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Abstract. This paper focuses on parametrization of one-day time series of elec-

tricity consumption. In order to parametrize such time series data mining tech-

nique was elaborated. The technique is based on the multivariate linear regression 

and is self-configurable, in other words a user does not need to set any model 

parameters upfront. The model finds the most essential data points whose values 

allow to model the electricity consumptions for remaining hours in the same day. 

The number of data points required to describe the whole time series depends on 

the demanded precision which is up to the user. We showed that the model with 

only four describing variables, describes 20 remaining hours very well, exhibit-

ing dominant relative error about 1.5%. It is characterized by a high precision 

and allows finding non-typical days from the electricity demand point of view. 

Keywords: time series, data mining technique, electricity consumption model-

ing, multivariate linear regression. 

1 Introduction 

The load curve of the power system can be considered as a random function of a random 

variable of its load. The power system load curve is formed as a result of the superpo-

sition of consumers individual load curves and is the sum of the components of random 

functions. It should be emphasized that these are functions that have only one imple-

mentation during the considered time interval, and they are also correlated and are sub-

ject to an increase during the year, which is also a random variable. Functions of the 

load of component consumers of the system, and thus functions of the system load, are 

influenced by non-accidental factors [1-3]: (1) Location of the considered area (climate, 

changes in the angle of sunlight beams, changes in the times of sunrise and sunset). (2)  

Features of the power system, the most important of which are: the structure of con-

sumers, the dynamics of economic development, the statutory number of working hours 

within a day and the system of shifts binding in a given country. The above-mentioned 

factors of a non-accidental nature constitute a set of features that determine the course 

of the system load in terms of the process average. 

The load curve of the power system is also influenced by random factors, such as 

changes in temperature [4-6], rainfall, wind speed [7], errors of receiving devices, 
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changes in the structure of electricity consumers, etc. The life rhythm of the population, 

its connection to the variability of seasons, traditions and customs, and the nature of the 

work performed by people to regulate the rhythm of the working and non-working days, 

become enhanced in the variation of the load curve of the power system and are the 

main cause of the phenomenon called load variability. 

Electricity consumers load variation have always been the basis of modeling elec-

tricity demand. Initially, planning and forecasting electricity consumption was mainly 

related to the assurance of electricity delivery. Due to the specific nature of electricity, 

as it cannot be permanently stored, means that its demand and supply should be equal. 

The first electricity consumption models were, therefore, oriented towards forecasting 

electricity demand. Depending on the purpose of model preparation, many types and 

classes of models can be distinguished. The models used in the electricity management 

can be divided into two basic groups. A group of analytical and forecasting models and 

a group of forecasting models. The most intensively developed and studied models are 

prognostic models [8]. Currently, models based on artificial neural networks [9-12] and 

genetic algorithms [13] are most often used in forecasting, due to the fact that prognos-

tic effects obtained with their use provide best results [14-15]. However, the disad-

vantage of these types of models, is that they do not have information about reasons of 

the problems. Based on that, it is difficult to determine which of the factors has the 

strongest impact on the shape of the load. 

In the case of electricity consumption analysis and modeling, the most commonly 

used models are: regression [16, 17], economic processes and time series [17-19], 

which, however, inform about certain tendencies, but not about the causality of the 

phenomenon. In such situation, econometric models that describe phenomena while 

taking into account many external factors are useful.  

Time-series and regression have been extensively used in modelling for decades. In 

electrical engineering, regression techniques are used to model the electric load as a 

function of load consumption in relationship with different dynamics like seasonal pat-

terns, meteorological conditions, day type, customer social class etc. Different regres-

sion techniques (linear, multiple linear, quadratic, and exponential regression models) 

with the hour-by-hour load data based upon a specific day, and considered temperature 

as the variant parameter were used to perform the  hour by hour model for a Grid Station 

in Pakistan [20]. A multiple regression model was performed  for monthly electricity 

demand of New South Wales [21]. The climatic variables such as temperature, humid-

ity, and rainy days appear as the most affective the electricity demand consumption in 

this case. The multivariate linear regression is used to model electricity consumption of 

Jordian Industrial sector as function of variables such as number of establishments, 

number of employees, electricity tariff, prevailing fuel prices, and production outputs 

[22]. 

Undoubtedly, the involvement of many variables provides better explanations which 

of the factors most strongly influences the shape of the load. This, however, requires 

collecting a lot of data, tedious work with processing it and introduction of increasingly 

powerful processors. According to the econometric methodology, there is a gap be-

tween the best (meaning the best compatibility) model and the most economical ap-

proach. The constructed model should be as simple as possible, i.e., contain the smallest 
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possible number of variables, and explain the fluctuations of the analyzed dependent 

variable as precise as possible. Usually, the first choice for modeling is a linear regres-

sion model estimated by the least squares’ method. This method enables deterministic 

dependencies modeling. The ability to describe a given phenomenon in terms of deter-

ministic components lets us predict most of the variability. In this paper, we present a 

method that finds a subset of the points that are enough to recreate the entire electricity 

demand curve for a given time allocation. It turns out that it is enough to know 4 ap-

propriate points to parameterize e.g. one day time series of electricity consumption with 

very good accuracy. With 5 points, the accuracy is already super good. The method 

uses the multivariate linear regression technique. 

2 Motivation  

Electricity consumption depends on many factors like day/night, weekdays/weekends, 

working days/holidays. One must also keep in mind the seasons and environmental 

conditions like temperature and humidity. Let us note that hour is the important factor 

too. The Figure 1a contains all possible electricity consumptions at each hour (the data 

is described in the following chapter). The consumption varies between 0.98104 and 

2.57104 MWh, thus, having the range of 1.56104. However, ranges for the single 

hours are smaller for night hours, they are only about 0.9104 MWh. It is due to two 

groups of reasons: (1) not all combinations of factors’ values exist and (2) behaviors of 

people are typical. First, there is a night at 7 o’clock only during autumn or winter, very 

low temperatures can possibly exist during summer, but they are extremely unlikely. 

Secondly, activities of people, business and public transportation are very limited dur-

ing the night. Those behaviors lead to the relatively low electricity consumption regard-

less of current temperature or humidity. Moreover, the electricity demand does not 

change rapidly between hours. Even, if a number of people start a job at the same time 

they get up at different hours, travel to work for various times and arrive to the work-

place at similar but still different hours. All of those make changes of electricity de-

mands to spread for a few hours even the factors change rapidly, what is visible in 

Figure 1a. The lowest electricity consumptions are concentrated around 6:00 o’clock 

and it takes about 5 additional hours to reach the first local maximum. We can point 

out that the electricity consumptions at different hours are not independent on one an-

other. The dependence between electricity consumptions at various hours is visible in 

Figure 1b. One showed there the differences between current electricity demands and 

electricity consumption at 12:00 o’clock. We have a zero value at 12:00 o’clock but the 

widths of ranges are not growing rapidly when going away of 12:00. Moreover, these 

ranges are not symmetrical around zero. They exhibit bigger values after the 12:00 and 

significantly smaller before. The base hour has been chosen arbitrary but in general we 

observe the following behavior. If the electricity consumption is x [MWh] at the hour 

n, then one observes the expected electricity consumptions at hours n  1 and n  1 in 

some range around x [MWh]. This range will be significantly narrower than the total 

dispersion of electricity consumptions at those hours. Such an „inertia” of electricity 

consumption provides the idea that we can describe time series within the whole day 
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by the consumptions at a relatively small number of hours regardless of other factors. 

In our earlier work [23] we studied many possible factors potentially influencing elec-

tricity consumption. Now, the only independent variable which we take into account is 

hourly electricity consumption. 

Fig. 1. a) Electricity consumption vs hour. Two horizontal lines indicate maximum 

and minimum electricity consumption; b) Difference between the current electricity 

demand and the electricity consumption at 12 o’clock vs hour 

3 The data 

This study was carried out based on the historical data representing total electricity 

consumption in Polish power system [24]. The consumption is denoted on the hourly 

basis covering the time span between January 1st 2008 and June 23rd 2015, what corre-

sponds to 2,731 days. Each consumption is accompanied by additional attributes listed 

in Table 1. 

The electricity consumption is accompanied by the additional 10 attributes, includ-

ing Hour. The majority of the attributes: Year, Month, Day as well as nDay, and nWeek 

are derived from dates (originally in the data set). The date was also complemented by 

the Holiday attribute, which is similar to nDay but additionally to weekends it takes 

into account also holidays. Some of the hours are during sunlight some are not. The 

Night_Day attribute reflects the presence of the sunlight. There are hours when this 

attribute changes its value during the year. The Night_Day is also influenced by time 

changes between winter and summer. The last two attributes are continuous: tempera-

ture and humidity. The data set contains whole days, and it holds 55,536 data points. 

The power system load is presented as the time series in Figure 2a. The vertical line on 

May 3rd 2014 represents the split of the data into the learning and test data subsets. The 

learning data subset was used during the model construction and tuning. The other data 

subset was used for testing and during model evaluation. The first data part contains 

2,314 days and the second one consists of 416 days. 
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Table 1. List of all features/variables used in the model 

Symbol Type Description 

Ener continuous Electricity [MWh] 

Hour discrete The hour  

Year discrete Year’s number 

Month discrete Month’s number 

Day discrete Day of the month 

nDay discrete Day of the week 

nWeek discrete Week of the year 

Holiday boolean Holiday or working day 

Night_Day boolean Night or day  

Tem continuous Temperature 

Hum continuous Humidity 

 

Fig. 2. a) The whole data series; b) Electricity consumption during selected days. 

 

The individual days and weeks are not visible but annual periodicity is clear. The high 

power demands take place during winters, low – during summers. There is a visible 

weak rising trend, but the data was not correct for the trend. The data is smeared verti-

cally due to various days of the week, holidays, temperature, humidity and so on as was 

mentioned earlier. The Figure 2b contains sample daily time series of electricity con-

sumption for selected four days. The attributes of presented days are listed in  

Table 2.  
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Table 2. The attributes of the selected days 

No Data  nDay Working Day Month 

1 2014-12-11 Thursday Yes December 

2 2015-03-19 Thursday Yes March 

3 2014-06-25 Wednesday Yes June 

4 2015-01-01 Thursday No January 

 

The highest power demand is on (1) 2014-12-11, which is weekday in winter (De-

cember). It is a regular working day. Next, (2) 2015-03-19 is also a regular working 

day but during March, month almost always significantly warmer than December. 

Slightly lower demand is experienced on (3) 2014-06-25, the day in June, during sum-

mer. Probably, because it is significantly warmer day than two previous ones, electricity 

consumption is significantly lower. In this case there is no second maximum at evening 

hours. Even lower electricity demand is on (4) 2015-01-01 which is the New Year. The 

electricity consumption starts rising very late and its maximum is at about 18 o’clock. 

Although, we are looking at time series for various seasons, days of the week, etc. we 

can still see common features. There is a local minimum during night hours followed 

by a rising power demand. Next, we can observe small local maximum, wide plateau 

or slow rise. Afterwards, the power consumptions drop a little bit or at least stop rising 

and then rise again towards local maximum. At the end of a day there is a significant 

drop in the power consumption. Described common features and visible smoothness of 

daily time series lead to the idea of the model which is presented below. 

4 Model Construction 

4.1 The model 

The model presented herein is based on a linear multidimensional regression and is self-

configurable – no model parameters have to be set up front. Its purpose is to find the 

most essential data points (hours) whose values allow to model the electricity consump-

tions for remaining hours within the same day. The whole data set consists of the time 

series of hourly electricity consumption. 

In order to build and configure a model, we use a learning subset of data (see Fig-

ure 2a). The remaining data is used for testing purposes of the final model. The de-

scribed variables are hourly electricity consumptions E(h), h = 1, 2,…, 24. The con-

struction of the model is performed in successive steps. Each step expands the model 

by changing the type of one variable from described to describing. During each step 

another hour is chosen till one reaches a demanded accuracy. The procedure starts with 

24 described variables corresponding to 24 hours in step zero. One calculates a root of 

the mean error squared (standard deviation) for each variable: 

 𝑠(ℎ)   = √
1

𝑁
∑ (𝐸𝑖(ℎ) − 𝐸(ℎ)̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1                    (1) 
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where, 𝐸𝑖(ℎ) – electricity consumption at hour h in i-th day, 𝐸(ℎ)̅̅ ̅̅ ̅̅  – average electricity 

consumption at hour h, N – total number of analyzed days. The mean electricity con-

sumption and standard deviation are plotted vs hour in Figure 3. 

 

Fig. 3. Mean energy consumption (blue circles) and standard deviation (green squares) vs hour. 

Now, the first step starts and the hour for which s(h) is the biggest is chosen, in our case 

18 o’clock. This hour is denoted by h1 and an electricity consumption at this hour by 

Ei (h1). The chosen variable is used to construct 23 linear regressions of the form: 

 𝐸𝑖(ℎ) = 𝑎1ℎ𝐸𝑖(ℎ1) + 𝑎0ℎ + 𝜀𝑖   (2) 

where h  1, 2,… , 24 and h  h1, i  1, 2,…, N and a1h, a0h are model parameters. For 

each linear model root of the mean squared error (3) is calculated. 

 𝜎(ℎ) = √
1

𝑁
∑ (𝐸𝑖(ℎ) − 𝐸̂𝑖(ℎ))

2𝑁
𝑖=1  (3) 

where the error 𝐸𝑖(ℎ) − 𝐸̂𝑖(ℎ) is the difference between theoretical and empirical value. 

In the second step the hour corresponding to the biggest (h) – the most poorly de-

scribed variable is chosen: h2  9 (see Figure 4). Now, there are 2 describing and 22 

described variables. The 22 linear regressions of the form (4) 

 𝐸𝑖(ℎ) = 𝑎2ℎ𝐸𝑖(ℎ2) + 𝑎1ℎ𝐸𝑖(ℎ1) + 𝑎0ℎ + 𝜀𝑖 (4) 

are built and another set of (h) is calculated. During the third step, the third describing 

variable is chosen and 21 models are calculated. The procedure is repeated till only one 

described variable will remain or when demanded accuracy will be reached. The values 

of S(h) and (h) are presented in Figure 4. One showed values for steps: 0 and 1 as well 

as another sample steps: 4 and 8. One can notice that the values of (h) for the first step 

are significantly smaller than those obtained during the previous step. In the following 
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steps the values of (h) became smaller. During each step more accurate models are 

constructed, each with one more describing variable but for the price of dropping the 

number of described variables. 
Fig. 4. Values of S(h) for the step zero and (h) for the steps: 1, 4, and 8. 

The procedure finishes with one linear regression with 23 describing variables and 

only one described variable. The biggest, mean and the smallest (h) for modeled hours 

vs step number are plotted in Figure 5. 
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Fig. 5.  Values of S(h) for the step zero and (h) vs step number. There are maximum, mean, and 

minimum values for each step. Inserted plot shows maximal values vs step number in log scale. 

Line represents linear fit to data points starting with step 4. 

The biggest (h), which are taken into account during each step are also plotted in 

logarithmic scale. The progress during the first steps is very big and became smaller 

afterward. For example, having 4 describing variables the most poorly described hour 

has the root of the mean squared error below 500. That means a (h) dropped almost 6 

times in comparison to the starting step when it was almost 3000. We want the error to 

be as small as possible. On the other hand, we want to have as few describing variables 

as possible possessing a model with big support. In the Figure 5 we see that, starting 

from 4 variables the maximum sigma drops systematically according to the exponential 

law. It seems that the optimal number of steps is 4, when we get high accuracy while 

having a small number of describing variables and big support (20 described variables). 

One should keep in mind we take into account the biggest (h), while taking into ac-

count mean (h) we would get even better results – they would drop from about 2200 

to about 250 so approximately 9 times. However, the interpretation of the maximal (h) 

is clearer: a time series is described with the accuracy equal or better than a given sigma. 

For comparison, we present (h) for 4-th and 8-th step in Figure 4. Having 4 and 8 

describing variables we would have the poorest described variables with sigma equal 

to about 500 and 250 respectively. 

4.2 Testing the model 

The last stage is the test of the model with 4 describing variables. The model is based 

on variables related to the electricity consumptions at: h1 = 18, h2 = 9, h3 = 2, and h4 = 

20. They were selected at first four successive steps. The model is described by the 

formula: 

 𝐸𝑖(ℎ) = 𝑎4ℎ𝐸𝑖(ℎ4) + 𝑎3ℎ𝐸𝑖(ℎ3) + 𝑎2ℎ𝐸𝑖(ℎ2) + 𝑎1ℎ𝐸𝑖(ℎ1) + 𝑎0ℎ + 𝜀𝑖  (5) 
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We use test data set – the last 9 984 hours that corresponds to 416 days. We com-

pared empirical time series of electricity consumptions for one day with those provided 

by the model. Results for sample days are presented in Figure 6. The red markers indi-

cate empirical, black – theoretical data, and open circles indicate describing variables. 

Attributes of the selected days were listed in Table 2. 

Fig. 6. Empirical (red dots) and theoretical (black dots) electricity consumptions for selected 

days: (a) 2014-12-11, (b) 2015-03-19, (c) 2014-06-25, (d) 2015-01-01. Theoretical values are 

provided by the model (5) with 4 describing variables indicated by open circles. 

Although presented plots are for different days of weeks, seasons and environmental 

conditions (thus having various shapes), the model describes data well. However, some 

discrepancies are visible. The shapes of the empirical and theoretical plots are similar 

to each other. Let note that the majority of the differences are between 1% and 1%. 

The biggest differences are for New Year 2015-01-01 10:00 and 14:00 o’clock (see 

Figure 6). In order to investigate the model quality in the complex manner, we defined 

the model quality measure given by the formula (6): 
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𝑄(𝑖) = √
1

20
∑ (𝐸𝑖ℎ−𝐸̂𝑖ℎ)2

24

ℎ=1

1

20
∑ 𝐸̂𝑖ℎ

24

ℎ=1
⁄ ,                                     (6) 

where, h  h1, h2, h3, h4 and i = 1, 2, … N. Measure (6) is a relative root of the mean 

squared error. Figure 7a contains values of the quality measure Q(i) for the full range 

of the test data set. Presented results indicate a very high quality of the model in the 

entire data range. Moreover, there is no visible trend of values of Q(i). The distribution 

of the measure values is presented in Figure 7b, while the distribution of the log-values 

is in Figure 7c. One can notice that the distribution of the measure values has a shape 

similar to a log-normal. The distribution starts at about 0.5%, has the maximum at 1.5% 

and falls rapidly thereafter. Almost all measure values (95%) are within the range of 

0.5% - 2.8%, however there are a few high spikes, the highest reaches almost 7%. We 

investigated attributes of days related to the highest six values of the quality measure: 

7%, and three around 5% and two about 3.5%. They are listed in the  

Table 3. 

 

Fig. 7. a) Quality measure Q(i) for each day in test data set; b) Distribution of quality measure 

values; c) Distribution of logarithm of quality measure values. 

Table 3. Days with the highest values of the quality measure. All the days are holydays (names 

in brackets) 

Data Week Day Q(i) [%] 

2014-11-01 Saturday (All Saints' Day) 6.89 

2014-12-24 Wednesday (Christmas) 4.31 

2015-01-01 Thursday (Labour Day) 4.43 

2015-04-05 Sunday (Easter) 5.11 

2015-04-12 Sunday (Orthodox Easter) 3.59 

2015-06-04 Thursday (Corpus Christi) 3.44 
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If the days with the highest values of the measure are not typical, that would explain 

the differences between the model and data. The first spike is on the first of November 

– a holiday. All Saints’ Day is celebrated solemnly in Poland. It is a bank holiday during 

which people travel a lot to visit family graves. Additionally, in 2014 this day was on 

Saturday, which favored trips. That’s why the spike in this case was so strong. We deal 

with not a typical day. The second spike is in Christmas Eve which occurred on 

Wednesday. It is worth to point out that during Christmas, next two days are non-work-

ing days in Poland, thus, there was so called long-weekend: Thursday-Sunday. The next 

spike was related to the New Year, which was on Thursday. There is a common practice 

in Poland to take the next day off and have a long weekend. The fourth spike occurred 

during Easter Sunday, while the next day is also a bank holiday in Poland. The last two 

spikes are lower than previous ones. The first one corresponds to Orthodox Easter, hol-

iday celebrated by the biggest religious minority in Poland. The next day is also cele-

brated by them. The last spike occurs on Thursday (Corpus Christi bank holiday) and 

it makes a long weekend possible. All the most deviated days are related to the bank 

holidays which are the first days of groups of non-working days. They surely cannot be 

regarded as typical. To conclude, the elaborated model can be used to distinguish non 

typical days from the electricity consumption point of view. 

5 Conclusion 

In this work, the hourly electricity consumption was investigated. In order to describe 

shapes of time series during each day, the data mining model was elaborated. The model 

uses the multivariate linear regression technique. Its aim is to find points in data series 

which will describe remaining data points in the same day. The construction of the 

model is performed in steps and every step improves the accuracy but lowers support. 

It is up to the user when to stop a construction of the model and, thus, obtaining required 

precision. The accuracy was measured as a maximum root of the mean squared error. 

Based on the Polish data, we showed that the model with 4 describing variables, de-

scribes 20 hours remaining very well, exhibiting dominant relative error about 1.5%. 

The model describes data very well, independently on season, temperature time series, 

humidity, or day of the week. It is characterized by a high precision and allows finding 

non-typical days from the electricity demand point of view.  

During future studies this model will be used for classification of the daily electricity 

demand profiles as well as for finding non-typical electricity consumptions. The model 

will be also used for identification factors influencing electricity consumption at differ-

ent hours of day. We also expect to obtain good results during a prognosis of the elec-

tricity demand. 
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