
Application of the Ant Colony algorithm for
routing in next generation programmable

networks?

Stanis law Kozdrowski1,4[0000−0001−6647−5189],
Magdalena Banaszek1,5[],
Bartosz Jedrzejczak1,6[],

Mateusz Żotkiewicz2,7[0000−0002−8049−7410], and
Zbigniew Kopertowski3,8[0000−0002−9471−6258]

1 Computer Science Institute, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

2 Institute of Telecommunications, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

3 Orange Labs Polska, Orange Polska
Obrzeżna 7, 02-691 Warszawa, Poland

4 s.kozdrowski@elka.pw.edu.pl
5 magdalena.banaszek.stud@pw.edu.pl
6 bartosz.jedrzejczak.stud@pw.edu.pl

7 mzotkiew@tele.pw.edu.pl
8 Zbigniew.Kopertowski@orange.com

Abstract. New generation 5G technology provides mechanisms for net-
work resources management to efficiently control dynamic bandwidth al-
location and assure the Quality of Service (QoS) in terms of KPIs (Key
Performance Indicators) that is important for delay or loss sensitive In-
ternet of Things (IoT) services. To meet such application requirements,
network resource management in Software Defined Networking (SDN),
supported by Artificial Intelligence (AI) algorithms, comes with the solu-
tion. In our approach, we propose the solution where AI is responsible for
controlling intent-based routing in the SDN network. The paper focuses
on algorithms inspired by biology, i.e., the ant algorithm for selecting the
best routes in a network with an appropriately defined objective function
and constraints. The proposed algorithm is compared with the Mixed
Integer Programming (MIP) based algorithm and a greedy algorithm.
Performance of the above algorithms is tested and compared in several
network topologies. The obtained results confirm that the ant colony al-
gorithm is a viable alternative to the MIP and greedy algorithms and
provide the base for further enhanced research for its effective application
to programmable networks.

? The work on this paper was done in FlexNet project in EUREKA CELTIC-NEXT
Cluster for next-generation communications under partial funding of The National
Centre for Research and Development in Poland.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

2 S. Kozdrowski et al.

Keywords: heuristics · artificial intelligence · ant colony · internet of
things · software defined networking · mixed integer programming · pro-
grammable networks.

1 Introduction

In the paper, we present a problem solution studied in the FlexNet project and
related to efficient, dynamical, flexible Software Defined Networking (SDN) re-
source allocation for Internet of Things (IoT) applications with different Quality
of Service (QoS) requirements. In the FlexNet project [8, 5], the Artificial Intelli-
gence (AI) based developed solution is responsible for controlling the routing of
intents in SDN. Typically, network is managed statically using commands and
scripts, so the efficiency of resource provisioning is low and practically without
automatization. Over the last few years we can observe new network solutions
with improved management, where most advanced is the SDN solution [17, 28].
In IETEF RFC7149 [12] SDN is defined as a set of mechanisms and techniques
used to build network services in deterministic, dynamic, and scalable method-
ology, suitable for use in 5G technology [24]. SDN Controller allows for adaptive,
dynamic resources provisioning by applying management rules to traffic flows in
the network [6]. On the other hand, also the traffic in the network becomes more
complex, especially in IoT applications [2, 30, 22, 21], with big data volume gen-
erated to the network, and requires more flexibility and scalability [25, 14]. New
applications and appearing different types of devices generate different patterns
of network traffic. Therefore, current network solutions often do not meet the
arising needs and their management is not effective. Another disadvantage of
legacy networks is complex architecture in case of introducing QoS and security
policies [23].

1.1 Motivation

Therefore, it is envisioned to use for future networks the SDN solutions with their
capability of programmable flexible control of network resources and dynamic on
demand configuration according to application requirements [27]. Such approach
allows for flexible creation of new services and applications that are installed over
the network controller while no changes in the actual network devices are needed.

Artificial Intelligence (AI) has seen a surge of interest in the networking com-
munity [32]. Recent contributions include data-driven flow control for wide-area
networks, job scheduling, and network congestion control [18]. A particularly
promising domain is the network management. Researchers have used Machine
Learning (ML) to address a range of network tasks such as network resource
control, routing, and traffic optimization [15, 4, 1]. In loT networks we expect
network conditions to vary over time and space. Time varying conditions may
be long term (seasonal) or short term resulting in a significant impact on net-
work performance [20]. ML techniques will be developed in order to detect such
changes and signal them to the SDN layer for timely action to be taken to im-
prove the overall network performance. Another solution is a knowledge-based

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

Appl. of the AC alg. for routing in next generation programmable networks 3

network (KDN) which also is a next step on the path towards an implementation
of a self-driving network [19]. KDN is a complementary solution for SDN that
brings reasoning processes and ML techniques into the network control plane to
enable autonomous and fast operation and minimization of operational costs.

1.2 AI challenges and FlexNet AI concept

In the FlexNet platform, SDN network orchestration will be supported by AI
for solving selected problems of network resource control. The concept of AI
application covers such capabilities as: flexible traffic control in the network,
flexible adaptation to the conditions of the system, using appropriate learning
algorithms based on the state-of-the-art approaches to the problem, i.e., Rein-
forcement Learning (RL), [31], reaction in real time. The sole goal of the AI will
be to distribute network resources in the way to maximize a global objective
function related to QoS, e.g., minimize buffer occupancy sizes in the nodes in
order to minimize network characteristics like packet losses or packet delays.

FlexNet AI uses the concept of Off-Platform Application (OPA). The ap-
plication consists of two main blocks, i.e., Path Generator and Maintainer, and
communicates directly with ONOS controller [26] and their two build-in appli-
cations, i.e., Intent Forwarding (IFWD) and Intent Monitoring and Rerouting
(IMR). Also, it communicates directly with switches on a network using ifstat
external application [13] or sFlow-RT monitoring tool [29] (see Figure 1).

 Fig. 1: Flexnet AI architecture.

The first block of FlexNet AI, i.e.,
Path Generator, is responsible for gen-
erating a pair of paths for each intent
being registered. The paths are selected
in a way to balance efficiency and avail-
able capacity providing one fast and one
spacious path.

The second block, i.e., Maintainer,
is responsible for switching intents be-
tween paths selected by the Path Gen-
erator in a way to maximize efficiency.
The data used by FlexNet AI to select
paths and maintain intents consists of
static and dynamic entries. In the first
group, entries deal with the topology of
a network. They are obtained directly
from ONOS during start-up. In the sec-
ond group the dynamic data are collected, constantly updated using the feedback
generated by the ONOS IMR build-in application and the external ifstat appli-
cation.

The first task of FlexNet AI is to route intents. The IFWD application con-
tacts the Path Generator informing FlexNet AI that the intent is present. The
Path Generator computes two paths based on the current network state and
previously routed intents. One of the computed paths is selected by the Path

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

4 S. Kozdrowski et al.

Generator and sent back to the IFWD application, where it is forwarded to
ONOS controller to establish a route for the intent. The main goal is to find two
paths, which are edge-disjoint and have the best cost function related to QoS
parameters, i.e., delay and/or loss. For this purpose, we used a nature-inspired
Ant Colony (AC) algorithm [7, 10]. The novelty of our approach is to use the
AC algorithm to find two paths simultaneously. In general, until now, the AC
algorithms have been used to find only one path at a time. [11, 16, 3].

The article is organized as follows: in Section 2 we briefly describe the problem
and algorithms we use in the contribution. Section 3 presents the results of the
experimental study. Contributions of this work are summarized and future work
directions are discussed in Section 4.

2 Problem Formulation and Algorithms

In this contribution the goal of the AI is to rationally control the routes of
intentions in an SDN network. To this end, for each intention we choose a pair
of potential paths that are disjoint as much as possible. This pair is computed in
a way that minimises the weighted average cost of the paths by assuming that the
cost of one path is given by its length and the cost of the other by its occupancy.
In this way, we obtain a pair of paths, one of which minimises the transmission
time and the other minimises the probability of loss. We find the sought pair
using mainly the Ant Colony (AC) algorithm. Our AC algorithm is designed
specifically for this problem and is compared to commonly known algorithms
(MIP, Mixed Integer Programming) that guarantee an optimal solution and to
greedy algorithms.

2.1 Problem formulation

The problem we are considering in this article belongs to the class of NP-
complete problems [9] and is presented as follows:

Data Input data consist of the following items:

– demand between s and d nodes,
– network with capacities,
– actual traffic on arcs.

They can be formally presented using the following sets and constants.

Sets

V vertices
A arcs
δ+(v) set of arcs entering vertex v ∈ V
δ−(v) set of arcs leaving vertex v ∈ V
I set of possible lengths of the first path; |I| = |A|

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

Appl. of the AC alg. for routing in next generation programmable networks 5

Constants

s source; s ∈ V
d destination; d ∈ V
b(a) used fraction of bandwidth on arc a ∈ A
ξ′ weight of the first path

ξ′′ weight of the second path

LX maximum tolerable used fraction of bandwidth for the first path

LY maximum tolerable used fraction of bandwidth for the second path

Assumptions In the problem, we assume that the load on an arc is the actual
traffic on it. Moreover, the load on an arc cannot be smaller than 0.01 to prevent
forming loops on the second path.

Objective and formal model We search for the pair of paths X and Y
between s and d such that:

– the number of common arcs is minimal (highest priority); in other words, we
are interested in disjoint paths if they exist; if there is at least one solution
without common arcs, we choose and return one of them; if there is not, and
there is a solution with one common arc, we return it, and so forth.

– path X does not use arcs with load greater than LX , path Y does not use
arcs with load greater than LY ; these constraints must always be satisfied;
if there are no paths satisfying the constraints, then there is no solution.

– maximise a weighted sum ξ′A+ξ′′B, where A is the reciprocal of the length of
path X and B is the product of free capacities on path Y (if Y is completely
free then B = 1; if Y consists of two arcs that are occupied in half, then
B = 0.25); in other words, the best solution is when X is the shortest and
Y is not occupied in one percent (see Assumptions above).

The problem can be formally presented using the following set of variables
and constraints.

Variables

xa binary; 1 if arc a ∈ A belongs to X

ya binary; 1 if arc a ∈ A belongs to Y

za binary; 1 if arc a ∈ A is used by both X and Y

T integer; number of common arcs

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

6 S. Kozdrowski et al.

Objective and constraints

min
{

(ξ′ + ξ′′)T − ξ′∑
a∈A xa

− ξ′′
∏

a∈A:ya=1

(1− b(a))
}

(1a)

∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa =

{
1 v = d

0 v ∈ V \ {s, d}
(1b)

∑
a∈δ+(v)

ya −
∑

a∈δ−(v)

ya =

{
1 v = d

0 v ∈ V \ {s, d}
(1c)

xa = 0 ∀a ∈ A : b(a) > LX (1d)

ya = 0 ∀a ∈ A : b(a) > LY (1e)

xa + ya ≤ 1 + za ∀a ∈ A (1f)∑
a∈A

za ≤ T (1g)

Objective function (1a) consists of three elements. The first one, i.e., (ξ′ +
ξ′′)T is responsible for the priority objective, which is minimizing the number of
common arcs. We will call this part of the objective function the First Criterion
in Numerical Results. The second element represents the cost of path X and the
third element represents the cost of path Y . They will be together called the
Second Criterion in Numerical Results. Notice that the second element cannot
exceed −ξ′ and the third element cannot reach −ξ′′ (load cannot be smaller than
0.01), thus each change in T (First Criterion) has the absolute priority over other
changes (Second Criterion).

Constraints (1b) and (1c) impose the flow conservation law on paths X and
Y , respectively, while (1d) and (1e) assure that the paths do not use overloaded
arcs. Finally, (1f) and (1g) set the correct number of shared arcs.

2.2 Algorithms

MIP approach The presented problem is not-linear and cannot be directly
solved using MIP solvers. In this section, we present an algorithm that using a
linear version of a simplified problem solves the considered problem invoking an
MIP solver a number of times. In the simplified model, the following additional
constants are used.

S length of the shortest path between s and d
P maximum number of arcs in X
T maximum number of shared arcs (variable in the base model).

The approach is presented in Algorithm 1. It is a brute force approach that
checks possible values of pairs T and P . For each value T it first checks the feasi-
bility of solutions setting P to the maximum possible value. If a solution cannot
be found, the next value for T is considered. The approach uses a simplified MIP

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

Appl. of the AC alg. for routing in next generation programmable networks 7

Algorithm 1: MIP
Input: S = shortestPath(weight(a) = 1)
best Y = −cost(shortestPath(weight(a) = −log(1− b(a)))
for T=0,1,... do

best obj = 0;
for P=|V | − 1,S,S+1,...,|V | − 2 do

if best obj ≥ ξ′/P + ξ′′ebest Y then
return best res;

end
obj, res = solve simplified MIP;
if obj=NULL and P=|V | − 1 then

break
end
if obj then

real obj = ξ′/P + ξ′′eobj ;
if real obj > best obj then

best obj = real obj;
best res = res;

end

end

end
if best res then

return best res;
end

end

model with modified objective function and an additional constraint shown in
(2).

max
∑

a∈A:b(a)≤LY

ya log(1− b(a)) (2a)

∑
a∈A

xa ≤ P (2b)

Constraint (2b) assures that the length of path X in the obtained solution
will not exceed P . Having constant T and iterating through all viable values of
P , the objective function (1a) reduces to the third element, which is the product
of fractions of free capacities on arcs used by path Y . The product can be made
linear using a logarithm, which is visible in (2a).

Ant-colony approach Algorithm 2 is based on behaviour of an ant colony. In
each iteration every ant is moved by one arc from source to destination (forward)
or backward, when the destination was already reached. When moving forward
ant chooses an arc depending on the pheromone amount. The more pheromone
lays on an arc, the more attractive it is for an ant. With some small probability an
ant can choose a less attractive arc. An ant cannot use arcs with load exceeding
LX . Each ant remembers nodes visited on the path and avoids choosing arcs that
could create a loop. In result, paths determined by ants fulfill requirements of
path X, which should be the shortest and not overloaded. When an individual
reaches the destination node, the Dijkstra algorithm finds path Y . It has the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

8 S. Kozdrowski et al.

Algorithm 2: Ant colony
Input: Lx = 0.9
Input: Ly = 0.99
Input: n = number of iterations
best Y = −cost(shortestPath(weight(a) = −log(1− b(a)))
for i=0,...n do

for ant in ant colony do
if ant.moving forward then

if ant.current node == destination then
x path = ant.found path
y path = Dijkstra(x path)
obj =

∑
y∈y path log(1− b(y))

ant.evaluation = ξ′/len(x path) + ξ′′eobj

else
arc = choose arc by pheromone()
move ant(ant, arc)

end

else
arc = pop(ant.found path)
move ant(ant, arc)
leave pheromone(arc)

end

end
if i % evaporation frequency == 0 then

evaporate(pheromone decrement, arcs)
end

end

return find best solution(ant colony)

minimal number of common arcs with path X, because we explicitly set weights
of arcs belonging to X found by an ant to a sufficiently great number. Arcs
with load exceeding LY cannot be included into path Y . The selected pair of
paths is evaluated by calculating weighted sum, which influences the amount
of pheromone that will be left on arcs while moving backward. When specified
number of iterations elapses, some of the pheromone evaporates from each arc.
After the final iteration the last pairs of paths remembered by ants are compared.
A pair with the highest evaluation value is returned as the solution.

Greedy approach Algorithm 3 presents the greedy approach based on the
Dijkstra algorithm. At first it searches for path X, choosing the shortest path
consisting of arcs with load less than LX . The Dijkstra algorithm minimises a
path cost, where all arcs have weight equal to 1. When choosing a neighbour to
visit, arcs with the load exceeding LX are not considered. Then, also using the
Dijkstra algorithm, path Y is determined based on the chosen path X. All arcs
that belong to previously found path X have much bigger weight than others
that have the weight reflecting the load. Moreover, arcs with load exceeding LY
cannot be used by path Y . The algorithm minimises the path cost, which results
in finding path Y that has the least common arcs with path X and has the most
free capacity on its arcs. The found pair of paths is evaluated with the weighted
sum and returned as a solution.

We will refer to this approach as the DijkstraXY algorithm. Another greedy
approach that we use in the research reverses the path selection order picking

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

Appl. of the AC alg. for routing in next generation programmable networks 9

the optimal path Y at first and then selecting path X which is the shortest
and as disjoint as possible from path Y . The latter approach will be called the
DijkstraYX algorithm.

Algorithm 3: Greedy algorithm
Input: Lx = 0.9
Input: Ly = 0.99
best Y = −cost(shortestPath(weight(a) = −log(1− b(a)))
x path = Dijkstra()
y path = Dijkstra(x path)
obj =

∑
y∈y path log(1− b(y))

x y evaluation = ξ′/len(x path) + ξ′′eobj

return x path, y path

3 Experiments and Results

The common configuration parameters for AC algorithm for all simulations stud-
ies are listed in Table 1. Objective weight ξ′ was set to the length of the shortest
path between s and d. This way the part of the objective function that deals
with the first path is scaled. The second part of the objective was also scaled by
setting ξ′′ to the reciprocal of e to the power of the inverse of the length of the
shortest path between s and d taking log(1 − b(a)) as arc weights. In addition,
ξ′′ was multiplied by 4. In this way, we obtained a set of problems where the
second path is slightly prioritized over the first path in the constant extend.

Table 1: Parameters used in AC algorithm.
Name Short description Value

S s− d distance variable
m size of the colony 2|V |
n number of iterations 40S
α pheromone dosage factor 5
β pheromone evaporation factor 10
γ pheromone evaporation frequency 2S

The calculations were carried out for all considered algorithms on a 2.1 GHz
Xeon E7-4830 v.3 processor with 256 GB RAM running under Linux Debian
operating system and additionally for MIP-based algorithm a linear solver engine
of CPLEX 12.8.0.0 was used.

Each point in each graph presented in Figures 2-4 (i.e. one network with a
certain load level) represents the average result for 100 instances, among which
there are 10 different load distributions. For each instance, different source and

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

10 S. Kozdrowski et al.

destination nodes are drawn uniformly at random. Each load distribution was ob-
tained by constantly generating random demands and routing them in a network
using shortest paths. Demands that could not have been satisfied were discarded.
The process was repeated until the requested average load was reached. The AC
algorithm, as a non-deterministic algorithm, was run for each instance 10 times
and the result was averaged. On the other hand, the Dijkstra algorithm and
MIP-based algorithm, as deterministic algorithms, were run one time each.

In Figure 2, running times of the presented algorithms are displayed. We can
observe the MIP-based algorithm having problems with finding optimal solutions
in the time limit acceptable for dynamic environments presented in the intro-
duction. The running times can be annoying in networks of 75 nodes and more.
In networks of 150 nodes and more, the running times become unacceptable for
practical implementations of the presented SDN framework. On the other hand,
other presented algorithms were able to solve the problem in the assumed time
limit of one second. Notice that the greedy algorithms are not depicted in the
figure. They running times never exceeded 0.01 second.

No. of network nodes

Ti
m

e
[s

ec
.]

0

5

10

15

25 50 75 100 125 150

ant colony MIP

(a) average load 40%

No. of network nodes

Ti
m

e
[s

ec
.]

0

5

10

15

25 50 75 100 125 150

ant colony MIP

(b) average load 50%

No. of network nodes

Ti
m

e
[s

ec
.]

0

5

10

15

20

25 50 75 100 125 150

ant colony MIP

(c) average load 60%

No. of network nodes

Ti
m

e
[s

ec
.]

0

5

10

15

20

25 50 75 100 125 150

ant colony MIP

(d) average load 70%

Fig. 2: Comparison of calculation times for different methods and different net-
work loads: 40% - (a), 50% - (b), 60% - (c) and 70% - (d).

In Figure 3, the results for the First Criterion are displayed. The presented
greedy algorithms were not able to stand against the MIP-based approach and
the Ant-Colony approach returning results with significantly more common links.
The trend is clearly visible when the number of nodes reached a certain level,
which in our experiments was close to 150. It is worth to notice that the Ant-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

Appl. of the AC alg. for routing in next generation programmable networks 11

No. of network nodes

Fi
rs

t c
rit

er
io

n
(n

or
m

al
iz

ed
)

0,6

0,7

0,8

0,9

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(a) average load 40%

No. of network nodes

Fi
rs

t c
rit

er
io

n
(n

or
m

al
iz

ed
)

0,6

0,7

0,8

0,9

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(b) average load 50%

No. of network nodes

Fi
rs

t c
rit

er
io

n
(n

or
m

al
iz

ed
)

0,6

0,7

0,8

0,9

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(c) average load 60%

No. of network nodes

Fi
rs

t c
rit

er
io

n
(n

or
m

al
iz

ed
)

0,6

0,7

0,8

0,9

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(d) average load 70%

Fig. 3: Normalized objective function presenting relative number of common links
(First Criterion) with respect to MIP-based method for different network loads:
40% - (a), 50% - (b), 60% - (c) and 70% - (d).

No. of network nodes

Se
co

nd
 c

rit
er

io
n

(n
or

m
al

iz
ed

)

0,2

0,4

0,6

0,8

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(a) average load 40%

No. of network nodes

Se
co

nd
 c

rit
er

io
n

(n
or

m
al

iz
ed

)

0,2

0,4

0,6

0,8

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(b) average load 50%

No. of network nodes

Se
co

nd
 c

rit
er

io
n

(n
or

m
al

iz
ed

)

0,2

0,4

0,6

0,8

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(c) average load 60%

No. of network nodes

Se
co

nd
 c

rit
er

io
n

(n
or

m
al

iz
ed

)

0,2

0,4

0,6

0,8

1,0

25 50 75 100 125 150

ant colony DijkstraXY DijkstraYX

(d) average load 70%

Fig. 4: Normalized objective function presenting Second Criterion with respect
to MIP for different net. loads: 40% - (a), 50% - (b), 60% - (c) and 70% - (d).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

12 S. Kozdrowski et al.

Colony approach does not have serious problems with returning optimal solutions
with respect to the First Criterion for any of the considered network instances.

Finally, in Figure 4, the obtained results for the Second Criterion are dis-
played. Here it is important to explain the way the figure was prepared. Because
the Second Criterion counts only when the First Criterion is optimal, we decided
to include only such cases in this figure. With respect to the Second Criterion, the
greedy DijkstraXY algorithm is heavily outperformed by other approaches. On
the other hand, DijkstraYX algorithm always finds solutions with optimal values
of the Second Criterions, thus slightly outperforming the Ant-Colony approach.
However, it results from the fact that the DijkstraYX algorithm was strictly
designed to optimize the second (more important, due to 4ξ′ = ξ′′) part of the
Second Criterion. In other words, DijkstraYX returns optimal solutions with re-
spect to the Second Criterion, but seldom finds optimal solutions with respect
to the First Criterion. On the other hand, the Ant-Colony approach repeatedly
finds optimal solutions with respect to the First Criterion, which occasionally
results in slightly worse performance with respect to the Second Criterion.

4 Conclusions

The paper studied the problem of traffic routing in mesh networks with a specific
criteria of the objective function. The presented solution is applicable to intel-
ligent SDN management systems with AI support, especially in programmable
next generation networks (5G and beyond). Moreover, the network resource al-
location in context of QoS assurance is the arising problem especially for IoT
services. The designed solution based on the AC algorithm is suitable for the fast
and optimal resource allocation, especially in the case of emergency and delay
sensitive IoT services. In FlexNet project the solution is tested for the emergency
surveillance video IoT service.

A heuristic method inspired by biology called the AC algorithm is proposed
to solve the problem. The novel approach of this method is the optimal routing
of a pair of paths in the network, searched simultaneously, considering three
criteria described in the objective function. The considered problem has been
modelled and solved as an MIP problem. Thus, there is a certainty of finding an
optimal solution. We demonstrated the stability of AC through simulations. We
showed that it quickly converges to the best path under situations when traffic
characteristics change (among others when load on the network is increased).
We have shown that with an appropriate tuning of the parameters, AC behaves
better when compared to other competing approaches in mesh networks. In
addition, the promising results shown in the paper underline the need for a real-
life testbed evaluation on which we are currently working in FlexNet project.

Further research will be focused on more comprehensive experiments that
include real scenarios and with comparisons to other competitive heuristics.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

Appl. of the AC alg. for routing in next generation programmable networks 13

References

1. Abar, T., Letaifa, A., El Asmi, S.: Machine learning based qoe prediction in sdn net-
works. pp. 1395–1400 (06 2017). https://doi.org/10.1109/IWCMC.2017.7986488

2. Bera, S., Misra, S., Vasilakos, A.V.: Software-defined networking for internet
of things: A survey. IEEE Internet of Things Journal 4(6), 1994–2008 (2017).
https://doi.org/10.1109/JIOT.2017.2746186

3. Bokhari, F.S., Záruba, G.V.: On the use of smart ants for efficient
routing in wireless mesh networks. CoRR abs/1209.0550 (2012),
http://arxiv.org/abs/1209.0550

4. Chen, B., Wan, J., Lan, Y., Imran, M., Li, D., Guizani, N.: Improving cognitive
ability of edge intelligent iiot through machine learning. IEEE Network 33(5),
61–67 (2019). https://doi.org/10.1109/MNET.001.1800505

5. Choque, J., Agüero, R., Kopertowski, Z., Nguyen, K.K., Medela, A., Municio,
E., Marquez-Barja, J.M., Domaszewicz, J., Bak, A., Lee, J.H., Noh, S., Muñoz,
L.: Flexnet: Flexible networks for iot based services. In: 2020 23rd International
Symposium on Wireless Personal Multimedia Communications (WPMC). pp. 1–6
(2020). https://doi.org/10.1109/WPMC50192.2020.9309486

6. Dinh, K.T., Kukliński, S., Osiński, T., Wytrebowicz, J.: Heuristic traffic engineer-
ing for sdn. Journal of Information and Telecommunication 4(3), 251–266 (2020).
https://doi.org/10.1080/24751839.2020.1755528

7. Dobrijevic, O., Santl, M., Matijasevic, M.: Ant colony optimization for qoe-
centric flow routing in software-defined networks. In: 2015 11th International
Conference on Network and Service Management (CNSM). pp. 274–278 (2015).
https://doi.org/10.1109/CNSM.2015.7367371

8. Flexnet: Flexible iot networks for value creators. (2020),
https://www.celticnext.eu/project-flexnet/

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. New York, NY, USA ©1990 (1990)

10. Guan, Y., Gao, M., Bai, Y.: Double-ant colony based uav path planning algorithm.
In: Proceedings of the 2019 11th International Conference on Machine Learning
and Computing. p. 258–262. ICMLC ’19, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3318299.3318376

11. Hamrioui, S., Lorenz, P.: Bio inspired routing algorithm and effi-
cient communications within iot. IEEE Network 31(5), 74–79 (2017).
https://doi.org/10.1109/MNET.2017.1600282

12. IETF: Software-defined networking: A perspective from within a service provider
environment. (2017), https://tools.ietf.org/html/rfc7149

13. ifstat: ifstat - linux man page. (2017), https://linux.die.net/man/1/ifstat
14. Jin, Y., Gormus, S., Kulkarni, P., Sooriyabandara, M.: Content centric routing in

iot networks and its integration in rpl. Comput. Commun. 89(C), 87–104 (Sep
2016). https://doi.org/10.1016/j.comcom.2016.03.005

15. Kozdrowski, S., Cichosz, P., Paziewski, P., Sujecki, S.: Machine learning algorithms
for prediction of the quality of transmission in optical networks. Entropy (Basel,
Switzerland) 23(1) (January 2021). https://doi.org/10.3390/e23010007

16. Liu, X., Li, S., Wang, M.: An ant colony based routing algorithm for wireless
sensor network. International Journal of Future Generation Communication and
Networking 9, 75–86 (06 2016). https://doi.org/10.14257/ijfgcn.2016.9.6.08

17. Liyanage, M., Ylianttila, M., Gurtov, A.: Securing the con-
trol channel of software-defined mobile networks (06 2014).
https://doi.org/10.1109/WoWMoM.2014.6918981

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

14 S. Kozdrowski et al.

18. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with
deep reinforcement learning. In: Proceedings of the 15th ACM Workshop on
Hot Topics in Networks. p. 50–56. HotNets ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/3005745.3005750,
https://doi.org/10.1145/3005745.3005750

19. Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M.,
Muntés-Mulero, V., Meyer, D., Barkai, S., Hibbett, M.J., Estrada, G., Ma’ruf, K.,
Coras, F., Ermagan, V., Latapie, H., Cassar, C., Evans, J., Maino, F., Walrand,
J., Cabellos, A.: Knowledge-defined networking. SIGCOMM Comput. Commun.
Rev. 47(3), 2–10 (Sep 2017). https://doi.org/10.1145/3138808.3138810

20. Mishra, P., Puthal, D., Tiwary, M., Mohanty, S.P.: Software defined iot systems:
Properties, state of the art, and future research. IEEE Wireless Communications
26(6), 64–71 (2019). https://doi.org/10.1109/MWC.001.1900083

21. Municio, E., Latré, S., Marquez-Barja, J.M.: Extending network pro-
grammability to the things overlay using distributed industrial iot proto-
cols. IEEE Transactions on Industrial Informatics 17(1), 251–259 (2021).
https://doi.org/10.1109/TII.2020.2972613

22. Municio, E., Marquez-Barja, J., Latré, S., Vissicchio, S.: Whisper: Pro-
grammable and flexible control on industrial iot networks. Sensors 18(11) (2018).
https://doi.org/10.3390/s18114048

23. Murat Karakus, A.D.: ”Quality of service in software defined networking: A sur-
vey”. Journal of Network and Computer Applications, Volume 80, pages 200–218,
(February, 2017). https://doi.org/10.1016/j.jnca.2016.12.019

24. de la Oliva, A., Li, X., Costa-Pérez, X., Bernardos, C., Bertin, P., Io-
vanna, P., Deiß, T., Mangues-Bafalluy, J., Mourad, A., Casetti, C., Gonzalez,
J., Azcorra, A.: 5g-transformer: Slicing and orchestrating transport networks
for industry verticals. IEEE Communications Magazine 56, 78–84 (08 2018).
https://doi.org/10.1109/MCOM.2018.1700990

25. Omar, H.: Intelligent traffic information system based on integration of internet of
things and agent technology. International Journal of Advanced Computer Science
and Applications 6 (02 2015). https://doi.org/10.14569/IJACSA.2015.060206

26. ONOS: ONOS Project. (2017), https://wiki.onosproject.org/
27. Open Networking Foundation: ”Software-Defined Networking: The new norm for

networks”. White Paper, (2012)
28. Rothenberg, C.E., Nascimento, M.R., Salvador, M.R., Corrêa, C.N.A., Cunha de

Lucena, S., Raszuk, R.: Revisiting routing control platforms with the eyes
and muscles of software-defined networking. In: Proceedings of the First
Workshop on Hot Topics in Software Defined Networks. p. 13–18. HotSDN
’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2342441.2342445

29. sFlow: sflow-rt documentation. (2017), https://sflow-rt.com/reference.php
30. Thubert, P., Palattella, M., Engel, T.: 6tisch centralized scheduling: When sdn

meet iot (10 2015). https://doi.org/10.1109/CSCN.2015.7390418
31. Yao, H., Mai, T., Xu, X., Zhang, P., Li, M., Liu, Y.: Networkai: An in-

telligent network architecture for self-learning control strategies in software
defined networks. IEEE Internet of Things Journal 5(6), 4319–4327 (2018).
https://doi.org/10.1109/JIOT.2018.2859480

32. Zhao, Y., Le, Y., Zhang, X., Geng, G., Zhang, W., Sun, Y.: ”A sur-
vey of networking applications applying the software defined network-
ing concept based on machine learning”. IEEE Access, (July, 2019).
https://doi.org/10.1109/ACCESS.2019.2928564

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_40

https://dx.doi.org/10.1007/978-3-030-77970-2_40

