.0007 achieved by CapsNet. However, the de-
coder loss on the validation set is on average higher for CCapsNet (0.0302±0.0016)
than for CapsNet (0.0244±0.0012). An additional observation is a slight tendency
to overfit the training data observed for CCapsNet compared to CapsNet. This
tendency is more visible in the case of CIFAR-10 datasets. In this case CCapsNet

(a) 2-Shattered CIFAR (b) 4-Shattered CIFAR

Fig. 5: Visualisations of N -Shattered CIFAR test sets for each category, where
airplane is the leftmost column and truck is the rightmost column.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

Title Suppressed Due to Excessive Length 9

Table 2: Hyperparameters of CapsNet –baseline configuration; PC no – the num-
ber of capsules in PrimaryCaps layer (DC for DigitCaps), PC dim – the output
vector dimension of each capsule in PrimaryCaps layer (DC in DigitCaps)

Hyperparameter Value

Optimizer Adaptive Moment Estimation (Adam)

Learning rate 0.001

Learning rate decay 0.9

Data batch size 100

Epochs 50

Decoder loss coefficient 0.0005

No. of routings 3

Capsule number and dimension PC no(32); PC dim(8); DC no(10); DC dim(16)

also outperformed CapsNet (0.7005±0.0018 vs 0.6629±0.0007). However, the differ-
ence between the training set and test set accuracy and loss value is far greater
for CCapsNet. Moreover, overfitting is visible on loss function value curves.

Fig. 6 displays charts for CIFAR-10 data set. Each column contains accuracy
score, classifier loss function value (margin loss) and decoder loss function value
(euclidean distance averaged over pixels) for consecutive epochs. To make the
comparison of performance as reliable as possible, the Convolutional CapsNet
has been juxtaposed with CapsNet in two variants CCapsNet - model with the
best achieved accuracy on the test set in 50 epochs - (best) , CCapsNet Matching
- model from the epoch when the test accuracy was the closest to that achieved
by CapsNet (comparable). Accuracy for all considered test sets and models is
shown in Table 4.

Performance analysis Contrary to expectations, Convolutional CapsNet achieved
better accuracy score in almost all cases. However, training with routing-by-
agreement and the squashing function makes the training process more stable
than without these components and far less prone to overfitting. The squashing
function’s application to the decoder’s vector representation allows for a slight
increase in the accompanying task of image reconstruction. The capsule-specific
elements do not make the network react better to test samples modified in terms
of translation and noise. It also does not provide considerable improvement in
preserving the spatial relationship between capsules, which should be ensured
by applying routing-by-agreement between capsules.

Table 3: Performance of CapsNet achieved on MNIST and CIFAR-10

Dataset Train accuracy Test accuracy Decoder loss
No of
parameters

Train time
per epoch

MNIST 0.9996 ± 0.0005 0.9917 ± 0.0007 0.0244 ± 0.0012 8 215 568 208 ± 4.23

CIFAR-10 0.7001 ± 0.0018 0.6629 ± 0.0007 0.0302 ± 0.0016 11 749 120 383 ± 9.13

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

10 E. Juralewicz and U.Markowska-Kaczmar

(a) Accuracy score for CapsNet training (b) Accuracy score for CCapsNet training

(c) Margin loss for CapsNet training (d) Margin loss for CCapsNet training

(e) Decoder loss for CapsNet training (f) Decoder loss for CCapsNet training

Fig. 6: Accuracy (a, b), margin loss value for classification (c, d) and decoder
loss value (e, f) in training process on CIFAR-10 data set. CapsNet the - left
column and Convolutional CapsNet - the right one.

3.3 Experiment2. Comparative performance of
CapsNet and various CNNs types on augmented test data

The experiment aims to check whether capsule networks learn a more complex
entity representation. The datasets and CapsNet setup are the same as in the
Experiment1. The CapsNet model with the best hyperparameter values from
the Experiment1. is used as a baseline. We consider the most popular CNN
architectures - VGG, DenseNet, ResNet and its smaller version ResNet II net-
works. Their characteristics selected based on tuning are defined in Table 5. All
architectures used a batch size of 100.

The results for the MNIST data set are shown in Table 6. We can observe
that VGG achieved the best scores for all test sets. The situation changes slightly
in the case of the comparable models. The best model for Light VarMNIST is

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

Title Suppressed Due to Excessive Length 11

Table 4: Accuracy of CapsNet and Convolutional CapsNet (CCapsNet) averaged
over 5 runs (best results are bolded)

Data set MNIST CIFAR-10

Architecture CapsNet CCapsNet CapsNet CCapsNet
CCapsNet
Matching

Standard 0.9917 0.9921 0.6629 0.7005 0.6698

Light Var 0.6443 0.6894 0.5274 0.5411 0.5211

Strong Var 0.5234 0.5833 0.4841 0.4828 0.4705

2-Shattered 0.5778 0.5577 0.4746 0.4802 0.4706

4-Shattered 0.2512 0.2553 0.3253 0.2993 0.2982

8-Shattered 0.2481 0.2661 0.3599 0.3511 0.3501

16-Shattered 0.1324 0.1247 0.2590 0.2423 0.2449

ResNet I and VGG for Strong VarMNIST but the difference is extremely low. In
the case of CIFAR-10., the best CNN models sometimes surpassed the baseline
method, however relation between accuracy on the standard set and transformed
sets falls in favor of CapsNet. The observation is further notable in Table 7. We
can observe that CapsNet surpasses all CNN models on Light VarCIFAR and
Strong VarCIFAR datasets by far.
Performance analysis In the case of the MNIST dataset, it is possible that
deep architectures of CNNs managed to learn so many different features that
they cover a large part of possible cases. In the case of CIFAR-10, the possible
image domain is far greater, thus CNN could not have learnt enough general
representations to work well for augmented data. It may also come from higher
overfitting of the model for CIFAR-10 than for MNIST.

3.4 Experiment3. Comparison of CapsNet and CNN models
performance on randomly shattered test data

This experiment aims to verify the statement that capsules encode the spatial
relationship between parts and wholes as opposed to Convolutional Neural Net-
works. We used N -Shattered vesion of datasets. The experiment setup is the
same as in Experiment2.

Table 5: Characteristics of CNN architectures
*Comparable parameter space could not be reached due to computer memory limitations

Architecture
Depth
(layers)

MNIST
No. of params

MNIST
epoch time [s]

CIFAR
No. of params

CIFAR
epoch time [s]

CapsNet 6 8 215 568 208 11 749 120 383

VGG 30 8 037 578 34 12 180 170 35

ResNet I 27 8 816 074 170 11 181 642 230

ResNet II 22 272 776 20 237 066 23

DenseNet 144 8 380 090 130 *9 012 202 145

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

12 E. Juralewicz and U.Markowska-Kaczmar

Table 6: Accuracy on VarMNIST datasets for CapsNet and CNN models

co
m

p
a
r-

a
b
le

Dataset CapsNet VGG ResNet I ResNet II DenseNet
Standard 0.9917 0.9908 0.9917 0.9903 0.9903
Light VarMNIST 0.6443 0.7136 0.7164 0.7046 0.6717
Strong VarMNIST 0.5234 0.6417 0.5860 0.6052 0.5738

b
es

t Standard 0.9917 0.9927 0.9923 0.9903 0.9903
Light VarMNIST 0.6443 0.7623 0.6412 0.7046 0.6717
Strong VarMNIST 0.5234 0.6923 0.5380 0.6052 0.5738

The results for MNIST dataset are showed in Table 8 and for CIFAR-10 in
Table 9. In the case of MNIST, CapsNet always managed to surpass all CNN
models. In the case of CIFAR-10, the winner is ResNet.
Performance analysis Similar to previous experiments, observations made on the
MNIST data sets are not transferable to CIFAR-10 test results. Ability to encode
spatial relationships between parts and wholes by the baseline Capsule Network
and compared CNNs seems to be dependent on the level of model under- or
overfitting. In the case of the MNIST dataset, where no considerable overfitting is
present, CapsNet surpasses all other architectures. There are different behaviours
observed for different networks for CIFAR-10. VGG seems to have decreasing
performance on N -Shattered test sets along with improvement on standard test
set, which is opposite to what is partially observed for ResNet II. We observed
that ResNet II highly overfits to training data, which is possibly the reason
why it does not recognize shattered images correctly. However, considering only
the aspect of spatial relationship encoding, data overfitting is not a disturbing
occurrence as what we look for is encoding of parts and wholes and not the input
variance covered by the network. Thus a conclusion can be drawn that applying
skip connections in the model, like in the case of ResNet and DenseNet, improves
network’s ability to encode spatial relationships of input data.

4 Conclusions

Capsule Networks provide a framework for shallow architecture with mechanisms
addressing common problems present in Convolutional Neural Networks. They
have a higher computational complexity but may work better for data sets of

Table 7: Accuracy for VarCIFAR datasets for CapsNet and various CNN models

co
m

p
a
r-

a
b
le

Dataset CapsNet VGG ResNet I ResNet II DenseNet
Standard 0.6629 0.7019 0.6602 0.6803 0.6363
Light VarCIFAR 0.5274 0.4559 0.4826 0.4748 0.4731
Strong VarCIFAR 0.4841 0.3862 0.4117 0.3938 0.3994

b
es

t Standard 0.6629 0.8519 0.6602 0.7602 0.6363
Light VarCIFAR 0.5274 0.5609 0.4826 0.5386 0.4731
Strong VarCIFAR 0.4841 0.4608 0.4117 0.4503 0.3994

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

Title Suppressed Due to Excessive Length 13

Table 8: Accuracy for N -Shattered MNIST for CapsNet and CNN models

co
m

p
a
r-

a
b
le

Dataset CapsNet VGG ResNet I ResNet II DenseNet
Standard 0.9917 0.9908 0.9917 0.9903 0.9903
2-Shattered MNIST 0.5778 0.5974 0.7143 0.7892 0.6480
4-Shattered MNIST 0.2512 0.3341 0.3913 0.4768 0.3685
8-Shattered MNIST 0.2481 0.3220 0.3521 0.3384 0.3349
16-Shattered MNIST 0.1324 0.1759 0.2218 0.1698 0.1882

b
es

t

Standard 0.9917 0.9927 0.9923 0.9903 0.9903
2-Shattered MNIST 0.5778 0.5795 0.6839 0.7892 0.6480
4-Shattered MNIST 0.2512 0.2922 0.3688 0.4768 0.3685
8-Shattered MNIST 0.2481 0.3355 0.3457 0.3384 0.3349
16-Shattered MNIST 0.1324 0.1443 0.1976 0.1698 0.1882

complex nature and with little training data. The experiments show that the
training process of a CapsNet is very stable and not prone to overfitting, contrary
to the tested CNNs. However, the specific cases in which CapsNet may be a
better choice as compared to one of the popular deep CNN architectures cannot
be clearly specified based on available research as the results and observations
highly deviate for different data sets. We can observe that application of routing-
by-agreement and the squashing function highly influences performance quality
for medical and generated data sets, in their favor.

The experiments presented in this paper could be extended by further tuning
of proposed architectures to specified problems. Capsule Networks can be further
researched for more complex problems. Application of a Capsule Network to a
larger task, like ImageNet classification task or COCO segmentation task would
probably give better insight in their characteristics. Moreover, they can be tested
in use as embedding builders for other tasks due to their natural way of encoding
detected objects in forms of vectors, both for visual and textual data. Based on
conducted experiments and available literature, Capsule Networks appear as an

Table 9: Accuracy scores for N -Shattered CIFAR data sets obtained by CapsNet
and different CNN models

co
m

p
a
r-

a
b
le

Architecture CapsNet VGG ResNet I ResNet II DenseNet
Standard 0.6629 0.7019 0.6602 0.6803 0.6363
2-Shattered CIFAR 0.4746 0.5172 0.4549 0.5527 0.4640
4-Shattered CIFAR 0.3253 0.3764 0.2954 0.4119 0.3249
8-Shattered CIFAR 0.3599 0.3635 0.3241 0.3886 0.3415
16-Shattered CIFAR 0.2590 0.2836 0.2249 0.3050 0.2529

b
es

t

Standard 0.6629 0.8519 0.6602 0.7602 0.6363
2-Shattered CIFAR 0.4746 0.6202 0.4549 0.5943 0.4640
4-Shattered CIFAR 0.3253 0.4167 0.2954 0.4034 0.3249
8-Shattered CIFAR 0.3599 0.4045 0.3241 0.3410 0.3415
16-Shattered CIFAR 0.2590 0.2701 0.2249 0.2229 0.2529

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

14 E. Juralewicz and U.Markowska-Kaczmar

alternative model which may outperform other network types for specific prob-
lems, but does not show strong advantage over Convolutional Neural Networks,
however, due to their consistent design, they remain an area worth exploring.

References

1. Duarte, K., Rawat, Y.S., Shah, M.: Videocapsulenet: A simplified network for
action detection. CoRR abs/1805.08162 (2018), http://arxiv.org/abs/1805.
08162

2. Gritsevskiy, A., Korablyov, M.: Capsule networks for low-data transfer learning.
CoRR abs/1804.10172 (2018), http://arxiv.org/abs/1804.10172

3. Hasani, M., Saravi, A.N., Khotanlou, H.: An efficient approach for using expecta-
tion maximization algorithm in capsule networks. 2020 International Conference
on Machine Vision and Image Processing (MVIP) pp. 1–5 (2020)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–
778 (2016). https://doi.org/10.1109/CVPR.2016.90, https://www.computer.org/
csdl/proceedings-article/cvpr/2016/8851a770/12OmNxvwoXv

5. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Pro-
ceedings of the 21th International Conference on Artificial Neural Networks -
Volume Part I. pp. 44–51. ICANN’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2029556.2029562

6. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: Interna-
tional Conference on Learning Representations (2018), https://openreview.net/
forum?id=HJWLfGWRb

7. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
CoRR abs/1608.06993 (2016), http://arxiv.org/abs/1608.06993

8. Jiang, X., Wang, Y., Liu, W., Li, S., Liu, J.: Capsnet, cnn, fcn: Com-
parative performance evaluation for image classification. International
Journal of Machine Learning and Computing 9(6), 840–848 (2019).
https://doi.org/10.18178/ijmlc.2019.9.6.881

9. Mobiny, A., Nguyen, H.V.: Fast capsnet for lung cancer screening. CoRR
abs/1806.07416 (2018), http://arxiv.org/abs/1806.07416

10. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classifi-
cation: A comprehensive review. Neural Computation 29(9), 2352–2449 (2017).
https://doi.org/10.1162/neco a 00990

11. Revision, A.J.: imgaug: Image augmentation for machine learning experiments.
https://github.com/aleju/imgaug (2019)

12. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. CoRR
abs/1710.09829 (2017), http://arxiv.org/abs/1710.09829

13. Schlegel Kenny, Neubert Peer, P.P.: Comparison of data efficiency in dynamic
routing for capsule networks (2018), https://www.tu-chemnitz.de/etit/proaut/
publications/schlegel_2018.pdf

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations (2015)

15. Toraman, T., Alakusb, B., Turkoglu, I.: Convolutional capsnet: A novel ar-
tificial neural network approach to detect covid-19 disease from x-ray im-
ages using capsule networks. Chaos, Solitons & Fractals 140, 110122 (2020).
https://doi.org/https://doi.org/10.1016/j.chaos.2020.110122

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_2

https://dx.doi.org/10.1007/978-3-030-77977-1_2

