
A Review on Visual Programming for
Distributed Computation in IoT

Margarida Silva1, João Pedro Dias1,2,
André Restivo1,3, and Hugo Sereno Ferreira1,2

1 DEI, Faculty of Engineering, University of Porto, Porto, Portugal
2 INESC TEC, Porto, Portugal

3 LIACC, Porto, Portugal
4 {ana.margarida.silva,jpmdias,arestivo,hugo.sereno}@fe.up.pt

Abstract. Internet-of-Things (IoT) systems are considered one of the
most notable examples of complex, large-scale systems. Some authors
have proposed visual programming (VP) approaches to address part of
their inherent complexity. However, in most of these approaches, the
orchestration of devices and system components is still dependent on
a centralized unit, preventing higher degrees of dependability. In this
work, we perform a systematic literature review (SLR) of the current
approaches that provide visual and decentralized orchestration to define
and operate IoT systems, reflecting upon a total of 29 proposals. We
provide an in-depth discussion of these works and find out that only four
of them attempt to tackle this issue as a whole, although still leaving a
set of open research challenges. Finally, we argue that addressing these
challenges could make IoT systems more fault-tolerant, with an impact
on their dependability, performance, and scalability.

Keywords: Internet-of-Things · Orchestration · Visual Programming ·
Decentralized Computation · Large-Scale Systems

1 Introduction

The Internet-of-Things (IoT) comprises many devices with a wide range of ca-
pabilities, directly or indirectly connected to the Internet. This allows them to
transfer, integrate, analyze and act according to data generated among them-
selves [11]. IoT systems use devices at an unprecedented scale, with applications
ranging from mission-critical to entertainment and commodity solutions [14].

The widespread usage of IoT led to a mostly uncontrollable and ever-growing
heterogeneity of devices, differing in computational power, protocols, and archi-
tectures, comprising a large-scale and distributed (geographically and logically)
system of systems. These characteristics raise many development challenges in
guaranteeing their scalability, maintainability, security, and dependability [56].
Consequently, the active pursuit of reducing the complexity and technical knowl-
edge needed to configure and adapt such systems to their needs (from manufac-
turing floor automation to smart home system customization) eventually led to

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

2 M. Silva et al.

the exploration of low-code [10, 20] and conversational approaches [36]. Visual
programming (VP) approaches (model- or mashup-based) provide such means
via the arrangement of visual elements, which are then automatically trans-
lated into executable artifacts, by leveraging some kind of a Visual Programming
Language [45, 13, 20]. One of the most popular approaches is Node-RED [39, 34],
which provides both a visual editor and a run-time environment for IoT systems.

Most VP solutions (Node-RED included) provide a centralized approach
(which can be either on-premises or cloud-based) where the main component
transforms and processes most of the computation on data provided by edge
and fog devices. Consequences of this approach are well-known: (1) single point
of failures, (2) violation of data boundaries (private, technological, and politi-
cal), and (3) unused edge computational power. Recent research effort put in Fog
and Edge Computing [54, 20] focus on solving these by leveraging the resources
available in lower-tier devices to improve overall dependability [46, 24, 23, 22],
performance [44], scalability, observability [52], and reproducibility [19, 21].

In this paper we present a systematic literature review (SLR) on VP ap-
proaches for IoT, focusing on those related to orchestration of multiple com-
ponents. Our initial search yielded 2698 results across three different scientific
databases. We refined this selection with inclusion and exclusion criteria, result-
ing in 21 papers. Through snowballing and taking into account previous (non-
systematic) surveys, we found 8 new works, resulting in 28 approaches across 22
papers. We compared their characteristics, including scope, architecture, scala-
bility, and VP paradigms. We then carried out an in-depth analysis on the subset
that provided mechanisms for decentralized computation.

The remainder of this paper is structured as follows: Section 2 presents the
methodology used in this research, Section 3 presents the results of the literature
review, followed by an in-depth analysis of the current alternative for visual IoT
decentralized orchestration in Section 4. An overview of the current issues and
research challenges, and some final remarks, is given in Section 5.

2 Literature Review Methodology

This work follows a Systematic Literature Review (SLR) methodology to gather
information on the state of the art of VP applied to the IoT paradigm, with a
particular emphasis on orchestration concerns. The goal of a systematic literature
review is to synthesize evidence with emphasis on its quality [43]. We started
by defining the research questions to be answered and choosing data sources to
search for publications. We outlined the following research questions (RQ):

RQ1. What are the relevant VP approaches applied to distributed computation
and orchestration in IoT? Using VPs to make IoT development easier for
the end-user is a common go-to approach. However, we argue that there is
a scarcity of those that provide decentralized approaches;

RQ2. What architectures and tiers characterize the approaches found in RQ1?
IoT systems can target one or more tiers, as well as be implemented in a

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

A Review on Visual Programming for Distributed Computation in IoT 3

Table 1. Inclusion and exclusion criteria.

ID Criterion
E

x
cl

u
si

o
n

EC1 Not written in English.
EC2 Presents just ideas, tutorials, integration experimentation, magazine pub-

lications, interviews, or discussion papers.
EC3 Does not address multiple devices’ orchestration.
EC4 Has less than two (non-self) citations when more than five years old.
EC5 Duplicated articles.
EC6 Articles in a format other than camera-ready (PDF).

In
cl

u
si

o
n IC1 Must be on the topic of VP in IoT.

IC2 Contributions, challenges, and limitations are detailed.
IC3 Research findings include sufficient explanation on how the approach works.
IC4 Publication year in the range between 2008 and 2019.

centralized or decentralized architecture. A VP tool applied to IoT can fa-
cilitate the development of systems that operate and distribute computing
tasks among the available tiers. Each tier and type of architecture offers ad-
vantages and disadvantages; understanding these characteristics is essential
to understand how they can be used;

RQ3. What was the evolution of VP approaches applied to IoT over the years
focusing on its decentralized operation? To understand the field of VP applied
to IoT, more specifically, its visually-defined decentralized operation, it is
essential to perceive its evolution.

((vpl OR visual programming OR visual -programming) OR

(node -red OR node red OR nodered) OR (data -flow OR

dataflow)) AND (iot OR internet -of-things)

Listing 1.1. Search query for relevant literature on IEEEXplore, ACM DL and Scopus.

Answering these questions will provide valuable insights for both practition-
ers (in terms of summarizing the current practices on the usage of VP method-
ologies for IoT orchestration are) and researchers (showing current challenges
and issues that can be further researched). We follow the criteria detailed in
Table 1 and outlined in Fig. 1. Three popular and reputable scientific databases
were used, namely IEEE Xplore, ACM Digital Library, and Scopus. Listing 1.1
shows the query we used to convey the most probable keywords to appear in our
target candidates, including popular variants. This search was performed in Oc-
tober 2019, and the results can be seen in the first step of Fig. 1. The evaluation
process of the publications then followed eight steps:

1. Automatic Search: Run the query string in the different scientific databases
and gather results;

2. Filtering (EC1, IC4, and EC6): Publications are selected regarding its
(1) language, being limited to the ones written in the English language,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

4 M. Silva et al.

(2) publication date, being limited to the ones published between 2008 and
2019, and (3) publication status, being selected only the ones that are pub-
lished in their final versions (camera-ready PDF format);

3. Filtering to remove duplicates (EC5): The selected papers are filtered
to remove duplicated entries;

4. Filtering by Title and Abstract (EC2–EC4, and IC1–IC3): Selected pa-
pers are revised by taking into account their Title and Abstract, by observing
the (1) stage of the research, only selecting papers that present approaches
with sufficient explanation, some experimental results, and discussion on the
paper contributions, challenges, and limitations, (2) contextualization with
recent literature, filtering papers that have less than two (non-self) citations
when more than five years old, and (3) leverages the use of visual notations
for orchestrating and operating multi-device systems;

5. Filtering by Introduction and Conclusions (EC2–EC4, and IC1–IC3):
The same procedure of the previous point is followed but taking into con-
sideration the Introduction and Conclusion sections of the papers;

6. Selected Papers Analysis: Selected papers are grouped, and surveys are
separated; their content is analyzed in detail;

7. Survey Expansion: For surveys found, the enumerated approaches are
analyzed and filtered, taking into account their scope and checking if they
are not duplicates of the currently selected papers;

8. Wrapping: Works gathered from the Selected Papers Analysis (individual
papers) and the Survey Expansion are presented and discussed.

The total number of publications was 2698, 22 of each were selected (cf.
Fig. 1). One was a survey [47] (pointing to 8 new works), and the others presented
approaches relevant for our RQs.

3 Results

From the 22 publications, 28 different approaches were analyzed and distributed
among categories, according to several characteristics:

Automatic
Search

Filtering
(EC, IC, EC)

Filtering
(EC)

Filtering by Intro and
Conclusions

(EC-, IC-)

Filtering by Title and
Abstract

(EC-, IC-)
IEEE

ACM

Scopus

IEEE

ACM

Scopus

Total

Selected Paper
Analysis

Survey’s Expansion

 approaches

End

 (of which approaches)

Start

Total

Fig. 1. Pipeline overview of the SLR Protocol.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

A Review on Visual Programming for Distributed Computation in IoT 5

1. Scope. Some approaches have specific use cases in mind. Therefore, knowl-
edge of a tool’s scope helps assess if it solves a problem or fills a specific gap
in the literature. Example values consist of Smart Cities, Home Automation,
Education, Industry or Several if there is more than one;

2. Architecture. VP approaches applied to IoT can have a centralized or de-
centralized architecture, based on their use of Cloud, Fog, or Edge Comput-
ing architecture. Possible values are Centralized, Decentralized, and Mixed ;

3. License. The license of software or tool is essential in terms of its usability.
Normally, an open-source software reaches a bigger user base, allowing ev-
eryone to expand and contribute to it. Possible values are the name of the
tool license or N/A if it does not have one;

4. Tier. IoT systems are composed of three tiers — Cloud, Fog, and Edge. A
tool can interact in several of these, shaping its features and how it is built;

5. Scalability. Defines how the tool or framework scales. It can be calculated
based on metrics used to test the performance of the system. We consid-
ered scalability in terms of number and different types of devices supported.
Possible values are low, medium, high, or N/A if information not sufficient;

6. Programming. According to Downes and Boshernitsan [9], VPs can be clas-
sified in five (possibly overlapping) categories: (1) Purely visual languages,
(2) Hybrid text and visual systems, (3) Programming-by-example systems,
(4) Constraint-oriented systems and (5) Form-based systems. It is impor-
tant to know which type so that it might be possible to assess the type of
experience the tool provides to the user and its architecture;

7. Web-based. Defines if the VP and/or environment can be used in a browser.
It is useful in terms of the usability of the tool.

The resulting categorization is depicted in Table 2. Some key takeaways
are easily observable, namely: (1) most approaches use a centralized architec-
ture, (2) the hybrid visual-textual programming paradigm is predominant, and
(3) most approaches are web-based. The extended findings and their categoriza-
tion is presented in Table 3, following the same previously defined categories.

3.1 Analysis and Discussion

The approaches presented in this SLR passed the evaluation process defined in
Section 2. Approaches supporting only one device or extending an existent VPL
by applying it to IoT were left out. From the resulting ones, we analyzed the
following aspects:

Domain. The surveyed approaches target different domains: six were specific
to home automation, four to education, three to specific domains, and one
for the industry; the remainder 14 had a wide range of use cases;

Architecture. Sixteen have a centralized architecture, three are decentralized,
and the remaining nine do not present enough information on this topic;

License Most did not mention a license; those that did were mostly open-source
(e.g., GPL v2, GPL v3, Apache v2 and LGPL v3);

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

6 M. Silva et al.

Table 2. VP approaches applied to IoT and their characteristics. Small circles (•)
mean yes, hyphens (-) means no information available, empty means no.

Tool Scope8 Centralized License Tier Scalability Programming Web-based

Belsa et al. [5] * • - Cloud High Hybrid •
Ivy [25] * • - Cloud Medium7 Purely visual
Ghiani et al. [29] HA • - Cloud - Form-based •
ViSiT [2] * • - Cloud High Hybrid •
Valsamakis et al. [53] AAL • - Cloud - Hybrid •
WireMe [42] EDU, HA • - Cloud - Hybrid
VIPLE [17] EDU • - Cloud - Hybrid
Smart Block [4] HA • - Cloud - Hybrid •
PWCT [28] * • GPL v2 -1 High Hybrid
DDF [31] - Apache v2 Fog High Hybrid •
GIMLE [51] IND • - Cloud High Hybrid •
DDFlow [41] SEC - Fog/Edge - Hybrid •
Kefalakis et al. [35] - • LGPL v33 Cloud - Hybrid
Eterovic et al. [26] HA -4 - - - Hybrid -
FRED [8] * • -5 Cloud High Hybrid •
WoTFlow [7] - - Fog/Edge - Hybrid •
Besari et al. [6] [49] EDU • - Cloud - Hybrid
CharIoT [50] HA •6 - Cloud/Edge6 High6 Form-based •
Desolda et al. [18] SM - - - - Hybrid
Eun et al. [27] HA • - - - Form-based •
1 Used for several purposes, did not specify the tier it is located in regarding IoT.
2 Since it uses Node-RED, this information was based on its architecture.
3 Under the same license of OpenIoT.
4 No information w.r.t the architecture of the environment created, only the VPL.
5 No information about the license is given, but further research discovered that it had paid
plans and no source code available.

6 CharIoT uses the Giotto stack [1] from where we retrieved this information.
7 Certainty regarding this information is low.
8 Several (*), Home Automation (HA), Ambient Assisted Living (AAL), Education (EDU),
Industry (IND), Security (SEC), and Smart Museums (SM).

Scalability. The majority do not consider scalability (e.g. the number of devices
they were tested with); those that do, claim high scalability;

Programming. 22 employ a hybrid text and visual system VP paradigm, while
three use a purely visual, and the other three a form-based one;

Web-based. The majority of analyzed approaches are web-based. One tool did
not specify the environment, only mentioned being a VPL.

The following paragraphs present an evolution-over-time analysis and at-
tempt to give an answer to the aforementioned research questions.

Evolution Analysis To understand the evolution of VP approaches applied
to IoT, we analyzed the years when the selected papers were published and
the surveyed approaches launched. Fig. 2 clearly display an increased trend in
research during the last years.

Research Questions The research questions presented in Section 2 served to
direct this SLR and obtain answers to relevant questions regarding the available
visual programming approaches for IoT. These answers are:

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

A Review on Visual Programming for Distributed Computation in IoT 7

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

1

3

5

7

9

11

#
P

u
b
li
ca

ti
o
n
s

a
n
d

T
o
o
ls

Publications Tools

Fig. 2. Evolution of publications and number of visual approaches per year.

RQ1. What are the relevant VP approaches applied to distributed computation and
orchestration in IoT? From the analyzed approaches in Section 3, we found
28 that share these concerns in IoT-scope;

RQ2. What architectures and tiers characterize the approaches found in RQ1? Ta-
bles 2 and 3 give an overview of the surveyed approaches characteristics. Our
analysis (Section 3.1) concludes most of them have a centralized architecture
and work in the Cloud tier;

RQ3. What was the evolution of VP approaches applied to IoT over the years
focusing on its decentralized operation? As seen in Section 3.1 and Fig. 2,
some approaches share this concern since 2003, though 2017–2018 saw a
significant increase in publications focusing on it.

4 Visually-defined Distributed Computing

From the analyzed approaches, we found four trying to tackle visual and decen-
tralized orchestration in IoT. We discuss them in the following subsections.

Table 3. Characterization of the visual programming approaches for IoT [47].

Tool Scope3 Centralized License Tier Scalability Programming Web-based

Node-Red [39] * Yes Apache v2 Cloud/Edge High Hybrid Yes
NETLab Toolkit [38] N/A N/A GPL Edge2 N/A Hybrid Yes
NooDL [40] * N/A NooDL1 Cloud2 N/A Hybrid No
DGLux5 [40] * N/A DGLux Cloud/Fog2 High2 Purely visual No
AT&T Flow Designer [3] * N/A GPL v3 Cloud2 High2 Hybrid Yes
GraspIO [32] EDU N/A BSD Cloud2 N/A Purely visual No
Wyliodrin [55] * N/A GPL v3 All2 N/A Hybrid Yes
Zenodys [12] * N/A GPL v3 Cloud2 High2 Hybrid Yes

1 Available at https://www.noodl.net/eula
2 Certainty regarding this information is low.
3 Several (*), Education (EDU), and Not Available (N/A).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

8 M. Silva et al.

4.1 DDF

WoTFlow [7], DDF [41], and subsequent works [31, 30] are systems extending
Node-RED and focusing on Smart Cities. Their goal is to make it more suit-
able for developing fog-based applications that are context-dependent on edge
devices where they operate. DDF starts by implementing D-NR (Distributed
Node-RED), which contains processes that can run across devices in local net-
works and servers in the Cloud. The application, called flow, is built with a VP
environment, running in a development server. All the other devices running
D-NR subscribe to an MQTT topic that contains the status of the flow. When a
flow is deployed, all devices running D-NR are notified and subsequently analyze
the given flow. Based on a set of constraints, they decide which nodes they may
need to deploy locally and which sub-flow (parts of a flow) must be shared with
other devices. Each device has characteristics, from its computational resources,
such as bandwidth and available storage, to its location. The developer can insert
constraints into the flow by specifying which device a sub-flow must be deployed
in or the computational resources needed. Further, each device must be inserted
manually into the system by a technician.

Subsequent work focused on support for the Smart Cities domain, including
the deployment of multiple instances of devices running the same sub-flow and
the support for more complex deployment constraints of the application flow [31].
The developer can specify requirements for each node on device identification,
computing resources needed (CPU and memory), and physical location. In ad-
dition to these improvements, the coordination between nodes in the fog was
tackled by introducing a coordinator node. This node is responsible for synchro-
nizing the device’s context with the one given by the centralized coordinator.
Recent work [30], support for CPSCN (Cyber-Physical Social Computing and
Networking) was implemented, making it possible to facilitate the development
of large scale CPSCN applications. Additionally, to make this possible, the con-
textual data and application data were separated so that the application data is
only used for computation activities. The contextual data is used to coordinate
the communication between those activities.

4.2 uFlow and FogFlow

Szydlo et al. [48] focused on the transformation and decomposition of data flow.
Parts of the flow can be translated into executable parts, such as Lua. Their con-
tribution includes data flow transformation concepts, a new portable run-time
environment (uFlow) targetting resource-constrained embedded devices, and its
integration with Node-RED. Their solution transforms a given data flow by al-
lowing the developer to choose the computing operations run on the devices.
These operations are implemented using uFlow. The communication between
the devices requires a Cloud layer, without support for peer-to-device communi-
cation. The results are promising, showing a decrease in the number of measure-
ments made by the sensors. However, there is room for improvement w.r.t. the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

A Review on Visual Programming for Distributed Computation in IoT 9

automatic decomposition and partitioning of the initial flow, and detecting cur-
rent conditions in deciding when to move computations between fog and cloud.
Later, the authors proposed FogFlow[48], which enables the decomposition into
heterogeneous IoT environments according to a chosen decomposition schema.
To achieve a certain level of decentralization and heterogeneity, they abstract the
application definition from its architecture and rely on graph representations to
provide an unambiguous, well-defined computation model. The application defi-
nition is infrastructure-independent and only contains data processing logic, and
its execution should be possible on different sets of devices with different capa-
bilities. Several algorithms for flow decomposition are mentioned [37, 33], but
none were explored/provided results.

4.3 FogFlow (yet another)

A different tool with the same name FogFlow by Cheng et al. [16, 15] proposes
a standards-based programming model for Fog Computing and scalable context
management. The authors start by extending the dataflow programming model
with hints to facilitate the development of fog applications. The scalable context
management introduces a distributed approach, which allows overcoming the
limits in a centralized context, achieving much better performance in throughput,
response time, and scalability. The FogFlow framework focuses on a Smart City
Platform use case, separated into three areas: (1) Service Management, typically
hosted in the Cloud, (2) Data Processing, present in cloud and edge devices,
and (3) Context Management, which is separated in a device discovery unit
hosted in the Cloud and IoT brokers scattered in Edge and Cloud. This was
later improved to empower infrastructure providers with an environment that
allows them to build decentralized IoT systems faster, with increased stability
and scalability. Dynamic data representing the IoT system flows are orchestrated
between sensors (Producers) and actuators (Consumers). An application is first
designed using the FogFlow Task Designer (a hybrid text and VP environment),
which outputs an abstraction called Service Template. This abstraction contains
details about the resources needed for each part of the system. Once the Service
Template is submitted, the framework determines how to instantiate it using
the context data available. Each task is associated with an operator (a Docker
image), and its assignment is based on (1) how many resources are available
on each edge node, (2) the location of data sources, and (3) the prediction of
workload. Edge nodes are autonomous since they can make their own decisions
based on their local context without relying on the central Cloud. Obviously, the
dependency in Docker completely discards constrained devices.

4.4 DDFlow

DDFlow [41], presents another distributed approach by extending Node-RED with
a system run-time that supports dynamic scaling and adaption of application
deployments. The distributed system coordinator maintains the state and assigns
tasks to available devices, minimizing end-to-end latency. Dataflow notions of

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

10 M. Silva et al.

Table 4. IoT decentralized visual programming approaches and their characteristics.

Tool Leveraging
edge devices

Communication
capabilities

Open-
source

Computation
decomposition

Run-time
adaptation

DDF [30] Limited1 Yes Yes Limited2 Yes
uFlow [48] Yes Limited3 No Limited2 Limited3

FogFlow [15] Yes N/A Yes Limited2 Yes
DDFlow [41] Limited4 Yes No Limited2 Yes

1 Assumes all devices run Node-RED (doesn’t apply to constrained devices).
2 Does not specify the algorithm used.
3 Communication between devices is made through the cloud (Internet-dependent).
4 Assumes all devices have a list of specific services they can provide.

node and wire are expanded, with a node in DDFlow representing an instantiation
of a task deployed in a device, receiving inputs and generating outputs. Nodes can
be constrained in their assignment by optional parameters, Device, and Region,
inserted by the developer. A wire connects two or more nodes and can have three
types: Stream (one-to-one), Broadcast (one-to-many), and Unite (many-to-one).

In a DDFlow system, each device has a set of capabilities and a list of ser-
vices that correspond to an implementation of a Node. The devices communicate
this information through their Device Manager or a proxy if it is a constrained
device. The coordinator is a web server responsible for managing the DDFlow

applications. It is composed of: (1) a VP environment where DDFlow application
are built, (2) a Deployment Manager that communicates with the Device Man-
agers of the devices, and (3) a Placement Solver, responsible for decomposing
and assigning tasks to the available devices. When an application is deployed, a
network topology graph and a task graph are constructed based on the real-time
information retrieved from the devices. The coordinator proceeds with mapping
tasks to devices by minimizing the task graph’s end-to-end latency of the longest
path. Dynamic adaptation is supported by monitoring the system; if changes in
the network are detected, such as the failure or disconnection of a device, adjust-
ments in the assignment of tasks are made. The coordinator can also be replicated
into many devices to improve the system’s reliability and fault-tolerance. They
show DDFlow recovering from network degradation or device overload, whereas
in a centralized system this would likely cause its (total) failure.

5 Conclusion

The mentioned approaches were characterized based on their mentions or sup-
port for the following features and characteristics:

Leveraging edge devices. A decentralized architecture takes advantage of the
computational power of the devices in the network, assigning them tasks.
However, some approaches have limitations on the type of supported devices
or only focus on the Fog tier and not Edge;

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

A Review on Visual Programming for Distributed Computation in IoT 11

Communication capabilities. The orchestrator must know each device’s ca-
pabilities so that it can make informed decisions regarding the decomposition
and assignment of tasks;

Open-source. The license of software or tool is essential in terms of its usability.
Open-source allows access to the code, making it possible for its analysis,
improvement, and reuse;

Computation decomposition. To implement a decentralized architecture, it
is important to decompose the computation of the system into independent
and logical tasks that can be assigned to devices. This is made using algo-
rithms, which can be specified or mentioned;

Run-time adaptation. A system needs to adapt to run-time changes, such as
non-availability of devices or even network failure. The system notices these
events and can take action to circumvent the problems and keep functioning;

From the analysis of Table 4, we can conclude that the current research for
visual programming approaches that leverage the decentralized nature of IoT
is incomplete. All the surveyed approaches leverage the devices in the network
but in a different way. DFF assumes that all devices run Node-RED, limiting the
types of devices used. FogFlow and uFlow are the only ones that specify how
they truly leverage constrained devices, with the transformation of sub-flows into
Lua code. DDFlow assumes that all devices have a list of specific services they can
provide that should match the node assigned to them. Regarding the method
used to decompose and assign computations to the available devices, DDFlow
describes the process using the longest path algorithm focused on reducing end-
to-end latency between devices. FogFlow and uFlow mention several algorithms
that could be used but do not specify which one was implemented. Both DDF

and FogFlow do not specify the algorithm used besides some constraints but
are the only ones with accessible source code and an open-source license. All
the surveyed approaches claim to support run-time adaptation to changes in the
system, such as device failures.

Acknowledgement. This work is financed by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia,
within project UIDB/50014/2020.

References

1. Agarwal, Y., Dey, A.K.: Toward building a safe, secure, and easy-to-use internet
of things infrastructure. IEEE Computer 49(4), 88–91 (2016)

2. Akiki, P.A., Bandara, A.K., Yu, Y.: Visual simple transformations: Empowering
end-users to wire internet of things objects. ACM Transactions on Computer-
Human Interaction 24(2), 1–43 (Apr 2017). https://doi.org/10.1145/3057857

3. AT&T Mobility LLC: AT&T Flow Designer. Available: https://flow.att.com, last
access 2020

4. Bak, N., Chang, B.M., Choi, K.: Smart Block: A Visual Programming Environment
for SmartThings. In: International Computer Software and Applications Confer-
ence. vol. 2, pp. 32–37 (2018). https://doi.org/10.1109/COMPSAC.2018.10199

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

12 M. Silva et al.

5. Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming
interoperability solution for IoT platform applications. In: IEEE International Con-
ference on Cloud Engineering, IC2E 2018. pp. 304–309 (2018)

6. Besari, A.R.A., Wobowo, I.K., Sukaridhoto, S., Setiawan, R., Rizqullah, M.R.: Pre-
liminary design of mobile visual programming apps for Internet of Things applica-
tions based on Raspberry Pi 3 platform. In: International Electronics Symposium
on Knowledge Creation and Intelligent Computing. pp. 50–54 (2017)

7. Blackstock, M., Lea, R.: Toward a distributed data flow platform for the Web of
Things (Distributed Node-RED). In: ACM International Conference Proceeding
Series. vol. 08, pp. 34–39 (2014)

8. Blackstock, M., Lea, R.: FRED: A hosted data flow platform for the IoT. In: 1st
International Workshop on Mashups of Things and APIs (2016)

9. Boshernitsan, M., Downes, M.S.: Visual programming languages: a survey. Tech.
Rep. UCB/CSD-04-1368, EECS Department, University of California, Berkeley
(Dec 2004), http://www2.eecs.berkeley.edu/Pubs/TechRpts/2004/6201.html

10. Burnett, M., Kulesza, T.: End-User Development in Internet of Things: We the
People. In International Reports on Socio-Informatics (IRSI), Proceedings of the
CHI 2015 - Workshop on End User Development in the Internet of Things Era
12(2), 81–86 (2015)

11. Buyya, R., Dastjerdi, A.V.: Internet of Things: Principles and Paradigms. Elsevier
(2016)

12. B.V., Z.: Zenodys. Available: https://www.zenodys.com/, last access 2020

13. Chang, S.: Handbook of Software Engineering and Knowledge Engineering. World
Scientific Publishing Co. (2002)

14. Chen, S., Xu, H., Liu, D., Hu, B., Wang, H.: A vision of IoT: Applications, chal-
lenges, and opportunities with China Perspective. IEEE Internet of Things Journal
1(4), 349–359 (2014)

15. Cheng, B., Kovacs, E., Kitazawa, A., Terasawa, K., Hada, T., Takeuchi, M.:
Fogflow: Orchestrating iot services over cloud and edges. NEC Technical Journal
13, 48–53 (11 2018)

16. Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E., Terasawa, K., Kitazawa, A.: Fogflow:
Easy programming of iot services over cloud and edges for smart cities. IEEE
Internet of Things Journal PP, 1–1 (08 2017)

17. De Luca, G., Li, Z., Mian, S., Chen, Y.: Visual programming language environ-
ment for different IoT and robotics platforms in computer science education. CAAI
Transactions on Intelligence Technology 3(2), 119–130 (2018)

18. Desolda, G., Malizia, A., Turchi, T.: A tangible-programming technology support-
ing end-user development of smart-environments. In: Proceedings of the Workshop
on Advanced Visual Interfaces. pp. 59:1—59:3. ACM, USA (2018)

19. Dias, J.P., Couto, F., Paiva, A.C.R., Ferreira, H.S.: A brief overview of existing
tools for testing the internet-of-things. In: IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). pp. 104–109 (2018)

20. Dias, J.P., Faria, J.P., Ferreira, H.S.: A reactive and model-based approach for
developing internet-of-things systems. In: 11th International Conference on the
Quality of Information and Communications Technology. pp. 276–281 (2018)

21. Dias, J.P., Ferreira, H.S., Sousa, T.B.: Testing and deployment patterns for the
internet-of-things. In: Proceedings of the 24th European Conference on Pattern
Languages of Programs. EuroPLop ’19, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3361149.3361165

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

A Review on Visual Programming for Distributed Computation in IoT 13

22. Dias, J.P., Restivo, A., Ferreira, H.S.: Empowering visual internet-of-things
mashups with self-healing capabilities. In: 2021 IEEE/ACM 2nd International
Workshop on Software Engineering Research Practices for the Internet of Things
(SERP4IoT) (2021)

23. Dias, J.P., Sousa, T.B., Restivo, A., Ferreira, H.S.: A pattern-language for self-
healing internet-of-things systems. In: Proceedings of the 25th European Confer-
ence on Pattern Languages of Programs. EuroPLop ’20, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3361149.3361165

24. Dias, J.P., Lima, B., Faria, J.P., Restivo, A., Ferreira, H.S.: Visual self-healing
modelling for reliable internet-of-things systems. In: Proceedings of the 20th Inter-
national Conference on Computational Science. pp. 27–36. Springer (2020)

25. Ens, B., Anderson, F., Grossman, T., Annett, M., Irani, P., Fitzmaurice, G.: Ivy:
Exploring spatially situated visual programming for authoring and understanding
intelligent environments. In: Proceedings - Graphics Interface. pp. 156–163 (2017)

26. Eterovic, T., Kaljic, E., Donko, D., Salihbegovic, A., Ribic, S.: An Internet of
Things visual domain specific modeling language based on UML. In: Proceedings
of the 25th International Conference on Information, Communication and Automa-
tion Technologies (2015)

27. Eun, S., Jung, J., Yun, Y.S., So, S.S., Heo, J., Min, H.: An end user development
platform based on dataflow approach for IoT devices. Journal of Intelligent and
Fuzzy Systems 35(6), 6125–6131 (2018). https://doi.org/10.3233/JIFS-169852

28. Fayed, M.S., Al-Qurishi, M., Alamri, A., Al-Daraiseh, A.A.: PWCT: Visual lan-
guage for IoT and cloud computing applications and systems. In: ACM Interna-
tional Conference Proceeding Series (2017)

29. Ghiani, G., Manca, M., Paterno, F., Santoro, C.: Personalization of context-
dependent applications through trigger-action rules. ACM Transactions on
Computer-Human Interaction 24(2), 14:1—14:33 (Apr 2017)

30. Giang, N.K., Lea, R., Leung, V.C.M.: Exogenous coordination for building fog-
based cyber physical social computing and networking systems. IEEE Access 6,
31740–31749 (2018)

31. Giang, N.K., Blackstock, M., Lea, R., Leung, V.C.: Developing IoT applications in
the Fog: A Distributed Dataflow approach. In: Proceedings of the 5th International
Conference on the Internet of Things. pp. 155–162 (2015)

32. Grasp IO Innovations Pvt. Ltd.: GraspIO. Available: https://www.grasp.io/, last
access 2020

33. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Software: Practice and Experience
47(9), 1275–1296 (2017)

34. Ihirwe, F., Di Ruscio, D., Mazzini, S., Pierini, P., Pierantonio, A.: Low-code en-
gineering for internet of things: A state of research. In: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. MODELS ’20, USA (2020)

35. Kefalakis, N., Soldatos, J., Anagnostopoulos, A., Dimitropoulos, P.: A visual para-
digm for iot solutions development. In: Interoperability and Open-Source Solutions
for the Internet of Things. vol. 9001, pp. 26–45. Springer, Cham (2015)

36. Lago, A.S., Dias, J.P., Ferreira, H.S.: Managing non-trivial internet-of-things sys-
tems with conversational assistants: A prototype and a feasibility experiment. Jour-
nal of Computational Science 51, 101324 (2021)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

14 M. Silva et al.

37. NAAS, M.I., Lemarchand, L., Boukhobza, J., Raipin, P.: A graph partitioning-
based heuristic for runtime iot data placement strategies in a fog infrastructure.
In: 33rd Annual ACM Symposium on Applied Computing. p. 767–774 (2018)

38. NETLabTK: Tools for Tangible Design. Available: www.netlabtoolkit.org/, last
access 2020

39. Node-RED. Available: https://nodered.org/, last access 2020
40. NooDL. Available: https://classic.getnoodl.com/, last access 2020
41. Noor, J., Tseng, H.Y., Garcia, L., Srivastava, M.: DDFlow: Visualized declarative

programming for heterogeneous IoT networks. In: Proceedings of the 2019 Internet
of Things Design and Implementation. pp. 172–177. ACM (2019)

42. Pathirana, D., Sonnadara, S., Hettiarachchi, M., Siriwardana, H., Silva, C.: WireMe
- IoT development platform for everyone. In: 3rd International Moratuwa Engineer-
ing Research Conference, MERCon 2017. pp. 93–98 (2017)

43. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology 64, 1–18 (2015)

44. Pinto, D., Dias, J.P., Sereno Ferreira, H.: Dynamic allocation of serverless functions
in iot environments. In: 2018 IEEE 16th International Conference on Embedded
and Ubiquitous Computing (EUC). pp. 1–8 (Oct 2018)

45. Prehofer, C., Chiarabini, L.: From IoT Mashups to Model-based IoT. W3C Work-
shop on the Web of Things (2013)

46. Ramadas, A., Domingues, G., Dias, J.P., Aguiar, A., Ferreira, H.S.: Patterns for
Things that Fail. In: Proceedings of the 24th Conference on Pattern Languages of
Programs. PLoP ’17, ACM - Association for Computing Machinery (2017)

47. Ray, P.P.: A Survey on Visual Programming Languages in Internet of Things.
Scientific Programming 2017, 1–6 (2017)

48. Sendorek, J., Szydlo, T., Windak, M., Brzoza-Woch, R.: Fogflow - computation
organization for heterogeneous fog computing environments. In: Computational
Science – ICCS 2019. pp. 634–647. Springer International Publishing, Cham (2019)

49. Setiawan, R., Anom Besari, A.R., Wibowo, I.K., Rizqullah, M.R., Agata, D.: Mo-
bile visual programming apps for internet of things applications based on raspberry
Pi 3 platform. In: International Electronics Symposium on Knowledge Creation and
Intelligent Computing. pp. 199–204 (Oct 2019)

50. Tomlein, M., Boovaraghavan, S., Agarwal, Y., Dey, A.K.: CharIoT: An end-user
programming environment for the IoT. In: ACM International Conference Pro-
ceeding Series (2017). https://doi.org/10.1145/3131542.3140261

51. Tomlein, M., Grønbæk, K.: A visual programming approach based on domain
ontologies for configuring industrial IoT installations. In: ACM International Con-
ference Proceeding Series (2017). https://doi.org/10.1145/3131542.3131552

52. Torres, D., Dias, J.P., Restivo, A., Ferreira, H.S.: Real-time feedback in node-
red for iot development: An empirical study. In: IEEE/ACM 24th International
Symposium on Distributed Simulation and Real Time Applications. pp. 1–8 (2020)

53. Valsamakis, Y., Savidis, A.: Visual end-user programming of personalized AAL in
the internet of things. In: Lecture Notes in Computer Science. vol. 10217 LNCS,
pp. 159–174 (2017). https://doi.org/10.1007/978-3-319-56997-0 13

54. Varshney, P., Simmhan, Y.: Demystifying fog computing: Characterizing architec-
tures, applications and abstractions. In: 2017 IEEE 1st International Conference
on Fog and Edge Computing (ICFEC). pp. 115–124. IEEE (2017)

55. Wyliodrin. Available: https://wyliodrin.com/, last access 2020
56. Zhang, K., Han, D., Feng, H.: Research on the complexity in internet of things.

IET Conference Publications 2010(571 CP), 395–398 (2010)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_34

https://dx.doi.org/10.1007/978-3-030-77970-2_34

