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Abstract. In the paper we consider an NP-hard problem of tasks sche-
duling with due dates and penalties for the delay in a flexible production
cell. Each task should be assigned to one of the cell’s machines and the
order of their execution on machines should be determined. The sum
of penalties for tardiness of tasks execution should be minimized. We
propose to use the tabu search algorithm to solve the problem. Neigh-
borhoods are generated by moves based on changing the order of tasks
on the machine and changing the machine on which the task will be per-
formed. We prove properties of moves that significantly accelerate the
search of the neighborhoods and shorten the time of the algorithm exe-
cution and in result significantly improves the efficiency of the algorithm
compared to the version that does not use these properties.

1 Introduction

Optimizing the production process relies on designating of such a schedule for
the execution of the elements that gives optimal effects measured by the value
of a certain criterion (e.g. execution time, sum of penalties for delays, etc.). This
usually comes down to the formulation of a combinatorial problem in which an
optimal element (sequence or permutation) should be determined from a finite
set, usually very large, of feasible solutions.

In Just-in-Time manufacturing systems there is a requirement to complete
each element before the expiration of the due date, otherwise a penalty is be-
ing calculated for exceeding it (for the delay or being tardy). In the problem
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considered here a set of tasks and a set of machines are given. Machines of the
same type (parallel machines), i.e. with the same functional properties, form a
flexible production cell. Each task must be performed on a machine of the cell.
The data includes the times of completing tasks on each of machines, and their
due dates. The penalty for being tardy depends on the tardiness value and the
penalty factor, different for each task. The problem is to assign tasks to machines
and arrange their execution on each machine to minimize the sum of penalties
(costs). In short, we will denote this problem by MTC.

If the cell consists of only one machine then the MTC problem comes down
to the single machine scheduling problem. In the literature it is denoted by
1||

∑
wiTi and it belongs to the class of NP-hard problems (of course it means,

that MTC problem is also NP-hard). Its exact description, specific properties
and a very effective tabu search algorithm can be found in Bożejko et al. [2]. The
parallel exact algorithm described Wodecki [14]. In contrast, a generalization of
the MTC problem is the flexible task shop problem in which a set of machines
is partitioned into cells. According to the relationship of the technological order,
each task passes through many cells. In the literature, it is mainly considered
with the Cmax criterion. Unfortunately, models and problems of scheduling pro-
duction with other cost criteria, despite significant practical needs, are relatively
rarely considered. This is mainly due to the irregularity of the criterion functions
and the lack of specific properties of problems leading to a limitation of the set
of solutions. The most important, containing main theoretical results, and with
good algorithms are papers written by: Karabulut [5], Liu [9], Kayvanfar et.al
[6], Ojstersek, Buchmeister [11], Bulfin, Hallah [4], Bożejko et al. [3], Park et al.
[10], Tocovicha et.al. [13].

In this work, we will present a description of the problem, prove some of its
properties and provide constructive and tabu search algorithms. In the design
of algorithms, the neighborhood generated by the moves based on changing the
order of execution of tasks on the machine and changing the machine on which
the task will be performed is used. The properties of the problem have been
proven here to enable the elimination of worse solutions from the neighborhood.
As a result, the number of elements of the neighborhood is significantly reduced,
thus, the time needed for search also decreases. Due to the lack of bigger in-
stances of the considered problem, computational experiments were performed
on randomly generated examples.

2 Problem description

There is a set J = {1, 2, . . . , n} of n tasks given to be performed on the m
machines from the set M = {1, 2, . . . ,m}. For the task i ∈ J , there are the
following notions introduced:

pi,j - execution time , j ∈M,
di - required completion date ,
wi - weight of the penalty function (cost of delay).

In the MTC problem, the tasks are to be assigned to machines and there must
be determined the order of their execution on each machine to minimize the sum
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of the tardinesses costs. If the assignment of tasks to machines and the order
in which they are performed is determined, then for a task i ∈ J the following
designations are introduced:

Ci - completion date ,
Ti = max{0, Ci − di} - delay,
wi · Ti - penalty (cost) of the delay.

Therefore, the problem consists in designating such an allocation of tasks to
machines and the order of their execution to minimize the sum of penalties
(costs of tardinesses), i.e.

∑n
i=1 wi · Ti, wherein the following constraints must

be met:

(i) the task must be performed on exactly one machine,
(ii) the task execution cannot be interrupted,

(iii) at any given time, the machine can perform only one task.

Let a sequence of tasks’ sets

A = (A1, A2, . . . , Am),

such that Ai ⊂ J , Ai ∩ Aj = ∅, i 6= j, i, j ∈ M and
∑m
i=1Ai = J , is called

assignment of tasks to machines. By A we denote the set of all such assignments.
For assignment A = (A1, A2, . . . , Am), A ∈ A, let π = (π1, π2, . . . , πm) will

be a sequence of permutations such that πi is an ni-elementary (ni = |Ai|) per-
mutation (order of execution) of tasks from the set Ak, k ∈M, i.e. performed by
a k-th machine. By P(A) we denote the set of all such sequences of permutations
(in short these sequences will be called task permutations).

The set of solutions of the MTC problem of performing tasks on machines
can be defined as follows:

AP = {(A, π):A ∈ A, π ∈ P(A)}. (1)

Let the solution S = (A, π) ∈ AP, where A = (A1, A2, . . . , Am) and π =
(π1, π2, . . . , πm). If the task i ∈ J is executed on a machine k ∈M (i.e. i ∈ Ak)
as the l-th in the order (πk(l) = i), then the earliest moment of its completion

Ci =
∑l
j=1 pπk(j), tardiness Ti = max{0, Ci−di}, and a penalty for the tardiness

fi(S) = wi · Ti. In turn

T (S) =

n∑
j=1

wπ(i)Tπ(i) =

n∑
j=1

fj(S), (2)

is the cost of the execution of all tasks (the sum of the penalties for delays).
The problem of task execution on MTC machines considered in the work is

to determine the optimal solution S∗ ∈ AP. This problem is NP-hard because
for the number of machines m = 1, we get NP-hard single-machine problem, as
it was written in the Introduction.

In the case where the number of machines m = 2 the cardinality of the set
of all assignments |A| = 2n. For each assignment, the number of all possible
sequences of tasks is O(n!). In this case all possible solutions to the problem are
O(2n · n!).
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3 Solution method

Scheduling operations in a flexible production cell, solving the MTC problem,
requires simultaneous decision making on two levels:

1. assigning tasks to machines,
2. determining the order of performing tasks on each machine.

Therefore, an idea of the problem solving method can be presented in the form
of the following algorithm:

ATMC algorithm

Let S, S∗ be solutions, S = (A, π), S ∈ AP and S∗ := S.
repeat

Step 1: generate from S a new assignment A′ ∈ A;
Step 2: for assignment A′ generate permutation

π′ ∈ P(A′) - of the task execution order;
(S′ = (A′, π′) is a new solution);
if T (S′) < T (S∗) then S∗ := S′;

S := S′;
until {Stop condition}

S∗ is the solution determined by the algorithm (output).

Step 1 can be accomplished in many ways (e.g. random selection, construc-
tive algorithm, etc.). It should only be emphasized that for two machines the
number of possible assignments is 2n. In turn the implementation of Step 2 re-
quires, for each machine, determining the sequence of performing the assigned
tasks. Determining the optimal order (i.e. minimizing the sum

∑
wiTi) is an NP-

hard problem. It boils down to solving the NP-hard one-machine task scheduling
problem 1||

∑
wiTi. Therefore, to solve the MTC problem under consideration

there will be the approximate algorithm based on the tabu search method used.
Its essential elements are neighborhoods, the subsets of the set of feasible solu-
tions generated from the current solution by transformations called moves. When
browsing the neighborhood, we select the element with the lowest value of the
criterion function, which we adopt as new, current solutions in the next iteration
of the algorithm. From a fixed solution, another solution can be generated by
executing the move (Step 1) consisting of:

1. changing the order of execution of tasks on a certain machine, or
2. transfer of the task from one machine to another.

Both of these moves will be described in details further.
For a solution S ∈ AP (S = (A, π)) by

Tk(S) =
∑
j∈Ak

fj(S), (3)
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we denote the cost of performing tasks by k-th machine. This value will be
denoted in short k-th cost. Therefore, the cost of performing all tasks (2) is
equal to the sum of the costs of individual machines, i.e. T (S) =

∑m
k=1 Tk(S).

3.1 Changing the order of tasks on the machine

To change the order of execution of tasks on a machine in a solution (S = (A, π))
there will be an insert-type of move used. It consists in shifting a task into a
different position. Let πk be nk-elementary permutation – an order of tasks on
k-th machine. If 1 ≤ s, t ≤ nk, then insert-type of move consists in swapping
the element from position s (of task πk(s)) to position t in permutation πk. Two
cases will be considered.
Case 1. Let us assume that t ≥ s.

Then this move will be denoted by with
→
ηst , and generated permutation

→
ηst (πk) = π′k. Then:

π′k(i) =

πk(i), if i < s ∨ i > t,
πk(i+ 1), if s ≤ i < t,
πk(s), if i = t.

(4)

where (S′ = (A, π′)). Having executed the move
→
ηst , in order π′k

T ′k(S′) =

s−1∑
i=1

fπ′
k
(i)(S) + fπ′

k
(s)(S) +

t−1∑
i=s+1

fπ′
k
(i)(S) + fπ′

k
(t)(S) +

nk∑
i=t+1

fπ′
k
(i)(S).

It follows from definition (4) that

fπ′
k
(t)(S) = max{0, Cπk(t) − dπk(t)}, (5)

s−1∑
i=1

fπ′(i)(S) =

s−1∑
i=1

fπ,(i)(S), and

nk∑
i=t+1

fπ(i)(S) =

nk∑
i=t+1

fπ′(i)(S). (6)

Since for the task completion times: π′k(s), π′k(s+ 1), . . . , π′k(t)

Cπ′
k
(t) = Cπk(t) and Cπ′

k
(i) = Cπk(i)− pπk(s) + pπk(s+1), for i = s, s+ 1, . . . , t− 1,

where the cost of the task execution:

fπ′
k
(i)(S) = max{0, Cπk(i) − pπk(s) + pπk(s+1) − dπk(i)}. (7)

For insert-type of move
→
ηst (t ≥ s), generating from πk permutation π′k, let

δk(
→
ηst ) =

t−1∑
i=s

fπ′
k
(i)(S) + fπ′

k
(t)(S)−

t∑
i=s

fπk(i)(S). (8)

Theorem 1. If permutation π′k was generated from πk by execution of insert-

type of move
→
ηst (t ≥ s), then

T ′k(S′) = Tk(S) + δk(
→
ist ). (9)
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Proof. To prove of the theorem the following equality should be used (5)-(8).

Case 2. t < s. Let us assume that t < s. Then the insert-type of move generating
from πk a new permutation π′′k by swapping the task from position s to position

t will be denoted by
←
ηst . In this case a generated permutation

π′′k (i) =

πk(i), if i < s ∨ i > t,
πk(i+ 1), if s ≤ i < t,
πk(s), if i = t.

(10)

where (S′′ = (A, π′′)). Similarly as in Case 1 it is possible to determine
equality similar to (5)-(7). Next, let

δk(
←
ηst ) =

t−1∑
i=s

fπ′′
k
(i)(S) + fπ′′

k
(t)(S)−

t∑
i=s

fπk(i)(S). (11)

Theorem 2. If permutation π′′k was generated from πk by insert- type of move
←
ηst (t < s), then

T ′′k (S′′) = Tk(S) + δk(
←
ηst ). (12)

Proof. The proof of equality (12) is similar to the proof of Theorem 1. It follows

from the Theorem 1 that if δk(
→
ηst ) < 0, then the execution of the insert-type of

move generates solution with lower cost of execution of tasks (improvement of

the solution). It is the same with the move
←
ηst (Theorem 2). Each of these moves

can therefore be a move improving the current solution.

3.2 Transferring of a task to another machine

Let the solution S = (A, π), where A = (A1, A2, . . . , Am), π = (π1, π2, . . . , πm).
We are considering two machines k and l (k 6= l, k, l ∈M). From a solution S we
generate S′ = (A′, π′) by transferring a single task from a machine k to l. Let s
be a position in permutation πk, and t position in permutation πl. The transfer -
type of moves (τ - move) transfers the task from the position s on machine k
to position t on machine l generating in this way a new solution S′ (in short we
will designate it by S′ = τkl (s, t)(S)). In the generated solution S′ = (A′, π′)

A′ = (A′1, A
′
2, . . . , A

′
m), and π′ = (π′1, π

′
2, . . . , π

′
m), where

n′k = nk − 1, n′l = nl + 1, A′i = Ai and π′i = πi, for i 6= k, l (k, l ∈M), (13)

A′k = Ak \ {πk(s)}, A′l = Al ∪ {πk(s)},

π′k = (πk(1), πk(2), . . . , πk(s− 1), πk(s+ 1), . . . , πk(n′k)),

π′l = (πl(1) . . . , πl(t− 1), πk(s), πl(t), πl(t+ 1) . . . , πl(n
′
l)).

It is easy to check that the determined in this way solution S′ = (A′, π′) is
feasible for the MTC problem. Then we determine the cost of performing tasks
for both machines.
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After executing the move τkl (s, t)(S) (transferring the task from machine k
to machine l) The cost of executing tasks on machine k

Tk(S′) =

n′
k∑

i=1

fπ′
k
(i)(S

′) =

s−1∑
i=1

fπ′
k
(i)(S

′) +

n′
k∑

i=s

fπ′
k
(i)(S

′). (14)

From definition of permutation π′k the first sum
∑s−1
i=1 fπ′

k
(i)(S

′) =
∑s−1
i=1 fπk(i)(S).

Since permutation π′k is created from πk by removing the task πk(s), then the
execution by the k-th machine the tasks π′k(s), π′k(s+ 1), . . . , π′k(n′k) in solution
S′ is exceeded by the pπk(s) (this is πk(s)). Therefore, the moment of completion
of tasks execution Cπ′

k
(i) = Cπk(i+1) − pπk(s), and the cost

fπ′
k
(i)(S

′) = wπk(i+1) ·max{0, Cπk(i+1) − pπk(s) − dπk(i+1)}, (15)

for i = s, s + 1, . . . , n′k. Ultimately, using (15) the cost of execution of tasks by
k-th machine in the order π′k

Tk(S′) =

s−1∑
i=1

fπk(i)(S) +

nk−1∑
i=s+1

wπk(i+1) max{0, Cπk(i+1) − pπk(s) − dπk(i+1)}.

(16)
Similarly, for the l-th machine, the cost of execution of tasks on machine l

Tl(S′) =

n′
l∑

i=1

fπ′
l
(i)(S

′) =

t−1∑
i=1

fπ′
l
(i)(S

′) + fπ′
l
(t)(S

′) +

n′
l∑

i=t+1

fπ′
l
(i)(S

′). (17)

It follows from definition of permutation π′l that
∑t=1
i=1 fπ′

l
(i)(S

′) =
∑t=1
i=1 fπl(i)(S),

and fπ′
l
(t)(S

′) = wπk(s) ·max{0, Cπl(t−1) + pπk(s) − dπk(s)}. The moment of com-
pleting each task π′l(t + 1), π′l(t + 2), . . . , π′l(n

′
l) is transferred (relative to its

execution time in πk) by the time of the duration of the task πk(s), namely by
pπk(s). Therefore, similarly as above

n′
l∑

i=t+1

fπ′
l
(i)(S

′) =

nl∑
i=t

wπk(i) ·max{0, Cπl(i)+pπk(s) − dπl(i)}.

Ultimately

Tl(S′) =

t=1∑
i=1

fπl(i)(S) + wπk(s) ·max{0, Cπl(t−1) + pπk(s) − dπk(s}+

+

nl∑
i=t

wπk(i) ·max{0, Cπl(i) + pπk(s) − dπl(i)}. (18)

For the solution S ∈ QP, let

δ−S =

nk−1∑
i=s+1

wπk(i) ·max{0, Cπk(i+1) − pπk(s)−
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−dπk(i+1)} − fπk(s)(S) +

nk∑
i=s+1

fπk(i)(S). (19)

Lemma 1. If the solution S′ = τkl (s, t)(S), then the cost (14) of tasks execution
on k-th machine

Tk(S′) = Fk(S) + δ−S ,

Proof. From definition the cost of tasks execution

Tk(S) =

s−1∑
i=1

fπk(i)(S) + fπk(s) +

nk∑
i=s+1

fπk(i)(S).

Tk(S′) = Tk(S) + δ−S =

s−1∑
i=1

fπk(i)(S) + fπk(s) +

nk∑
i=s+1

fπk(i)(S)+

+

nk−1∑
i=s+1

wπk(i) ·max{0, Cπk(i+1)−pπk(s)−dπk(i+1)}− (fπk(s)(S)+

nk∑
i=s+1

fπk(i)(S))

=

s−1∑
i=1

fπk(i)(S) +

nk−1∑
i=s+1

wπk(i) ·max{0, Cπk(i+1) − pπk(s) − dπk(i+1)}.

The last equality follows from the formula (16). A similar lemma will be proven
for l-th machine. Let

δ+S = wππl(s) ·max{0, Cπl(t−1) + pπk(s) − dπk(s}

+

nl∑
i=t

wπk(i) ·max{0, Cπl(i) + pπk(s) − dπl(i)} −
nl∑
i=t

fπl(i)(S). (20)

Lemma 2. If the solution S′ = τkl (s, t)(S), then the cost (17) of tasks execution
by l-th machine

Tl(S′) = Tl(S) + δ+S

Proof. Similarly as in the case of the proof of the Lemma 1

Tl(S) =

t−1∑
i=1

fπk(i)(S) +

nk∑
i=t

fπk(i)(S).

Then, using equality (18) and definition δ+S we obtain

Tl(S′) = Tl(S) + δ+S =

t−1∑
i=1

fπl(i)(S) +

nl∑
i=t

fπt(i)(S)+

+wππl(s) ·max{0, Cπl(t−1) + pπk(s) − dπk(s}+

+

nl∑
i=t

wπk(i) ·max{0, Cπl(i) + pπk(s) − dπl(i)} −
nl∑
i=t

fπl(i)(S).
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Let
∆k
l (s, t)(S) = δ−S + δ+S . (21)

The value of this expression can be determined in time O(n). It will be used
to estimate the effectiveness (change of the criterion value) of the transfer-type
move. It will allow us to determine the best solution from the neighborhood.

Theorem 3. If S is a solution to the MTC problem and S′ was generated from
S by the transfer-type move τkl (s, t), then the cost of tasks execution

T (S′) = T (S) +∆k
l (s, t)(S). (22)

Proof. The proof results directly from the Lemma 1, 2 and the definition (22).

The value of the expression (22) can be computed in time O(n). It will
be used to quickly compute the value of the solution criteria generated by the
transfer-type of move.

4 Elimination of solutions

Here we will present some properties of the MTC problem that allow one to
eliminate ’the worse’ solutions from the neighborhood. This will reduce the num-
ber of elements in the neighborhood, and thus the time it takes to search.

Let S be some solution, and l some machine. For task v (v 6∈ Al) transferred
to machine l

λl(v) = max{j : Cπi(j−1) + pv > dv, 1 ≤ j ≤ ni} − 1 (23)

is the maximum number of positions in the permutation πl on which the task v
was transferred if not delayed (its penalty equals to 0). In definition (23) there is
an assumption that Cπi(0) = 0. For a fixed machine l and task v 6∈ Al parameter
(23) can be determined in time O(n). We will prove the theorem enabling the
elimination of certain solutions from the neighborhood generated by transfer-
type of moves.

Theorem 4. Let S(A, π) be some solution to MTC problem. For any pair of
moves τkl (r, s) and τkl (r, t), where k 6= l, k, l ∈ M, 1 ≤ s < t ≤ λk(πk(r)) there
is

T (τkl (r, s)(S)) ≥ T (τkl (r, t)(S)). (24)

Proof. In order to simplify the notation, in the proof of the theorem we assume
that the order of execution of tasks on the l-th machine is h element identity
permutation π = (1, 2, . . . , h), and T (π) is the cost of tasks execution on l-th
machine in the order π (this is equivalent to the definition (3)). Further, by
πi (1 ≤ i ≤ h) we denote the permutation resulting from π by inserting into
position i tasks v = πk(r), this is

πi = (1, 2, . . . , i = 1, v, i, i+ 1, . . . , h, η), where η = h+ 1.
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We are considering two positions s and t (1 ≤ s < t ≤ λl(v)) in permutation
π. By inserting the task v to permutation π respectively to position s and t we
generate two permutations (order of tasks execution by machine l) πs and πt.

We are now calculating the cost of tasks execution by the machine l respec-
tively for the order πs and πt.

T (πs) =

s−1∑
i=1

fi(Cπs(i)) + fs(Cπs(s)) +

t∑
i=s+1

fi(Cπs(i)) +

η∑
i=t+1

fi(Cπs(i)). (25)

Similarly, for permutation πt

T (πt) =

s−1∑
i=1

fi(Cπt(i)) + +

t−1∑
i=s+1

fi(Cπt(i)) + ft(Cπt(t)) +

η∑
i=t+1

fi(Cπt(i)). (26)

From definition of both permutations

πs(i) = πt(i) and Cs(i) = Ct(i), for i = 1, 2, . . . , s− 1, t+ 1, t+ 2, . . . , η.

Therefore, in expressions (25) and (26) we have the equality of components:

s−1∑
i=1

fi(Cπs(i)) =

s−1∑
i=1

fi(Cπt(i)) and

η∑
i=t+1

fi(Cπs(i)) =

η∑
i=t+1

fi(Cπt(i).

Since πs(s) = v and the task v is not delayed (by assumption of the theorem
s ≤ λl(v)), thus fs(Cπs(s)) = 0. Similarly ft(Cπt(t)) = 0. The proof of the

theorem thesis comes down to showing that
∑t
i=s+1 fi(Cπs(i)) ≥

∑t−1
i=s fi(Cπt(i)).

The tasks s, s + 1, . . . , t − 2, t − 1 are placed in permutation πt to positions
s, s+1, . . . , t−2, t−1. In turn, in permutation πs they are on positions s+1, s+
2, . . . , t− 1, t. This shift to the right by one position is due to the fact that in πs

is preceded by the task v.
Since Cπs(i) = Cπt(i−1) + pv,, it’s easy to show that

fi(Cπs(i)) ≥ fi(Cπt(i−1)) for i = s+ 1, s+ 2, . . . , t.

Summing up these inequalities in sides, we finally get
∑t
i=s+1 fi(Cπs(i)) ≥∑t−1

i=s fi(Cπt(i)), which ends the proof of the theorem.

Using the above theorem, it is easy to prove the properties that allow one
to eliminate certain transfer-type moves generating worse solutions from the
neighborhood.

Property 1. (Elimination of solutions). If S is solution to MTC problem, k and
l are machine numbers, and πk(s) a task transferred from the machine k to l by
transfer-type move, then

T (τkl (s, 1)(S)) ≥ T (τkl (s, 2)(S)) ≥, . . . ,≥ T (τkl (s, λl(s))(S)).
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Therefore, by designating the elements of the neighborhood for each task πk(s) 6∈
Ak it is possible to omit the moves from the set

Rkl (s) = {τkl (s, 1)(S), τkl (s, 2)(S), . . . , τkl (s, λl(s)− 1)(S)}. (27)

They generate solutions no better (of not lower value than the penalty function)
than the move τkl (s, πl(λl(s))(S). This move will be called a representative of
the moves from the set (27). Then

R(S) =

m⋃
i=1

m⋃
j=1,
j 6=i

nj⋃
s=1

Rij(S). (28)

Is the set of all the transfer-type of moves, which can be omitted.

5 Solution method

In order to solve the problem considered at work there was the tabu search
(TS) algorithm used for solving the single-machine problem 1||

∑
wiTi, adopted

from the work of Bożejko et al. [2]. The essential component of the algorithm
based on this method is a neighborhood – subset of the set of all solutions.
In each iteration of the algorithm, the element with the minimum value of the
criterion function is determined from the neighborhood. Generation procedure
and searching the neighborhood have a decisive influence on the values of the
determined solutions, the pace of convergence and time calculations. Below we
describe the method of generating and searching the neighborhood in algorithm
solving the MTC problem.

Let I(S) and Θ(S) be respectively, the set of all insert and transfer-type of
moves for a certain solution S ∈ AP. Neighborhood S is the set of solutions

N (S) = {λ(S) : λ ∈ I(S) ∪Θ(S)}. (29)

If by generating the neighborhood N (S) ’the worse’ moves will be removed,
i.e. moves from the set R(S) then we obtain a subneighborhood Nsub(S). When
determine an element from the neighborhood, we also omit moves whose at-
tributes are on the so-called tabu list.

For the S ∈ AP solution, generating and searching the neighborhood is
performed in two steps:
Step 1. Designate the best solution from the set generated by insert-type of
moves, i.e. from the set of moves I(S).
Step 2. Designate the best solution from the set generated by transfer-type of
moves, i.e. from the set of moves Θ(S).
If the solution in Step 1 is better than the S solution, then Step 2 is omitted.

In the description of the algorithm S is a starting solution, and S∗ is the best
designated solution.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_31

https://dx.doi.org/10.1007/978-3-030-77970-2_31
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Tabu Search (TS) algorithm

S∗:=S;
repeat

Determine solution S’ such that T (S′) = min{T (λ(S)) : λ ∈ I(S)}
omitting moves whose attributes are on the tabu list;
if ( T (S′) < T (S∗) ) then S∗ := S′; S := S

′
; else

begin

Determine solution S
′′

such that T (S
′′
) = min{T (λ(S)) : λ ∈ Θ(S)}

omitting moves whose attributes are on the tabu list;
if ( T (S

′′
) < T (S∗) ) then S∗ := S

′′
; S := S

′′
;

end{else}
Update move’s attributes on a tabu list;

until (stop condition).

The above algorithm with subneighborhood Nsub(S) will be denoted by TSsub.

6 Computational experiments

Variations of the problem are considered in the literature, e.g. [8, 1], but the
sizes of test data used do not correspond to the contemporary requirements
of industrial practice (n = 18, m = 4 in [8] (B&B), n = 500, m = 10 in [1]
(heuristics only). Therefore, we decided to propose new test examples of large
sizes (n ≤ 1000, m ≤ 20). Therefore the test examples were generated similarly
to those described in the work by Potts and Van Wassenhove [12]: parameters
of each the tasks i ∈ J are the implementation of random variables of uniform
distribution. The execution time pi - on the interval [1, 100], the weight of the
penalty function wi – on the interval [1, 10], and the latest completion date di –
on the interval [P (1−TF−RDD/2), P (1−TF+RDD/2)], P = d(

∑n
i=1 pi)/m +

1e, RDD, TF ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
For each of 25 pairs of RDD and TF parameter values there were 5

examples generated. So, for each pair n (n = 50, 100, 500, 1000) and m (m =
2, 5, 10, 20), there were 125 examples of varying difficulty determined - a total of
2,000 examples was reached.

The percentage relative deviation (PRD) was used to evaluate the algorithms:

δ =
Tref−Talg
Tref ·100%, where: Tref – value of the reference solution, TTS – the value

of the solution designated by tested algorithm. There are no reference data in
the literature. Therefore, there will be a comparison of the solutions determined
by the TS algorithm and the results of a constructive algorithm.

Constructive GRC algorithm

nk = 0; πk := (), k = 1, 2, . . . ,m;
Number tasks in such a way that p1/w1 ≥ p2/w2 ≥, . . . ,≥ pn/wn;
for l := 1 to n do begin
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Determine machine k such that T (πk) = min{T (πi) : i = 1, 2, . . . ,m};
Insert the task l on position in permutation πk so that the penalty

for the tasks execution tardiness on machine k was minimal;
end

The computational complexity of the algorithm is O(mn2).
Algorithms GRC and TS were programmed in C ++ language and run

on a personal computer with an Intel processor Core i7 3.5 GHz. First, the
effectiveness of the GRC algorithm was tested, the solutions of which will be the
reference when evaluating the results of the TS algorithm. In the work of Bożejko
et al. [2] presents the tabu search algorithm for solving the 1||

∑
wiTi problem

and the results of computational experiments. On the set of these examples, the
mean relative error of the GRC algorithm is 13.7%.

On the basis of the preliminary calculations of the TS algorithm, the follow-
ing parameter values were determined: the length of the tabu list LLT = 11, the
maximum number of iterations Liter = 2n. The main calculations were made
on the examples described at the beginning of this section. The mean relative
deviation for each group of examples is presented in Table 1.

Table 1. The mean relative deviation of the TS algorithm in reference to GRC.

n m = 2 m = 5 m = 10 m = 20

20 7.2 7.8 9.4 12.7
50 8.0 7.9 8.6 12.6

100 7.9 8.2 9.8 11.3
500 9.3 9.1 1.5 14.1

1000 11.4 12.0 11.6 16.5

average 8.7 9.0 10.3 13.4

This error (the average relative improvement of the solutions determined
by the GRC algorithm) for all computed examples is 10.4%. The lowest value
7.2% is for n = 20 and m = 2 and it grows with increasing number of tasks
and machines. In general, the average errors do not vary much. This is due to
the fact that the P parameter, on which the sizes of the intervals from which
the critical lines di are drawn, depends on the number of machines. The total
computation time for all 2000 examples was 35.5 minutes.

The mean relative error of the TSsub algorithm is 10.3%. Hence, it is almost
identical to the TS algorithm. However, the total computation time decreased
significantly by 21.5%. Thus, the use of elimination properties in the construction
of the algorithm resulted in a significant improvement.

7 Comments and conclusions

In the paper there was an NP-hard task scheduling problem considered with
the earliest requested completion dates. The tasks should be assigned to ma-
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14 W. Bożejko et al.

chines and the order of their execution should be determined so that the sum
of penalties for delays is minimal. Quick methods of calculating the value of the
criterion function and properties have been introduced to enable the elimination
of ’worse’ solutions. The conducted computational experiments have shown that
the use of elimination properties in the construction of the tabu search algorithm
significantly reduces the computation time.
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