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Abstract. Data fusion methods enable the precision of measurements based on 

information from individual systems as well as many different subsystems to be 

increased. Besides, the data obtained in this way enables additional conclusions 

drawn from their work, e.g., detecting degradation of the work of subsystems. 

The article focuses on the possibilities of using data fusion to create Autonomous 

Guided Vehicles solutions in increasing precise positioning, navigation, and co-

operation with the production environment, including docking. For this purpose, 

it was proposed that information from other manufacturing subsystems be used. 

This paper aims to review the current implementation possibilities and to identify 

the relationship between various research sub-areas. 

Keywords: Autonomous Guided Vehicles (AGV), Data fusion, Machine to 

Machine Communication (M2M), Sensor fusion. 

1 Introduction  

Contemporary production systems require that many stringent requirements be ful-

filled, including flexibility, dynamic re-engineering processes, and production quality. 

Many changes enable the implementation of Industry 4.0 [1] functionalities to be made 

to meet these requirements. The production has to be adjusted to specific products, and 

the process organization must follow these changes.  Avoiding non-productive time 

gaps reduces production losses [2]. The industrial environment consists of several 

Cyber-Physical Production Systems (CPPS) [3], IoT [4], and mobile subsystems. More 

and more efficient internal transport systems rely on solutions that use Autonomous 

Guided Vehicles (AGV) [5]. The logistics tasks must be performed in a distributed, 

dynamic, and autonomous manner, and therefore, they require the online information 

exchange between the AGVs and an industrial manufacturing environment. The new 

generation of the manufacturing ecosystems requires the regular supply and movement 
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of various components. To maintain the appropriate level of organization and quality 

of production, the precise execution of production orders is required. The currently used 

robotic systems enable the production of high-quality products. To work appropriately 

and above all efficiently [6], an AGV must be precisely docked to the assembly station 

(AS), and the loading and unloading operations have to be performed collaboratively. 

Integrating the information from an AGV and various sensors available from other pro-

duction subsystems such as the IoT and CPPS [7] requires data fusion methods to be 

used [8] to achieve docking functionality to recalibrate an AGV to a specific AS if 

needed. 

The aim of the article is to summarize the existing possibilities of using sensor and 

data fusion for the effective use of the AGVs that cooperate with the IoT subsystems 

and industrial manufacturing environments. The main contribution of this paper is the 

analysis of the challenges facing the implementation of internal logistics systems based 

on AGV, with a particular focus on the challenges related to data fusion:  

(i)  dynamic configuration of the data fusion methods - AGVs require a dynamic 

change in the way of cooperation with various ASs (chapter 2). Different sensors on 

each AS and AGV necessitate the usage of suited methods of data fusions.  

(ii) wireless real-time communication – the specific docking example (section 2.2) 

requires real-time data exchange. Otherwise, data fusion will not support the accuracy 

of the docking procedure, 

(iii) The integration of data streams produced by many IoT devices, AGVs, ASs, and 

extracted from other systems in a smart factory provides a broader view of the pro-

cessed data and supports efficient and accurate data mining. 

The main challenge is to find a way to prepare data fusion that depends on the avail-

able sensors on the AGV and AS, which could be recognized by the M2M communi-

cation methods and improved by the data analysis methods based on real-time infor-

mation from data streams. 

The paper is organized as follows: the second section presents the research chal-

lenges associated with the fusion between an AGV, the IoT subsystems, and the envi-

ronment. The third section describes the ontology-based approach to implementing data 

fusion. The fourth section presents the methods of data fusion for AGV solutions. The 

conclusions are presented in the fifth section. 

2 Research challenges related to the fusion between an AGV, 

the IoT subsystems, and the manufacturing environment 

The internal transport systems for routing and supervising AGVs often use navigation 

systems. However, when an AGV reaches the specified production station, it usually 

has to dock there automatically. The industrial manufacturing environment uses many 

different types of sensors implemented in the IoT subsystems [9],  CPPS [10], and AGV 

solutions. Although these sensors have different properties, some of them can be used 

to determine the position of an AGV and its distance to the objects in an industrial 

environment. Using data from several sensors can increase the precision of determining 

the position of an AGV. However, precise positioning is not required at all times, e.g., 
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if an AGV is moving in relatively vast halls, the speed may increase, but the current 

position can be acquired using odometry. If the position accuracy is not high enough, 

then the Inertial Measurement Unit (IMU) can be switched on to support the less accu-

rate odometry sensors in localizing it. 

 The possibility of powering some modules on and off leads to another big issue as-

sociated with the power management unit (PMU). It must be emphasized that a platform 

has a battery with a limited capacity – one of the goals is to increase the operating time 

for a platform. Having an up-to-date position and the platform, the IMU can be supplied 

by or disconnected from the battery. When connected, the dead reckoning algorithm 

should be used. It is assumed that there are some reference points for positioning in the 

local coordinate system in the working area of the platform. There is a wide range of 

positioning systems available for industrial use. They are starting from high-cost fast 

video systems and ending with ultrasound low-cost distance devices. Thus, the sensor 

selection is important from two aspects: one is the battery saving aspect, and the second 

is the positioning accuracy aspect. There are several advantages and disadvantages of 

both odometry and the dead reckoning algorithm [11]. The authors believe that the most 

crucial disadvantage is the lack of an absolute position. Therefore, other indoor posi-

tioning techniques [12] can be used for this purpose. Taking into consideration the nav-

igation of a platform, wireless sensors based on RSSI (Radio Signal Strength Indicator) 

or ToF (Time of Flight) can be investigated [13]. Moreover, systems based on the meth-

ods mentioned above should also be assessed on their battery consumption. This can be 

achieved by selecting the most accurate sensor/system or combining the data obtained 

from several sensors when determining a position. 

The main challenge is to support the optimal use of all available sources of infor-

mation that can complement each other through sensor fusion. The goal is to integrate 

an AGV [14] and sensors in the manufacturing environment and to prepare a function-

ality to determine the position of an AGV, docking [15], and to provide support to Ma-

chine to Machine (M2M) communication [16], [17] with other subsystems. 

2.1 Determining the position of an AGV  

Precisely determining the position of an AGV enables the navigation system [18] to 

give orders correctly and increases the accuracy of the movement of an AGV in an 

industrial manufacturing environment [19]. It also leads to a reduction in costs in terms 

of battery consumption and human interference in the path correction of an AGV. The 

time required for human support reduces usability and increases the overall cost of im-

plementing a system. Hence, the next challenge is to have a precise enough position 

and location of a platform. Therefore, one of the first steps in precise positioning is the 

kinematics of an AGV [5]. Next, other systems may be used to support any other as-

sumptions or limitations caused by the AGV platform. For the dead reckoning algo-

rithm, information obtained from the accelerometer, gyroscope, encoders, and some-

times a magnetometer is most often used in the navigation system [20]. Encoders or 

hall sensors enable the speed [21] of each wheel to be measured. If an AGV has a dif-

ferential drive system, information about the speed of each wheel can be used to deter-
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mine the overall speed of the AGV and its relative position and heading. An accelerom-

eter can be used to measure the speed of an AGV, which can be obtained by integrating 

the AGV acceleration in time. To avoid a quantization error, it is recommended that an 

appropriate filtration method be used [22] (the method of filtration is another big issue 

with the system) as well as, e.g., Simpson's rule as the method for the numerical inte-

gration rather than simply multiplying the acceleration by the elapsed time. However, 

the speed of the vehicle that is determined by the accelerometers has a relatively large 

error relative to the accuracy of the encoders. Therefore, it is better to have some other 

system assumptions for positioning (or introducing higher-quality sensors). Theoreti-

cally, it is possible to calculate the distance based on the accelerometer data, but it is 

rarely used in practice due to its inaccuracy. The gyroscope can be used to measure the 

angular speed of an AGV to compensate for the yaw rate errors of an AGV caused by 

wheel slip. The measurements from the gyroscopes and magnetometers can be fused to 

estimate the accurate heading of an AGV and compensate for errors caused by the high 

electromagnetic pollution in an industrial manufacturing environment. Dead reckoning 

navigation tends to accumulate the errors such as inaccuracies in the encoder readings 

due to quantization, wheel slip, or IMU noise. Therefore, they need to be fused to esti-

mate the AGV state better. 

Each AGV is additionally equipped with a set of distance sensors, e.g., single-beam 

LiDAR and 2D LiDAR. To create the map and improve the position's determination, 

the SLAM technique [23], based on LiDAR technology, can be used.  The information 

from other subsystems (the IoT, 

CPPS) can also be used to correct the 

calculated position.  These subsys-

tems are often equipped with sensors 

to determine the position, e.g., RFID 

tags, NFC modules, magnetic or color 

markers. The trilateration method 

[24] enables the position of the object 

to be calculated in a two-dimensional 

plane by referring to three specified 

points. The most advanced subsys-

tems (e.g., AS) enable distance meas-

urements by LiDARs or cameras. An 

AGV can obtain this additional infor-

mation in a manufacturing environment, thus recognizing specific markers in space and 

receiving information about its position [13] (Fig. 1).  

2.2 Precisely docking an AGV to an Assembly Station   

Docking in the specified manner and site enables the orientation time of a robot or an 

automatic production loading station associated with the delivered parts to be short-

ened. This approach creates further challenges, the solution of which should enable 

increasing the precision of the orientation of the robot to be increased and any errors 

Fig. 1. Autonomous Guided Vehicles in manu-

facturing environment (N - NFC module). 
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that require handling by production staff to be eliminated. Because of the possible pres-

ence of surface irregularities, the location of an AGV relative to the AS in both the 

vertical and horizontal positions must be determined (Fig. 2). 

The distance of an AGV from an AS can be measured using, e.g., single-beam Li-

DAR, 2D LiDAR, an optical ruler, or ultrasound. The angle of the deviation of an AGV 

to an AS can be additionally measured based on these measurements. However, these 

sensors have different properties regarding the measurement and accuracy of distance 

[25]. Therefore, methods that enable the data obtained from a sensor to be selected with 

the highest accuracy or using data fusion methods [26] to obtain the highest degree of 

accuracy from several sensors. Using these methods will determine the range of motion 

of an AGV, ensuring a more accurate docking. Determining the horizontal position of 

an AGV enables an inclinometer to be used. The information about position of an AGV 

can be made available to the AS, which will speed up the orientation of a robot or an 

automatic production loading station to the delivered parts.  

Integrating sensors into manufacturing systems enables multisensor data fusion to 

be prepared [27]. An AS can also be equipped with several sensors that enable the 

working status of the production, machines, and the surrounding environment, includ-

ing the docking of an AGV or loading process, to be verified. An AS is usually at 

ground level. A constant point of reference can be obtained by precisely leveling it, 

e.g., 3D LiDAR or camera sensors [28]. In fact, it is possible to obtain more accurate 

measurements of the angle of an AGV to an AS. In addition to measuring the distance, 

a camera also enables the orientation to be determined and the delivered parts to be 

recognized. Data fusion, which is based on information from both the AGV and AS 

systems can be used to increase the accuracy of positioning an AGV. Both enable dis-

tance and angle measurements to be obtained and enable the vertical and horizontal 

position of an AGV to an  AS to be determined.  

 

  

Fig. 2. Docking an AGV to an assembly station (top view on the left, side view on the right) 

A mobile AGV can also be equipped with collaborative robot (CR) manipulators to 

perform different types of operations at an AS, e.g., picking up objects for transport or 

manipulating or placing new parts into the AS. These CRs can be used as additional 

sensor systems to aid in the precise docking of an AGV to an AS. A CR has very accu-

rate proprioceptive sensors for determining the position and orientation of the different 

links and joints on a robot. By accurately positioning the robot tool-center-point (TCP) 
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on predefined points on an AS, the position and orientation of an AGV can be deter-

mined. This positioning does not necessarily have to be physical but can be performed 

using the camera systems on a robot [29].   

Developing methods that enable changes in the area of production lines to be de-

tected makes it possible to monitor the industrial process using data fusion techniques 

[30] and virtual sensing techniques [31]. This non-invasive method enables an opera-

tion or product quality in an industry to be optimized by measuring the parameters in 

dynamic systems in which stationary and mobile systems cooperate [32]. 

2.3 Properties of various sensors  

To move in an industrial manufacturing environment with high precision, it is necessary 

to use a location engine based on the positioning system being used. On a fundamental 

level, the distance between some reference points and an AGV must be determined. 

Although the distance measurements can be inves-

tigated on several levels, the authors focused on the 

commonly used sensors in this paper. Positioning 

and localization systems can be used to map the 

environment and to navigate and avoid collisions. 

There are many different sensors for measuring 

distance, and each of them has various features 

(Fig. 3). Although that variety enables the suitable 

sensors for a specific task to be selected, on the 

other hand, there is a challenge when fusing many 

sensors with different specifications. Some of 

them (e.g., LiDARs) are very sensitive to ambient light or the color of the surface. They 

have different operating ranges, fields of view (FOV), measuring resolution, and accu-

racy, which can differ across the operating range. Ultrasound and radar sensors are not 

sensitive to ambient light or the color of any obstacles, but they have lower measure-

ment and FOV resolutions. 

 Cameras with depth-sensing can also be used for AGV navigation and docking. They 

can help to map the environment and take part in understanding it using image recog-

nition techniques. IMUs (Inertial Measurement Unit) can be used to navigate and posi-

tion an AGV system. IMUs and inclinometers can also be used to determine the orien-

tation of an AGV, which is also crucial for the accuracy of an AGV performing specific 

processes. An off-balance AGV, in some situations, must be leveled. Otherwise, it can 

lead to errors when performing a task or even cause damage to other systems near an 

AGV. Like distance measuring sensors, IMUs and inclinometers have different operat-

ing ranges, measurement resolution, and accuracy. To obtain an accurate estimate of an 

orientation and position, sensor fusion should be used. Thus, one of the challenges is to 

develop a distributed computer system architecture [33] to integrate AGVs [14]  and 

the required sensors, which will enable data fusion. 

Fig. 3. Data fusion diagram – 

the problem of sensors’ different 

specifications and features. 
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3 The ontology-based approach for implementing data fusion 

To enable the data fusion proposed in section 2, it is necessary to collect and combine 

information from many different sensors. This information is available in various pro-

duction subsystems, which means that it is represented in various formats with different 

communication capabilities and services. An ontological approach for information 

modeling can be used to exchange and merge information in heterogeneous distributed 

information systems, ensuring the unambiguous determination of the meaning of the 

available information and services and enables automatic communication between the 

individual system nodes. Such models can be used for flexible and dynamic communi-

cation between the system nodes according to the Machine to Machine (M2M) para-

digm [34]. Ontology is how specific information such as a model of the entities and 

interactions in a specific area of knowledge is represented. Ontology enables the ma-

chine (independent of a human decision) interpretability of information containing the 

parameters and the relations between data [35]. Regarding the use case here, the ontol-

ogy should describe the data and services used to navigate an AGV. The data and ser-

vices must be selected according to the current position of the AGV and the tasks that 

are to be performed. The position of an AGV limits the list of available sources of 

information. The sensors must be selected based on their physical properties such as 

the detection method (1D, 2D, 3D), range, accuracy, scanning frequency, etc. [36]. On 

the other hand, the services must be adjusted to the operation to be performed by an 

AGV, e.g., avoiding an obstacle, preventing a collision with another AGV, or docking 

to a production station. 

 The ontology should be compatible with the contemporary models that are used in 

agile manufacturing, such as the Reference Architecture Model for Industry 4.0 

(RAMI4.0), which defines the high-level schemas for manufacturing systems that are 

currently being developed [37] [38]. Moreover, the communication middleware should 

support a seamless connection between the entities and support the meta-information 

that enables the information to be interpreted correctly by considering the required 

presentation context. OPC UA is one of the communication solutions that has been 

widely accepted in the industry.  It offers an object-based and service-oriented commu-

nication middleware that supports the exchange of information and organizes the infor-

mation models [39]. OPC UA considers RAMI4.0 to be one of the key enabling tech-

nologies. The information and metainformation are organized in an object-oriented 

manner in which the relevant type definitions determine the structure and meaning of 

each data item. The basic OPC UA types are defined by the standard and are used to 

arrange the variables, objects, data, and references that show the relationships between 

the pieces of information. The model can easily be expanded according to the require-

ments of the application by using the inheritance mechanism [40]. 

3.1 M2M Communication  

To navigate an AGV, the ontology should describe services (functions) that are offered, 

the available data, including any online measurements and sensor's properties, and pos-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_45

https://dx.doi.org/10.1007/978-3-030-77970-2_45


8 

sible communication modes. Data from individual CPPS, the IoT, and AGV subsys-

tems are often collected and processed in supervisory systems, data centers, or cloud 

platforms [41]. These systems also enable the required information to be exchanged 

between subsystems based on the M2M communication methods [42]. Additionally, 

individual subsystems, e.g., an AGV or AS, can exchange information directly based 

on reliable and time-determined M2M methods of communication [43]. 

 Using 2D LiDAR enables information about the surroundings and objects in the 

nearest neighborhood to be obtained. On the other hand, a single-beam LiDAR enables 

the continuous observation of the road, often over a broader range than 2D LiDAR, and 

enables any objects that suddenly appear on the path of an AGV to be detected. There 

will always be cases where some of the 

measured areas are obscured by other 

objects, which means that the AGV 

will not be able to detect any other ap-

proaching objects or other AGVs. For 

this reason, the route of an AGV is 

mapped to the superordinate naviga-

tion system. Additionally, this system 

may take into account information 

about the movement of objects from 

other subsystems. For example, an AS 

and other IoT subsystems can also 

share information about moving ob-

jects detected in their environment using the IoT cloud solutions [44]. As a result, the 

navigation system will have information about moving AGVs and other objects. This 

information can reconcile the route, speed, and sequence of movement corrections and 

warn AGVs about the possibility of a collision because of other approaching objects or 

AGVs. AGVs can also communicate directly with other AGVs, AS, the IoT devices 

and share information about warnings or even moving objects based on M2M commu-

nication (Fig. 4). As a result, a local AGV navigation system will be able to combine 

data from other subsystems, map additional knowledge about the nearest surroundings, 

and use this information to predict possible collisions. 

3.2 OPC UA-based communication for LiDAR  

The use case of sensor fusion presented in Fig. 4 requires that information be exchanged 

between two AGVs and a production station. The M2M communication can be per-

formed at a low level according to the communication services available for specific 

sensors or be changed into high-level services defined according to the ontological ap-

proach. In the first case, the LiDAR will provide information about a cloud of points 

that includes the angle of the LiDAR beam, the distance to the obstacle, and the reflec-

tance factor. This information must be processed by the recipient, which will have to 

convert the data that describes the cloud of points into useful information about the 

location of the object. To use information from an external sensor, it is necessary to 

know the location of the remote LiDAR and the format in which the data is presented. 

Fig. 4. M2M communication between AGVs 

and an industrial manufacturing environment 
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Moreover, the head of a LiDAR rotates several times per second, and during this time, 

several hundred to several thousand measurements are taken. In the case of low-level 

M2M communication, some high throughput, real-time transmission channels have to 

be built on wireless communication.  

The second approach replaces the data exchange of the raw data measured by sensors 

with ontology-defined location services. In the first step, the AGV interested in the 

location data sends a location request using the Locate service provided by LiDAR's 

communication middleware. If it is possible to locate the AGV, the Locate service cre-

ates a new variable containing the AGV's position and this is identified by the ID used 

in the service request. Otherwise, the LiDAR returns an error code. In this case, no new 

measurement is created. 

Fig. 5 Use case of OPC UA based ontology – localization sensor. 

 

4 Data Fusion Methods  

The sensors located on AGVs, ASs, and other IoT devices generate a series of events 

that form continuous data streams. Various sensor systems provide separate data 

streams. One of the challenges identified for AGVs logistics is the integration of the 

data streams. This integration can be performed within the data fusion process [45] to 

produce a complete set of data for further analysis within data mining processes. Data 

fusion can be achieved by joining events from the individual data streams that are pro-

duced directly by AGVs, ASs, and the IoT devices, and also those that are collected in 

a CPPS, a Distributed Control System (DCS), and Supervisory Control And Data Ac-

quisition (SCADA) systems by using a stream joining operation. This operation can be 

implemented in various ways and in many places, i.e., (1) on the IoT device that are 

located on the AGV, (2) another IoT device that aggregates the data streams or plays a 

role in the Edge/fog gateway for transmitting the data to a data center, or (3) in the data 

center itself.  
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In all of these cases, the joined data streams should include a common attribute that 

can be used in the join operation. Frequently, the fusion of data streams is performed 

in the time domain, and therefore the timestamp that accompanies all of the collected 

events is used as a common attribute to assess the proximity of the events. Based on the 

timestamp, the real-time fusion of specific events can be performed. If the events are 

generated in close synchrony, it is enough to pair them (in the case of two data streams) 

with any new events that appear.  

Asynchronous data streams raise another challenge and require more sophisticated 

methods that rely on timestamps, but the fusion of events is performed in time windows. 

One of the approaches for solving this problem proposed in the scientific literature is 

to use various variants of the sliding window algorithm [46], [47]. The window-based 

algorithms group sensor events along the timeline, which simplifies operating on these 

events. Once the events are collected, it is possible to use some set-based computations 

on them. Aggregating specific sensor readings (e.g., finding the maximum or mini-

mum) is one of the frequently performed operations in time windows. For example, 

Gomes et al. [48] used the sliding window algorithm to calculate the maximum and 

average values of the collected sensor readings to reduce the amount of data needed to 

be processed. There can be different types of sliding windows, including count-based 

and time-based windows. A sliding count-based window retains a fixed number of 

events. Once the window is complete, each new event of the data stream that appears 

in the window displaces the oldest event, which is then removed from the window. A 

time-based window retains a variable number of events that had arrived within the spec-

ified time interval. As time passes, the IoT events that have been in the window longer 

than the specified interval are removed from the window. The expiration of events hap-

pens regardless of whether new events arrive in the window or not. Windows can be 

updated continuously with every incoming event or cyclically with a specified or dy-

namically assigned cycle time [49].  

Events from various data streams can be joined in these sliding windows. Gomes et 

al. [48] proposed the XGreedyJoin algorithm, which operates on the sensors and joins 

data streams. To do this, the algorithm uses a join tree with a count-based sliding win-

dow for every stream. The algorithm can run in a single data stream processing unit 

(e.g., in a data center) or in a distributed sensor network. However, stream fusion can 

be computationally demanding in distributed sensor networks, which was observed and 

reported by Zhuang et al. [50]. The challenge especially appears when joining more 

than two data streams for a sensor network. Multiple data streams may increase the 

pressure on the IoT devices and field gateways, which usually have limited computa-

tional resources (CPU and memory). Therefore, Zhuang et al. proposed two approaches 

for solving the problem, i.e., the All In One (AIO) and Step By Step (SBS) approach. 

The AIO approach assumes that all data streams are processed and combined in a single 

stream processing job. The SBS approach distributes the joining operation into many 

steps that combine pairs of data streams in each step. Both approaches are implemented 

in the Apache Samza framework.  

Recent works in the area of fusing asynchronous sensor events show that using fuzzy 

sets could bring several benefits. For example, Malysiak et al. [51] proposed using a 

fuzzy umbrella join algorithm to combine the sensor data from separate IoT data lakes 
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for Cyber-Physical Systems. Wachowicz et al. [52] proposed a fuzzy join algorithm for 

merging readings from various sensors while monitoring the performance of sports 

workouts and studying the correlations between the performance and weather condi-

tions. The authors applied the concept of the fuzzy umbrella to join the sensor data that 

had been obtained from the smartwatches worn by sports amateurs with the atmospheric 

parameters that had been obtained from the weather services. The umbrella was spread 

out in overlapping time windows. However, in both solutions, the sensor events were 

processed after all of the collected data (i.e., not in real-time). These methods can be 

used, e.g., for fusing sensor data from SCADA and DCS systems in an AGV-equipped 

factory. An alternative solution was proposed for data in motion, i.e., for joining data 

streams [8], where the authors proposed a hopping umbrella to join asynchronous data 

streams. The hopping umbrella-based join enables the importance of specific events in 

the data streams to be assessed based on defined membership functions, sensor readings 

of higher importance to be selected in a specific case and reducing the size of the output 

stream. It is essential that the algorithm be used on the Edge (i.e., on an IoT device) or 

in a data center (the authors tested it in the cloud). Implementing the algorithm on an 

IoT device enables the data that is transmitted in the merged data stream to be reduced, 

which reduces the network traffic and the storage space consumed in a data center. 

These properties make the joining method suitable for the real-time fusing of data 

streams in the IoT devices mounted on an AGV and the events produced by the sensors 

located in a smart factory environment. However, the number of data streams that must 

be merged in such a way is challenging and requires dedicated approaches to the pro-

cess implementation. Furthermore, the variety of integrated data coming from different 

sensors, systems, and IoT devices and the volume of data provided by these sources 

raise challenges of Big Data. The methods mentioned above address these challenges 

only partially, so there is still space for developing new techniques in the view of the 

Big Data problems.  

5 Conclusions 

Today's production ecosystems use many active subsystems that enable data about the 

operation of production systems and their environment to be obtained from CPPSs and 

IoT devices. The AGV systems used in this environment should actively participate in 

the exchange of data between these systems. Sharing additional information may be 

used by an AGV to increase the quality of its service. Such a solution can be obtained 

using data fusion methods based on information from multiple subsystems. However, 

achieving such solutions poses many challenges and related research. In this article, we 

presented some considerations on the issues associated with the data fusion methods 

for integrating an AGV and an AS with the required sensors and determining the posi-

tion, docking, and communication methods of an AGV with other subsystems a smart 

industry environment. These challenges lead to reorganizing the methods used and ad-

justments of particular algorithms to be implemented in real-time industrial environ-

ments. 
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