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Abstract. Complex partial seizures belong to the most common type of epileptic seizures. The 

main purpose of the case study is the application of the Van der Pol model oscillator to study 

brain activity during temporal left lobe seizures. The oscillator is characterized by three pairs of 

parameters: linear and two nonlinear, cubic and Van der Pol damping. The optimization based 

on the normalized power spectra of model output and real EEG signal is performed using a ge-

netic algorithm. The results suggest that the estimated parameter values change during the course 

of the seizure, according to changes in brain waves generation. In the article, based on values of 

sensitivity factor of parameters, and, sample entropy non-stationary of considered seizure phases 

are analyzed. The onset of the seizure and the tangled stage belongs to strongly non-stationary 

processes. 

Keywords: Van der Pol oscillator, EEG, parameter estimation, biological sig-

nal. 

1 Introduction  

Electroencephalography (EEG) reflects the averaged electrical activity of neurons as-
sociated with different neural processing placed in different brain regions and structures 
[1-2]. The International Federation of Societies for Electroencephalography and Clini-
cal Neurophysiology considers EEG as non-invasive, safe for human health and easily 
controlled by clinicians technique [2]. The EEG signals belong to non-stationary and 
quasi-rhythmic signals that produce contained oscillations [3-5]. The main purpose of 
EEG measurement is the diagnosis of epilepsy [6-7]. The epilepsy is theoretically char-
acterized by abnormal synchronization between brain regions. In 2017, the Interna-
tional League Against Epilepsy (ILAE) released a new classification of seizure types, 
including focal motor and non-motor onset, generalized motor, and absences, unknown 
motor and non-motor onset and the last unclassified types [8]. Time series during some 
epileptic seizures or Parkinson’s disease are much more ordered oscillatory than in 
healthy records [2, 5, 7, 9]. EEG signals have been studied in literature as a Bag-of-
Words modelas a random and the back propagation (BP) neural networks, and coupled 
oscillators [10-12]. Interesting results related to modelling of a biological control sys-
tem using a system composed of two coupled internal van der Pol oscillators [13]. A 
classical van der Pol attractors are applied to distinguish between chaotic and stochastic 
behaviors of stationary EEG recorded from five normal subjects. The modification of 
Van der Pol oscillators ,i.e. a generalized Van der Pol equation with fractional-order 
derivative and parametric excitation is derived from the Fitz–Hugh–Nagumo equations 
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or the Wilson and Cowan model was considered as might be an efficient tool to control 
the dynamics of the action potentials [14-15]. Even more popular in the analysis of EEG 
time series is duffing oscillator alone or in combination with Holmes and Lorenz oscil-
lators [13]. Based on the results presented in the literature using these oscillators Ghor-
banian at all proposed a coupled duffing Van der Pol Oscillator Model to distinguish 
two states healthy and Alzheimer’s disease [2, 16]. While analyzing the literature, we 
noticed the possibility of using the couple duffing system in the analysis of epileptic 
seizures. The duffing equations lead to show different phase states between normal and 
epileptic signals [17]. Therefore we used the proposed by Ghorbanian deterministic 
duffing Van der Pol Oscillator Model to modelled pre-,ictal and post-ictal signals for 
the first time [18]. The paper is an attempt to analyze the possibility of using the model 
in the detection of stages of an epileptic seizure occurring in one patient, i.e. the onset 
of the seizure, during patient’s moves, movement automatics, tangled stage and the end 
of the seizure. To the best of our knowledge, this model has not been used to analyse 
ictal carefully extracted phases yet. The estimated values of model parameters are de-
termined for each considered phase. The parameters have been obtained using cost 
function L in the form mean square of normalized power spectrum of real and corre-
sponding generated EEG signals. Additionally, the non-stationary character of the in-
dividual ictal stage is studied and compared using sensitive optimal values u, of model 
parameters, and sample entropy. The signal analysis and model oscillator are presented 
in section 2. Sections 3 and 4 contain results and discussion, respectively. In Section 5, 
the main conclusions have been collected. 

2 Materials and Methods 

2.1 EEG Signals 

EEG signals presented in this paper were recorded from right-handed 55 aged female 
who takes Phenytoin, at Temple University Hospital and is seizure-free since 7 months. 
This patient is selected for analysis for few reasons. Primarily, the description of rec-
ords have been performed very carefully by the doctor. Patient behaviour has been as-
sociated with changes in the brain wave patterns. At the beginning of the EEG, the 
patient was calm and relaxed. The seizure begins at the end of hyperventilation when 
the patient's resting comfortably [19]. Digital video EEG is performed in the lab using 
standard 10-20 system of electrode placement with 1 channel of EKG. We considered  
sequences 10 s (length of samples N=2500) registered by electrode T3. The sequences, 
according to clinical description include the onset of seizure without symptoms, behav-
ior changes in the form shaking and moving leg, the movement automatisms, the con-
fusion and the end of the epileptic seizure.  

The medical equipment records the signal in a discretized form of time. To 
determine the number of the sequence we introduced the parameter d, where 
d=1,2,..,.12. Therefore, the signal will be marked hereinafter as xd(n). Before 
calculating the discrete Fourier transform of each sample of EEG sequence has been 
multiplied by the appropriate Blackman’s window coefficient: 

                                 ( ) ( )( ) (1)=d d

w
x n x n w n  

where: 

( ) ( ) ( )0.42 0.5cos 2 1 0.08cos 4 1w n n N n N = − − + −
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The discrete Fourier transform (DFT) takes the form:   

                                 ( ) ( )
1

0

( , ) (2)
−

=

=
N

d d

w N
n

X k x n n k  

where:    

( )exp 2
N

j nk N = −  is the Nth root of unity. 

Next, the amplitude of DFT of the signal is normalized in the range of  [0, 1] accord-

ing to the following formula: 

                                     ( )
( )

( )
ˆ (3)

max
=

d

d

d

X k
X k

X k
 

    

The power P d

b
 of normalized DFT amplitude sequences in five major frequency 

bands are calculated according to the formula:  

                                      ( )( )
21 ˆ (4)

b

d d

b
k Sb

P X k
S 

=   

 

where: b=1,…,5 is the number of frequency band, Sb - set of discrete frequencies, cor-

responding to five major frequency bands [2]: delta (δ, 1-4 Hz, b=1), theta (θ, 4-8 Hz, 

b=2), alpha (α, 8-13 Hz, b=3), beta (β, 13-30 Hz, b=4) and gamma (γ, 30-60 Hz, b=5).  

2.2 Duffing Van der Pol Oscillator 

The coupled system of duffing Van der Pol oscillators analyzed in this section was 
proposed by Ghorbanian and all to distinguish healthy and Alzheimer’s disease signals 
[1, 5]. A four state equations representing coupled duffing Van der Pol oscillators model 
can be written as: 

 ( ) ( ) ( ) ( )
( ) ( )( )

1 3

2 4
3 3

3 1 2 1 2 2 1 1 2 1 2 1 3 1
3 2

4 2 1 2 1 2 2 4 2

1 (5)

1

m m

m m

m m m m m m m m

m m m m m m

x x

x x

x x x x x x x x

x x x x x x

     

  

=

=

= − + + − − − + −

= − − + −

 

where superscript m indicates that the signal is generated by the model, ς is the linear 
stiffness coefficient, ρ is the nonlinear stiffness coefficient, which indicates the strength 
of the duffing nonlinearity resulting in multiple resonant frequencies, ε is the Van der 
Pol damping coefficient which determines the strength of van der Pol nonlinearity. Pa-
rameters ς1, ρ1, ε1 and ς2, ρ2, ε2 belong to the first and second oscillator, respectively. 
The output may be selected as any combination of the positions and velocities to mimic 
an EEG signal. In this study, the velocity of the second oscillator is selected as the 
model output. The initial conditions are equal to: 

( ) ( ) ( ) ( )
1 2 3 4

0 0, 0 1, 0 0, 0 0m m m mx x x x= = = =
 

Runge-Kutta iterative method is selected from standard numerical integration meth-
ods to solve these dynamic equations. An important mathematical property of Runge-
Kutta methods is their stability properties which make them suitable to solve a wide 
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class of problems. The amplitude of the generated signal is discretized and normalized 
according to the formula 2-3. The components of the power spectra of the signal gen-
erated by the oscillator model in five considered frequency bands were also needed to 
build the objective function. The genetic algorithm is adapted to perform the optimiza-
tion procedure. The algorithm encodes the decision variables of a search problem into 
finite-length strings of alphabets of certain cardinality. In the optimization process, we 
set the population size as 2000. The cost function is chosen as a root mean square of 

the errors in the power spectra of signal EEG d

b
P  and generated ( )1 2 1 2 1 2

, , , , ,P        

in each selected brain frequency band, as shown in [3]. The functions L can be formally 
written as (7): 

                                ( ) ( )( )
25

1 2 1 2 1 2
1

1 2 1 2 1 2

, , , , , ,

, , , , ,

Ω  

Ω

d

b
v

L d P P      

     
=

= −

 =  

                        (6) 

where: L is the cost function,  Ω is the vector of design model variables, ς1, ς2, ρ1, 
ρ2, ε1, and ε2 are the decision variables of the optimization. The initial guesses for the 
optimization search were randomly generated within the bounds defined as: 
 

 0 ≤ ϛ1,,2 ≤ 200, 0 ≤ ρ1,,2 ≤ 100, 0 ≤ ε1,,2  

The optimization goal is error minimization: 

                            ( )
1 2 1 2 1 2

1 2 1 2 1 2
, , , , ,

min , , , , ,L
     

                (7) 

The solution set of decision variables for each sequence d will be denoted as:  

1 2 1 2 1 2
, , , , ,d d d d d d     

 

3 Results 

The analysis based on the optimal values of parameters, relative sensitivity factor of 
them and the objective function is performed taking into account types of sequences. 
Table 1 shows the results obtained in highlighted phases of the epileptic seizure.   

It can be clearly seen, that high estimated values of linear stiffness parameters ς1 and ς2 

are obtained for sequences associated with changes in the patient's behavior: during leg 

movement, movement automatics, and entanglement. The initial seizure is 

accompanied by high values of non-linear stiffness coefficients ρ1 and ρ2. A high value 

of ρ2 is also observed in the final stage of the seizure. The small values of cost function 

L indicate obtaining a similar power spectrum of the real and generated signal. The 

obtained values of sensitivity coefficients for the onset are very high. In order to assess 

the application of sensitivity factor of optimal parameter values in the determination of 

range non-stationary nature of the signal, the sample entropy is calculated for each 

considered sequence. The results are collected in Table 2. According to the value of the 

sensitivity factor, the initial stages of the seizure are characterized by the highest 

entropy values. 
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Table 1. The model’s parameters, the sensitivity factor u, and the cost function L  

Phase         Estimated Values Sensitivity factor 

        u 
  Seq.1 Seq.2 Seq.3 Seq.1 Seq.2 Seq.3 

Onset ς1   10.79    11.79 10.97 4567.00   424.82 -215.60 

Leg movement   131.88    88.99 54.00 4764.00 1218.00 -123.70 

Movement automatics  164.00    120.34 11.32       0.25  44.85      9.85 

Entanglement    98.81    53.56  69.69   164.40 330.19          -98.18 

End    12.81    12.74    8.33      0.05     8.07      0.87 

Cost function L      0.06      0.03    0.06    

Onset ς2   59.33    47.33 40.50 4567.00 424.82 -215.60 

Leg movement  164.00  120.34 13.24       0.56    1.43     -1.08 

Movement automatics    35.84    45.54 37.03       8.11  23.07      2.01 

Entanglement  139.63  115.00  72.39    -72.84    3.40     139.63 

End    18.34    17.63  22.22       0.07    1.10      0.28 

Cost function L      0.18 0.22    0.06    

Onset ρ 1   68.61     48.90 35.67 4715.00  22.69  -58.90 

Leg movement    28.21     31.54 31.89      0.34    0.77     0.07 

Movement automatics    54.20     47.23 45.02      8.27  70.91     2.44 

Entanglement    33.97     43.00  59.59  172.82 -495.01         -98.18 

End      6.72       6.45    7.87      0.09     6.44     1.27 

Cost function L      0.06  0.19       0.06    

Onset  ρ2   70.52     54.20 48.45 4875.00 481.49  -87.60 

Leg movement    49.91     52.13 35.00       0.34     0.60    -0.79 

Movement automatics    51.00     49.91 64.82     10.75   69.74      0.88 

Entanglement    99.55     81.53  56.99  164.40  330.19           99.55 

End    93.45   110.32  84.45      0.49    13.89      1.73 

Cost function L      0.08  0.03   0.06    

Onset ε1     7.53       5.13   3.43 2416.00   51.10        52.55 

Leg movement      5.59       6.34 17.16       0.44   17.16      0.50 

Movement automatics      2.78       4.29   4.72       2.21     0.07     -1.17 

Entanglement    19.06     13.66   16.02       0.60     3.75          19.06 

End    16.75     15.60   23.03       0.60     3.34      0.95 

Cost function L      0.17  0.21 0.07    

Onset ε2   15.35     23.34  24.67  -6287.0 173.81  149.97 

Leg movement    14.35     13.45  20.00       0.07   20.00     -0.07 

Movement automatics    12.34     25.10  14.86     44.60   62.34     -5.38 

Entanglement    22.59     28.47   19.17       0.49 -265.84            25.59 

End    21.34     20.97   22.63       0.49    13.89       1.73 

Cost function L      0.08       0.03     0.06    
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Table 2. Values of the sample entropy calculated for the each sequence. 

Phase                  Sample entropy 

      Seq.1                           Seg.2                           Seq.3 

Onset 0.24 0.12 0.18 

Leg movement 0.22 0.16 0.08 

Movement automatics 0.004 0.0004 0.05 

Entanglement 0.03 0.13 0.08 

End 0.08 0.03 0.08 

4 Discussion 

The seizures described in the work are characterized by a sudden onset occurring within 

the neural network in the left hemisphere [19]. The results show that the onset epileptic 

seizure is a strongly non-stationary process. In the early stages of the seizure, according 

to the description, in the record high-amplitude left temporal spike and slow-wave com-

plexes. The female began to move her left leg. The increase of amplitude that occurs 

here can be due to an increase in the force acting on the springs, which is represented 

by linear stiffness parameters ς1 and ς2. Next, the patient has motor automatisms. In the 

EEG recording can be seen slow frontal delta waves, which, combined with the char-

acteristic of the waveform of the temporal lobe, associated with high, similar values of 

ς2, ρ1, and ρ2.  In this phase, occur the greatest changes in the value of the sensitivity 

factor of the model parameters (from 0.07 for ε2 to 70.91 for ρ1). During the seizure, 

the patient experiences further behavioral changes, including confusion. According to 

the doctor describing the study, the EEG record during cis difficult to interpret at this 

moment. High values of ς1, ς2, ρ1, and ρ2 changing the kinematics of the seizure, which 

allows the spread of discharges to the other hemisphere (two excitation networks). Un-

der the influence of damping, the force decreases. At the end of the seizure, in the EEG 

recording bilateral slow brain wave synchronization with sharp waves is observed. The 

stationary character dominates until the seizure has completely ceased. The low values 

ς1 and ρ1 suggest, that the first oscillator no longer stimulates the system to further 

vibrate. The seizures initially persist due to higher values of the second oscillator. 

5 Conclusions 

Having some facts about temporal lobe epilepsy, including individual phases of seizure 

propagation, the deterministic coupled duffing Van der Pol oscillator model is proposed 

to model the brain activity of epileptic patients. From the results obtained from an in-

dividual patient, it is shown, that the proposed model explains the problem of the gen-

eration of different rhythms of the EEG ictal signal. The model allows determining the 

EEG changes that occur during the seizure. An increase in linear parameter values is 

seen during slow delta and sharp wave detection,and the generation of fast spikes and 

high-amplitude is associated with decrease values of liner parameters and increase val-

ues of nonlinear cubic parameters.  
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