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Abstract. Dense wavelength division multiplexed networks enable op-
erators to use more efficiently the bandwidth offered by a single fiber
pair and thus make significant savings, both in operational and capi-
tal expenditures. In this study traffic demands pattern forecasts (with
probability) in subsequent years are calculated using statistical methods.
Subject to results of statistical analysis numerical methods are used to
calculate traffic intensity in edges of a dense wavelength division multi-
plexed network both in terms of the number of channels allocated and
the total throughput expressed in gigabits per second. For the calcula-
tion of traffic intensity a model based on mixed integer programming
is proposed, which includes a detailed description of optical network re-
sources. The study is performed for a practically relevant network within
selected scenarios determined by realistic traffic demand sets.

Keywords: DWDM System Design · Optical Network Optimization ·
CDC-F technology · Optical Node Model · Network Congestion · Mixed
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1 Introduction

Optical networks based on Dense Wavelength Division Multiplexing (DWDM)
technology form the backbone of today’s telecommunications industry. To meet
ever increasing traffic demands DWDM systems undergo constant development
aimed at increasing the network capacity. For this purpose new concepts within
DWDM network paradigm are proposed and studied, e.g. Ultra Wideband DWDM
(UW-DWDM) systems or Space Division Multiplexing (SDM) systems.
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From the network operator point of view, the ever increasing demand for high
speed data services translates into the need to continually upgrade the networks
to increase the data transmission rate per optical fiber. In currently deployed
optical networks, which are based on single core fibers, the data transmission rate
can be increased by using either a larger per-channel bit rate or by increasing
the number of available channels [9].

Existing fiber optic networks that operate in C-band (1530 nm to 1565 nm)
typically support up to 96 channels of 50 GHz bandwidth. The selection of
the C-band for optical long-haul communications is low light attenuation in
silica glass fiber and availability of high quality, low cost erbium ion doped
fiber amplifiers (EDFAs). Additional capacity in C-band DWDM systems can
be gained by using flexible grid, which enables provisioning flexible size DWDM
channels with bandwidth as small as 12.5 GHz and the carrier wavelength step of
6.25 GHz. This allows for a more effective use of the available bandwidth within
the C-band by reducing the guard bands. A significant proportion of operational
expenditure for such networks is the cost of fiber lease which is usually quoted
per fiber length unit [1].

During the last decade attention of the telecommunication community has
been concentrated on Routing and Wavelength Assignment (RWA) and Routing
and Spectrum Allocation (RSA) problems in static [6, 7, 3, 8] and dynamic [17,
18, 4] environment. This study concentrates on the analysis of DWDM networks,
which not only pertains to the traffic present in the network but also allows for
gaining insight into the future network development needed to meet the predicted
demands matrix evolution.

In this article a statistical analysis of network traffic is performed based on
the empirical data and used to calculate traffic forecasts. The application of sta-
tistical methods leads to calculation of the elements of the traffic demands matrix
and their forecasts for the coming years. Subject to calculated values of the traf-
fic demands matrix elements numerical methods are applied to calculate traffic
intensity in the edges of a dense wavelength division multiplexed network both
in terms of the number of channels allocated and the total throughput expressed
in gigabits per second. For the calculation of traffic intensity a model based on
integer programming is proposed, which includes a detailed description of opti-
cal network resources. Integer programming performs network cost optimisation
subject to given data on traffic demand pattern predictions for subsequent time
periods that was obtained using the aforementioned statistical methods. Net-
work topology used in the simulations is realistic and representative for optical
networks, and stems from [10].

The rest of the paper is organized as follows. In the second section, the mathe-
matical background relevant to the applied optimizing procedures and statistical
analysis is considered. In the third section, the usefulness of the proposed the-
oretical model is discussed in the context of the empirical data and is followed
by a concise summary given in the last section.
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2 Problem formulation

As the case study a Polish network was selected (Figure 1). Empirical data on the
actual demand for transmission rates in the network between individual cities is
not available. Real data on the volume of demand and the resulting transmission
rates is usually proprietary to companies providing telecommunication services.
Due to these constraints, the demand bandwidth for the access in the network
nodes were determined assuming that the maximum demand for the bandwidth
is a combination of demographic7(the percentage share of people aged over 14 in
the cities of Poland considered) and the percentage of households with broadband
access in 6 Polish macro-regions and separately for the Mazowieckie Voivodeship8

in the period 2010-2019. Based on the above empirical data, optimal demands
were determined, as well as their forecasts for 2020-2024.
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Fig. 1: Schematic diagram of Polish national transmission optical network.

It is noted that the selection of the forecasting method depends on the phe-
nomenon that one wants to forecast. The construction of long-term forecasts
and the related methodology assumes that the time series of empirical data on

7 based on Statistics Poland data
8 based on Eurostat
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the basis of which these forecasts are built meet at least stationary condition in
wide-sense (the 1st moment and autocovariance do not depend on time t and
the 2nd moment is finite for all t). Otherwise, short-term forecasts are made
(for several periods ahead more about the use of short-term forecasting meth-
ods in [13–16]). Due to the very short time series of observations yt available
in this study, basic forecasting tools were used and short-term forecasts were
made. Therefore, a linear or logarithmic trend depending on the nature of the
empirical data was applied to model demand and objective function values. For
the case studied the obtained estimates of the trend function parameters, from a
statistical point of view, are significant (p-value for each estimated parameter of
the corresponding trend model is < 0.05, where 0.05 - a significance level) and
the coefficient of determination R2 is greater than 85%, reaching 98.5% in some
cases, which means that the model is very well fit to empirical data.

One of the goals of this article is to determine the point forecast and the in-
terval forecast with the appropriate probability. The N(µ, σ) distribution, boot-
strap or resampling methods are usually used to determine the limits of the
forecast confidence interval. In our case, due to the very small number of ob-
servations, the above methods cannot be used (the distribution of the et is not
characterized by N(µ, σ)). Therefore, a point forecast was determined for each
edge, and then, taking into account the distribution of et residuals, as well as
the naive forecast of et, the minimum and maximum forecast values were de-
termined for this edge with an appropriate probability of its implementation
(assumption: invariance of distribution of residuals et). For example, in the case
of the Wroclaw-Lodz edge, the histogram of residuals eWrLo for 3 classes gives
the following distribution of values: −0.0059,−0.0022, 0.0014, 0.0051 with the
respective probabilities: 0.2, 0.5 and 0.3 for the intervals: {−0.0059,−0.0022},
{−0.0022, 0.0014}, {0.0014, 0.0051}, where eMINWrLo

= −0.0059 is its left limit,
and eMAXWrLo

= 0.0051 right limit. Based on the predicted theoretical value of
ŷWrLot from the model and the dependence yt = et + ŷt, the ”real” value can
be determined. The coefficients of the lower and upper matrix of the predicted
values of ŷt with the appropriate probability were determined in a similar way.

Knowing: a) the distribution of the residuals et over the period 2010 – 2019, b)
the probability of meeting the maximum and minimum demand (in the figures as
Max and Min, respectively) during the period 2010 – 2019 and c) point forecasts
for 2020 – 2024, the thresholds have been set for the forecast between 2020 and
2024 to be realised with appropriate probability. Due to the problem of network
congestion, which is taken into account here in particular, the main focus is on
the top end of the ŷmax range, i.e. the maximum value of demand realised and
probability of their occurrence.

Finally, one calculates the demand matrix elements, which provide the values
of traffic flow between selected nodes expressed in Gbps. An example of a matrix
of coefficients based on empirical data described in Section 2 only for level 0, and
the corresponding demand matrix in 2020 for level 0 as well as additionally for
the Min and Max levels with the probability of their occurrence (in parentheses)
for the network in Fig. 1 are presented in tables 1-4 respectively.
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Table 1: An example of coefficient matrix: forecast, 2020, level 0.
2 3 4 5 6 7 8 9 10 11 12

1 0.109 0.0758 0.1007 0.1624 0.1007 0.1514 0.1307 0.087 0.1144 0.3012 0.1457
2 0.061 0.0859 0.1476 0.0859 0.1366 0.1159 0.0722 0.0996 0.2864 0.1309
3 0.0527 0.1145 0.0528 0.1035 0.0827 0.039 0.0665 0.2532 0.0977
4 0.1393 0.0776 0.1283 0.1076 0.0639 0.0914 0.2781 0.1226
5 0.1393 0.19 0.1693 0.1256 0.1531 0.3398 0.1843
6 0.1283 0.1076 0.0639 0.0914 0.2781 0.1226
7 0.1583 0.1146 0.1421 0.3288 0.1733
8 0.0939 0.1213 0.3081 0.1526
9 0.0776 0.2644 0.1089
10 0.2919 0.1363
11 0.3231

Table 2: An example of demands matrix: forecast, 2020, level Min (probability).
2 3 4 5 6 7 8 9 10 11 12

1 1293 898 1190 1917 1201 1799 1543 1040 1353 3585 1728
(0.3) (0.2) (0.2) (0.2) (0.3) (0.4) (0.2) (0.5) (0.2) (0.3) (0.1)

2 724 1016 1745 1019 1619 1369 859 1179 3412 1548
(0.3) (0.2) (0.2) (0.3) (0.4) (0.2) (0.4) (0.2) (0.4) (0.2)

3 624 1354 619 1223 974 459 784 3021 1145
(0.2) (0.3) (0.2) (0.3) (0.2) (0.2) (0.2) (0.4) (0.2)

4 1652 913 1518 1269 753 1079 3318 1436
(0.3) (0.3) (0.5) (0.2) (0.2) (0.2) (0.4) (0.2)

5 1651 2257 1997 1492 1808 4048 2179
(0.4) (0.4) (0.2) (0.4) (0.2) (0.4) (0.3)

6 1513 1271 752 1077 3313 1440
(0.3) (0.2) (0.4) (0.2) (0.4) (0.2)

7 1872 1353 1680 3918 2053
(0.3) (0.3) (0.3) (0.4) (0.2)

8 1110 1430 3664 1814
(0.2) (0.2) (0.2) (0.3)

9 917 3153 1275
(0.2) (0.4) (0.1)

10 3475 1616
(0.3) (0.3)

11 3853
(0.3)

Table 3: An example of demands matrix: forecast, 2020, level 0.
2 3 4 5 6 7 8 9 10 11 12

1 1307 910 1208 1949 1208 1817 1568 1044 1373 3614 1748
2 732 1030 1771 1031 1639 1390 866 1196 3437 1570
3 633 1374 633 1242 993 468 798 3039 1173
4 1672 931 1540 1291 767 1096 3337 1471
5 1672 2281 2032 1507 1837 4078 2212
6 1540 1291 767 1097 3337 1471
7 1900 1375 1705 3946 2080
8 1126 1456 3697 1831
9 932 3173 1306
10 3502 1636
11 3877

Once the elements of the demand matrix are determined the data traffic
intensity in edges of the analysed network are calculated using Mixed Integer
Programming (MIP). For this purpose the following sets are defined:
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Table 4: An example of demands matrix: forecast, 2020, level Max (probability).
2 3 4 5 6 7 8 9 10 11 12

1 1321 918 1220 1972 1221 1833 1577 1056 1383 3636 1760
(0.2) (0.3) (0.3) (0.2) (0.2) (0.3) (0.4) (0.2) (0.4) (0.3) (0.3)

2 740 1042 1798 1040 1654 1400 875 1205 3461 1580
(0.2) (0.3) (0.2) (0.3) (0.3) (0.4) (0.3) (0.4) (0.3) (0.4)

3 646 1402 634 1257 997 469 801 3066 1173
(0.2) (0.2) (0.6) (0.4) (0.5) (0.6) (0.5) (0.3) (0.6)

4 1716 943 1569 1302 780 1109 3379 1469
(0.2) (0.4) (0.4) (0.4) (0.4) (0.2) (0.2) (0.6)

5 1704 2329 2057 1540 1864 4135 2230
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.4)

6 1554 1296 773 1100 3364 1478
(0.4) (0.5) (0.5) (0.5) (0.4) (0.5)

7 1915 1391 1720 3990 2097
(0.4) (0.4) (0.4) (0.4) (0.3)

8 1131 1462 3721 1846
(0.4) (0.5) (0.3) (0.4)

9 935 3201 1310
(0.4) (0.4) (0.6)

10 3527 1646
(0.3) (0.4)

11 3897
(0.3)

N set of all nodes
T set of transponders
S set of frequency slices
E set of edges
P(n,n′) set of paths between nodes n, n′ ∈ N ; p ⊆ E
B set of bands
Sb set of frequency slices used by band b ∈ B; Sb ⊆ S;

⋃
b∈B
Sb = S

St set of frequency slices that can be used as starting slices for transponder
t ∈ T ; St ⊆ S

The following objective cost function is optimized using a MIP algorithm
subject to the listed below constraints:

min
{∑

b∈B

{
ξ1(b)

∑
e∈E

ybe +
∑
t∈T

ξ2(t, b)
∑

n,n′∈N

∑
p∈P(n,n′)

∑
s∈St

xtnn′ps

}}
(1)

where, ξ1(b) is a cost of using band b at a single edge, ybe is a binary variable,
equals 1 if band b is used on edge e and 0 otherwise, ξ2(t, b) is a cost of using a
pair of transponders t in band b and xtnn′ps is a binary variable that equals 1 if
transponders t are installed between node n and node n′, routed on path p, and
starting on frequency slice s ∈ St and 0 otherwise.

In the model the following three constraints have been included:∑
t∈T

∑
p∈P(n,n′)

∑
s∈St

v(t)xtnn′ps ≥ d(n, n′) ∀n, n′ ∈ N (2)
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where, v(t) is a bitrate provided by transponder t and d(n, n′) is a bitrate de-
manded from node n to node n′.

xtnn′pshν(b)c(t)∆(t)
∑
e∈E

w(n, n′, p, e)·

·
(
f(e)(e

λ(s)l(e)
1+f(e) + V − 2) + (e

λ(s)l(e)
1+f(e) +W − 2)

)
≤ P0

∀t ∈ T , ∀n, n′ ∈ N , ∀p ∈ P(n,n′), ∀b ∈ B, ∀s ∈ Sb

(3)

where, h is the Planck constant equal to 6.62607004 ·10−34m2kg/s, ν(b) is a fre-
quency of band b, c(t) is an Optical Signal to Noise Ratio (OSNR) of transponder
t, which has been calculated using the standard formula, c.f. [2, 12, 11, 5]. ∆(t) is
the bandwidth used by a transponder t, f(e) is a number of In-Line Amplifiers
(ILAs) evenly distributed over edge e to re-amplify the signal in order to prevent
OSNR from dropping to a very small value, λ(s) is a loss per km using slice s,
l(e) is a length of edge e, V is the gain of ILA, W is the gain of fibre amplifier
that compensates the nodal loss while the transmitter output power for a single
WDM channel is assumed to equal to 1 mW and is represented by P0. Finally, a
constraint is added for avoiding duplicate allocation of the same wavelength in
an edge:

∑
t∈T

∑
n,n′∈N

∑
p∈P(n,n′)

∑
s∈St

w(n, n′, p, e)u(t, s, s′)xtnn′ps ≤ ybe

∀e ∈ E , ∀b ∈ B, ∀s′ ∈ Sb
(4)

where, w(n, n′, p, e) is a binary constant that equals 1 if a path p between nodes
n and n′ uses edges e and 0 otherwise, u(t, s, s′) is a binary constant that equals 1
if transponder t using bandwidth starting at frequency slice s also uses frequency
slice s′ and 0 otherwise.

The subject of minimization is the cost of installed amplifiers and transpon-
ders in (1). Constraints (2) ensure that all demands are satisfied. Constraints (3)
ensure that all installed transponders are routed in such a way that their power
budgets are not exceeded. Notice that these constraints can be precalculated and
reduced to xtnn′ps = 0 for some combinations of indices and removed for other
combinations. Finally, (4) ensure that using a band results in installing appro-
priate amplifiers. Notice that these constraints also ensure that each frequency
slice at each edge is not used more than once. It is noted that the constraints
included do not allow for considering nonlinear interactions and resulting signal
impairments.

Once the MIP problem is solved the number of the allocated channels and
total throughput for each network edge is determined, which is the objective of
this study. Section 3 provides illustrative examples for the network studied.
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3 Results and Discussion

This section presents the results of computational experiments obtained by ap-
plying algorithms described in section 2 to empirical data collected over the time
span ranging from year 2010 until 2019. The objective of the simulations is first
to forecast the elements of the demand matrix for the next years (2020 – 2024)
and to calculate traffic intensity in the edges of a dense wavelength division mul-
tiplexed network both in terms of the number of channels allocated and the total
throughput expressed in gigabits per second. Once the results are obtained the
identification of the bottlenecks of the network studied is performed with intent
to predict the time at which the capacity of a given network edge will achieve
its limit and also to find network edges, which do not carry traffic.

Computational results were obtained for Polish national network, which topol-
ogy is depicted in Fig. 1. The topology of the network was taken from [10]. The
analyzed network consists of 12 nodes, 18 links and 66 traffic demands. The traf-
fic demands (demand matrix elements) were calculated using statistical methods
described in section 2.

3.1 Simulation parameters

Table 5a describes in detail the sets used by the optimisation procedures while
Table 5b lists modelling parameters used for performing computations. Note,
that the constants given in the first column of Table 5b are defined in section 2.

Table 5: Sets and modelling parameters description.
Set Set settings

N 12

E 18

S 96 slots (opt. ch.)

B 1 band

T 3 transponders

Sb S1 = {1 . . . 96}

St

S1 = {1 . . . 95}
S2 = {1 . . . 95}
S3 = {1 . . . 95}

(a) Set settings.

Constant Constant settings

bitrate [Gbps] v(1) = 100, v(2) = 200, v(3) = 400

OSNR[dB] c(1) = 12, c(2) = 15, c(3) = 22

d(n,n’)[Gbps] an example in Tables 2 – 4

ξ2(t, b) ξ2(1, 1) = 5, ξ2(2, 1) = 7, ξ2(3, 1) = 9

∆(t)[GHz] ∆(1) = ∆(2) = ∆(3) = 50

ν(b)[THz] ν(1) = 193.8

λ(s)[dB/km] λ(s) = 0.046

W,V [dB] 15

P0[W] 10−3

(b) Constant settings.

The calculations were carried out using a linear solver engine of CPLEX
12.8.0.0 on a 2.1 GHz Xeon E7-4830 v.3 processor with 256 GB RAM running
under Linux Debian operating system. The average calculation time for one
particular result was approximately equal to 1800 s.
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3.2 Results

Figure 2 presents the percentage of allocated channels in a network edge cal-
culated for the empirical data, i.e. up until year 2019 whilst Figs 3 – 5 show
analogous results calculated for the statistically estimated forecasts, i.e. years
2020 – 2024. The results shown in Figs 2 – 5 are presented in a form of network
maps, which helps fast identification of network edges, which are either unused
or used to the full capacity.
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Fig. 2: The percentage of bandwidth used for all edges: 0%-70% - solid line,
71%-90% - dashed line, 91%-99% - dotted-dashed line and 100% - dotted line;
empirical data, 2010-2019.

Figures 6 – 7 show the values for the number of the allocated channels and
total throughput for given years calculated for the empirical data (Figure 6,
years 2010 – 2019) and forecasts (Figure 7, years 2020 – 2024). The values of
the allocated channels and total throughput were obtained by summing over all
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Fig. 3: The percentage of bandwidth used for all edges: 0%-70% - solid line,
71%-90% - dashed line, 91%-99% - dotted-dashed line and 100% - dotted line in
levels: Min, 0, Max; forecast, 2020.
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Fig. 4: The percentage of bandwidth used for all edges: 0%-70% - solid line,
71%-90% - dashed line, 91%-99% - dotted-dashed line and 100% - dotted line in
levels: Min, 0, Max; forecast, 2022.
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Fig. 5: The percentage of bandwidth used for all edges: 0%-70% - solid line,
71%-90% - dashed line, 91%-99% - dotted-dashed line and 100% - dotted line in
levels: Min, 0, Max; forecast, 2024.
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network edges. Based on the results presented in Figs 2 - 5 one can make several
observations that are potentially relevant to a network management team:

– some edges are not used at all, e.g. the edge Bialystok - Gdansk, Lodz -
Wroclaw and Poznan - Bydgoszcz (Figure 2a), or Gdansk - Bialystok and
Bydgoszcz - Poznan (Figure 2d),

– for the empirical data (Figure 2), up to 16 edges were used between 2010
and 2019, out of the total of 18 possible edges. For the forecasts (Figure 3 –
5b) 17 edges were used out of 18 possible,

– in the last year of empirical data (Figure 2d), even though as many as 6
edges reached saturation, still 2 edges were not used at all. The utilisation
of further edges takes place in the year 2020 (Figure 3b), but instead some
other edges are relieved,

– in the initial forecast period (2020), the network still large proportion of
not allocated resources (Figure 3b). In contrast, in 2022 – 2024 increasingly
many edges reach saturation (Figure 4b – 5b).
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Fig. 6: Relationship between number of occupied channels (black triangles) and
total capacity (grey squares) for empirical data in 2010 – 2019.
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(b) forecast (level 0)

2020 2021 2022 2023 2024
years

1200

1250

1300

1350

1400

1450

1500

nu
m

be
r 

of
 a

llo
ca

te
d 

ch
an

ne
ls

90

95

100

105

110

115

120

125

to
ta

l t
hr

ou
gh

pu
t 

[T
bp

s]
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Fig. 7: Relationship between number of occupied channels (black triangles) and
total capacity (grey squares) for forecast data.
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Figures 6 and 7 show optical bandwidth utilisation (number of occupied
optical channels) and total network capacity (throughput) for empirical and
forecast data (in 2020 – 2024). Based on the presented results one can observe
that:

– the increase in number of optical channels roughly corresponds to the in-
crease in throughput for the empirical data,

– growth of total throughput for forecasts is nearly linear, while there is a large
deviation from linearity for the number of optical channels.

4 Conclusion

The paper presents the analysis of fiber bandwidth utilization in DWDM opti-
cal network using statistical methods for the estimation of the demands matrix.
The presented study provides methods for forecasting the matrix of traffic de-
mands for the next years and for identification of both the bottlenecks in the
network and network edges that are not used. Such an analysis is very useful
to the telecommunication network operators, as it allows for optimal use of the
allocated resources and aids the process of network expansion planning. This is
because the results obtained allow assessing the need for additional investment
into the DWDM network infrastructure. Hence, the developed model predicts
the network edges that are most likely to be subjected to traffic congestion.
This allows the network operator to plan in advance the network expansion and
allocate appropriate means for the necessary capital expenditure.

To the best of the authors’ knowledge, there are no publications in available
literature on the problem considered in this contribution. Thus, this paper in
a way initiates this topic and potentially can become a benchmark for future
research.

Further research will be focused on improving the stochastic forecasting
model to include the access and backbone network interfaces. In addition, mod-
eling different network expansion scenarios taking into account existing network
topologies and additional edge extensions. The cost function will include part of
capital expenditures and operating expenditures. Additionally, we plan to use
nature-inspired algorithms as additional heuristic methods to solve the problem.
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