
Przemysław Ignaciuk and Adam Dziomdziora 

 Intelligent Planning of Logistic Networks to Counteract 

Uncertainty Propagation 

Przemysław Ignaciuk1[0000-0003-4420-9941] and Adam Dziomdziora2[0000-0002-9667-8689] 

Lodz University of Technology, 215 Wólczańska St., 90-924 Łódź, Poland 
1 przemyslaw.ignaciuk@p.lodz.pl 

2 adam.dziomdziora@dokt.p.lodz.pl 

Abstract. A major obstacle to stable and cost-efficient management of goods 

distribution systems is the bullwhip effect – reinforced demand uncertainty 

propagating among system nodes. In this work, by solving a formally estab-

lished optimization problem, it is shown how one can mitigate the bullwhip ef-

fect, at the same minimizing transportation costs, in modern logistic networks 

with complex topologies. The flow of resources in the analyzed network is gov-

erned by the popular order-up-to inventory policy, which thrives to maintain 

sufficient stock at the nodes to answer a priori unknown, uncertain demand. 

The optimization objective is to decide how intensive a given transport channel 

should be used so that unnecessary goods relocation and the bullwhip effect are 

avoided while being able to fulfill demand requests. The computationally chal-

lenging optimization task is solved using a population-based evolutionary tech-

nique – Biogeography-Based Optimization. The results are verified in extensive 

simulations of a real-world transportation network. 

Keywords: Transportation Networks, Time-Delay Systems, Population-Based 

Optimization 

1 Introduction 

The bullwhip effect (BE) is a serious systemic distortion in logistic systems, manifest-

ing itself as an enhanced variability of demand transmitted into the goods ordering 

signal. In addition to lowered earnings, it leads to unnecessary shipments, prolonged 

delays, and resource accumulation at subsidiary nodes. Thus far, its impact has been 

assessed primarily from local and chain-structure perspectives. In contrast, here, the 

BE formation and countermeasures are investigated in the context of modern net-

worked systems, not restricted to specific, reduced topologies. 

Forrester laid grounds for the BE examination in [1], with continued studies related 

to its formation within production-distribution environments reported later in [2]–[4]. 

The principal factors affecting the goods flow fluctuation in basic architectures were 

discussed by Lee et al. in [5] and [6], and in current settings in [7]–[9]. The essential 

BE triggers include: inaccurate demand prediction, production rate mismatch, non-

negligible transportation time, batch arrangement, and price variations. A comprehen-
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sive classification of the BE causes in modern systems is given by Lin et al. in [10], 

with focalized treatment of erroneous stock level records in [11]. 

Besides seeking its origins, many scientists worked on techniques of decreasing the 

negative impact of the BE on supply system performance [12]–[15]. They emphasized 

statistical analysis and operations research methods. Another promising approach was 

to apply robust control techniques [16]–[19]. However, in practical installations, tradi-

tional methods are still preferred, e.g., order-up-to (OUT) policy. The BE formation in 

the systems organized in serial and arborescent configurations governed by the OUT 

policy has been examined in [20]. Preliminary treatment of mesh-type topologies has 

been given in [21]. A modified OUT policy, destined for centralized system manage-

ment, was optimally tuned for holding and lost-sales costs reduction in [22].  

In real-world logistic systems, the optimization typically targets delays and holding 

or transportation costs reduction. Finding the optimal solution for the considered ob-

jective functions, either analytically or numerically (e.g., through full search), is chal-

lenging. Therefore, non-weighted procedures, e.g., alternating, hierarchical, or phased 

optimization techniques, are applied. For example, to minimize both the whole-time 

cost of travelers and the number of essential transfers in a transit system, Arbex and 

da Cunha [23] introduced Alternating Objective Genetic Algorithm. As opposed to 

the traditional one [24], [25], it allowed them to use local search methods to deal with 

infeasibility of newly created individuals. Also, improved Simulated Annealing has 

recently been considered in the optimization of transportation networks [26]. Howev-

er, the applied objectives overlook a fundamental problem that face modern systems: 

to work efficiently in a time-varying, perturbed environment. Hence, in this work, the 

OUT policy optimization explicitly targets reduction of a systemic distortion – the 

BE.  

The considered class covers systems with an arbitrary configuration, with goods re-

flow subjected to non-negligible time delay. The popular OUT inventory policy gov-

erns lot sizing. The objective is to plan the network structure, i.e., to decide how in-

tensively a given transportation route (channel) of goods distribution should be used 

to avoid the BE. As a result, a matrix of coefficients yielding reduced BE and trans-

portation costs within a given time horizon is obtained. The coefficients may also be 

interpreted in terms of order splitting, i.e., which part of an order established by a 

controlled node is to be retrieved from a given supplier (a nearby controlled node or 

an external source). The optimization task is solved with one of recent evolutionary 

techniques – Biogeography-Based Optimization (BBO). The acquired tuning guide-

lines for the coefficient adjustment are straightforward in implementation and do not 

require considerable computational effort to calculate. As shown in the conducted 

research, the commonly exercised omission of the planning aspect through uniform 

lot partitioning among the transport channels is incorrect since it leads to reinforced 

perturbation and larger costs. The proposed intelligent planning technique enables one 

to place the goods distributor in a desirable situation with respect to the competition, 

reduces transportation costs, and throttles down the BE within the system. 
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2 Bullwhip effect in transportation networks  

An example supply chain is illustrated in Fig.1, with S1 – the external supplier, u1, u2, 

…, ui – ordering signals, and d1, d2, …, di – imposed demands. 

u1 ui

ni S1   n1

d1 di

 

Fig. 1. Serial connection of n nodes. Resources are supplied by external source S1.  

The arrows reflect the flow of information. 

 

In [27], several indicators used to quantify the BE in serial structures, both in the time 

and the frequency domain, have been examined. One of the most popular ones is the 

order-to-demand variance ratio [28]. At node i, this bullwhip indicator (BI) is calcu-

lated as: 

 
var[ ]

,
var[ ]

i
i

i

u
b

d
=  (1) 

where var[] denotes variance. Value bi >1 means that at echelon i, the BE has been 

triggered. 

 

In the nominal operating conditions, the OUT policy guarantees that for any demand 

pattern  

 1 2 ... 1,nb b b= = = =  (2) 

and the BE is absent [18].  

Assuming that signals d1, …, di are not correlated (given the knowledge about the 

demand imposed at a node, one should in principle not judge about the demand at 

other nodes), the BI can be measured having both internal and external demand incor-

porated as: 

 
1 1

var[ ] var[ ]
.

var[ ] var[ ] var[ ]

i i
i

i i i i

u u
b

d u d u− −

= =
+ +

 (3) 

Nonetheless, to estimate the system propensity to the BE formation in current sys-

tems, one should examine more involving topologies than a serial chain. An example 

networked structure is illustrated in Fig. 2, where n1–3 denote controlled nodes, S1.2 are 

external sources, and d1–3 is the exogenous demand imposed on the system. 
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n2

n3

S2

S1
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d2

u1
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Fig. 2. A five-node transportation network. 

In the system from Fig. 2, intuitively, the BE will be triggered when variance increase 

between the external replenishment signal u = [u1 u2]T and the imposed demand d = 

[d1 d2 d3]T is observed. Unlike the serial structure, the BI takes a matrix form – B – 

determined from the relation: 

 
1

11 12 131

2

21 22 232

3
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B

 (4) 

 

It is evident, that the application of indicators for serial connection is not sufficient to 

quantify the BE in a networked configuration, even in the basic setting from Fig. 2. 

Moreover, equation (2) does not hold in the networked case. Different measures are 

thus needed. 

As opposed to the serial configuration, in which one may directly indicate the mar-

ginal nodes and use them to establish a BI within the transportation system, there is a 

limited possibility to adopt such approach in a networked environment. The absence 

of feasible measurement methods, providing the BE quantification in networked sys-

tems, motivates the search for alternatives [29]. The introduced indicator should allow 

the BE quantification, considering the networked topology as a holistic, multi-input 

multi-output entity. Hence, it shall relieve the complexity of determining each entry 

of matrix B. For the BE quantification in networked structures, a vector-based meas-

ure will be defined. 

Instead of focusing on a particular node, all the demand and external replenishment 

signals will be considered. Within horizon of H periods, the record of replenishment 

signal placed by node i at an external supplier ui
H = [ui(0) ui(1) … ui(H–1)]T. Similarly 

with respect to demand placed at node j one has dj
H = [dj(0) dj(1) … dj(H–1)]T. The 

demand can be imposed on any node. Also, any node can generate a replenishment 
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signal for an external supplier. The proposed BI, associated with the Euclidean dis-

tance, is calculated as:  

 

2

2

(var[ ])
.

(var[ ])

e

d

H

ii

H

jj

u

d
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 =



 (5) 

where Ωe is the set of node indices that generate replenishment signals for the external 

suppliers, and Ωd is the set of node indices at which the demand is placed. 

With respect to the external actors, the controlled network is treated as a black-box 

entity. ω > 1 implies an occurrence of the BE. The bigger the value of ω, the worse 

the BE. 

3 System model 

3.1 Interconnection structure 

The considered class of system covers interaction between two types of actors: 

• external sources – which supply the goods for the controlled network, yet are not 

affected by the customer demand, directly, 

• controlled nodes – which serve both as intermediate suppliers for other controlled 

nodes and generate replenishment signals for the external sources to meet the de-

mand. 

The network encompasses N controlled nodes and S external sources, connected by 

unidirectional links. The links are characterized by: 

• lot partitioning coefficient – to be determined in the optimization tasks – that says 

how intensively a given link (transportation channel) will be used, 

• lead-time delay – the delay in order fulfillment, notably, the transport delay, 

• transportation cost – related to the distance between the nodes. 

For practical reasons, topologies with isolated nodes, i.e., having no connection to any 

supplier; or self-suppling nodes, are disregarded. 

3.2 Node dynamics 

Let k = 0, 1, 2, …, H measure the duration of time. The stock level of goods accumu-

lating at node i evolves according to 

 
1 1 customer demand

incoming shipments outgoing shipments

( 1) ( ) ( ) ( ) ( )
N S N

i i ji i ji ij i i

j j

x k x k u k u k d k
+

= =

+ = +  − −  −   (6) 

where:  

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_27

https://dx.doi.org/10.1007/978-3-030-77970-2_27


6 Przemysław Ignaciuk and Adam Dziomdziora 

• αji – the lot partitioning coefficient for the orders placed by node i at node j, 

• βji – the lead-time delay of goods transferred from node j to i, 

• ui(k) – the goods quantity requested by the node i in period k from its suppliers, 

both external sources and intermediate nodes,  

• di(k) – the external demand imposed on node i in period k. It exhibits arbitrary 

variations within [0, di
max], where di

max is the upper estimate. 

 

The channel allocation matrix groups lot partitioning coefficients:  
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αji ≠ 0   αij = 0 and for any i, j: 

 0 1ji    and
1

1.
N S

ji

j

+

=

 =  (8) 

3.3 OUT inventory policy 

To manage the flow of resources in the network, the OUT inventory policy is applied. 

It is implemented in a distributed form, i.e., independently at the controlled nodes. 

According to the OUT policy, controlled node i generates the stock replenishment 

signal as 

 ( ) ( ) ( ),ref

i i iu k x x k OR k= − −  (9) 

where xi
ref is the reference level, e.g., that can be assigned to maximize sales [30], and 

ORi(k) is the open-order quantity, i.e., the goods in transit that have not yet reached 

the ordering node owing to lead-time delay. 

3.4 Transportation Costs 

The transportation costs are calculated by considering the length of the transportation 

trail and the quantity of the goods requested. Within the time horizon of H periods 

transportation cost 

 
1

0 1 1

( )
H N N S

ji i ji

k i j

u k  
− +

= = =

 =    (10) 

where φij is the transportation cost along the route i-j determined as a product of a 

fixed unitary cost φ and the distance between the nodes. 
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3.5 Customer satisfaction 

A well-functioning goods distribution system is expected to ensure a high level of 

demand satisfaction. Denoting the satisfied demand at controlled node i in period k by 

hi(k), the customer satisfaction rate at that node is obtained as 

 

1

0

1

0

( )

,
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k
i H

i
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h k

d k

−

=

−

=
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
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An average satisfaction rate within the system can be calculated as  

 1 .

N

i

i

N

=



 =


 (12) 

4 Optimization problem 

The objective of the considered optimization problem is to establish a channel alloca-

tion matrix (7) so that the logistic system may satisfy the external demand with low 

transportation costs, yet avoiding the BE. 

Formally, the optimization problem may be stated as follows: 

 1min ( ) ( ) .ijJ k −= Ψ  (13) 

s.t. (6) – the stock level dynamics, (8) – the channel allocation constraint, and (9) – 

the method of replenishment signal computation. ω stands for the introduced BI for 

networked systems, Ψ is the transportation cost, and ϑ represents the mean customer 

satisfaction rate. Thus, one attempts to balance transportation costs and systemic dis-

tortion, at the same time maintaining a high customer service rate. 

In the analyzed class of systems, the demand signal varies with time in an unpre-

dictable way.  Consequently, optimization problem (13) is not amenable to analytical 

treatment. It will be solved using a computational intelligence technique, specified in 

the next chapter. 

5 Computational framework 

As a basis for constructing a computation framework to solve problem (13), a bioge-

ography-based technique – BBO – will be adopted. BBO is an evolutionary algorithm 

that originates from the observations of the movement of species among separate 

areas called islands. It has been demonstrated to be a useful search procedure in opti-

mization problems because it combines both examination and exploitation techniques 

based on migration [31]. Nowadays, it is one of the fastest growing in popularity al-

gorithms, based on nature, used to tackle computationally-intensive optimization 

problems. In addition to numerous benefits, such as simplicity, flexibility, and effi-
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ciency, BBO does not demand computing derivatives of objective function. Its dy-

namic model has been described in [32]. The BBO algorithm is illustrated in Fig. 3. 

 

Perform simulation 
of network behavior

Select the best individuals

Mutation

Remove duplicates

Return the best solution

Perform initial simulation

Generate initial population

Migration

g
 it

e
ra

ti
o

ns

 
Fig. 3. BBO algorithm flowchart. 

In evolutionary approaches, global recombination is applied to generate new solu-

tions. However, in BBO it is migration that modifies existing solutions. The continu-

ous domain of the search space allows for direct BBO application, i.e., without the 

classic translation to the binary form [24]. The matrix of lot partitioning coefficients 

reflects an individual, and an island (a set of individuals) corresponds to the set of a 

predefined size containing matrices of lot partitioning coefficients. A particular popu-

lation comprises a set of islands. The component of an individual corresponds to a 

single lot partitioning coefficient – αij – in matrix A.  

If a solution is intended for mutation, then a randomly chosen lot partitioning coef-

ficient may be replaced with a newly generated one. The matrix of lot partitioning 

coefficients is created by randomly mutating the current columns, one-by-one, before 

going to a next algorithm iteration. It is performed by randomly increasing or decreas-

ing each entry – αij – in the column. The value of the last entry in column j is calculat-

ed as 
1

1

1 .
N S

ji

i

+ −

=

−   
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6 Numerical studies 

The system considered in the numerical study represents the European distribution 

network of a firm from the premium-clothes fashion industry. The company root 

warehouses are located in Paris and Milan. The sales network extends through Central 

Europe, with the distribution centers in Brussels, Munich, Berlin, Warsaw, and Cra-

cow, as illustrated in Fig. 4. The network graph representation is depicted in Fig. 5. 

The numbers displayed above the arrows indicate the lead-times and transportation 

costs associated with the routes.  

Two cases (Network A and B) are given a closer examination. First, the star-

network (Fig. 4), as the centralized architecture representation, is investigated. After-

ward, a more complex topology, reflecting worldwide expansion, is investigated. In 

that case, additional sales points are introduced – with locations in Graz, Prague, and 

Budapest, as shown in Fig. 6. The graph representation of Network B is shown in Fig. 

7.  

The objective is to find the optimal lot partitioning coefficients for controlled 

nodes to minimize both the BE and transportation costs. Initially, the lot partitioning 

is distributed evenly among the connected nodes, as is customary in the literature. The 

simulation horizon is set as 103 periods. The demand, imposed on all the controlled 

nodes, exhibits stochastic variations generated according to the Poisson distribution 

with λ = 0.6. The unitary transportation cost equals ϕ = 0.04 € per 10 km. Network A 

encompasses 7 nodes (N = 5, S = 2), which leads to 1.07 x 104 candidate solutions to 

perform a full-search with granularity 0.01. Network B comprised 10 nodes (N = 8, S 

= 2), with a search space of 6.54 x 1028 possible solutions, which is thus no longer 

viable for a full search. Therefore, the BBO method is applied. Each population in the 

BBO algorithm contains 10 individuals. The maximum number of generations is set 

as g = 50 epochs. Additional mutations are not applied in updating the emigration 

rates. 

 

 
Fig. 4. Transportation network A.  

Red circles indicate external suppliers located in Paris and Milan. 
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Fig. 5. Transportation network A –graph representation.  

The arrows indicate the goods flow direction. The numbers denote αij and φij. 

Network A shows an unstable behavior, reflected in the BE > 1. The lot partitioning 

coefficients modification in the considered distribution network has a minimal impact 

on the BE and transportation costs. The initial channel assignment and the best-

obtained solution are 

 

0 0 0.5 0 0 0 0 0.23 0 0

0 0 0.5 0 0 0 0 0.77 0 0

0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

   
   
   
   
   

= →   
   
   
   
   
   

A  (14) 

Before the optimization process, the BE is quantified as 2.58 and transportation costs 

as 2.05 x 105 €. Conducted optimization slightly improved overall performance by 

decreasing the BE to 2.57 and transportation costs value to 2.04 x 105 €, i.e., by 0.5%. 

Hence, the considered star-network leaves little room for optimization due to the lim-

ited number of lot partitioning coefficient modifications available in preordained in-

terconnection structure. 

The second investigated network, with a more complex topology, revealed factors 

that are non-negligible to the BE formation, i.e., the number of connections per node 

(ϑ = 2.3) and the overall number of echelons (τ = 10). The BBO algorithm significant-

ly modified the lot partitioning coefficients for the controlled nodes. For Network B 

having 8 controlled nodes, the average cost function minimization of 24.48% enables 

one to bring down the BE by 24.86% and the transportation costs by 24.11%. Distri-

bution networks with a denser topology (a bigger number of connections per node) 

give more space for improvement, both with respect to transportation costs and the 

BE. With even channel utilization, the BE is quantified as 1.73 and transportation 

costs as 5.06 x 105 €. The BBO allowed reducing the BE to 1.3 and transportation 

costs to 3.84 x 105 €.  
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Fig. 6. Transportation network B.  

Red circles indicate the external suppliers located in Paris and Milan. 

 

1

2

3

10

9
2, 32

4, 50

Paris

Milan

Brussels

Munich

Berlin

4

5

Warsaw

Cracow

6

7

8

Graz

Praga

Budapest

4
, 7

5
4, 42

3
, 3

5

2
, 3

0
2

, 3
8

 

Fig. 7. Transportation network B – graph representation.  

The arrows indicate the goods flow direction. The numbers denote αij and φij. 

The initial channel assignment for network B 

 

 

0 0.34 0.34 0 0 0 0.25 0

0 0 0.33 0 0 0.34 0.25 0

0 0 0 0.5 0.34 0 0.25 0.34

0 0 0 0 0.33 0 0 0

0 0 0 0 0 0 0 0.33

0 0 0.33 0 0 0 0.25 0

0 0 0 0.5 0.33 0 0 0.33

0 0 0 0 0 0 0 0

0.5 0.33 0 0 0 0.33 0 0

0.5 0.33 0 0 0 0.33 0 0

init

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

A  (15) 
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and optimal one 

 

 

0 0.01 0.30 0 0 0 0.64 0

0 0 0.34 0 0 0.01 0.32 0

0 0 0 0.17 0.25 0 0.01 0.08

0 0 0 0 0.08 0 0 0

0 0 0 0 0 0 0 0.43

0 0 0.36 0 0 0 0.03 0

0 0 0 0.83 0.67 0 0 0.49

0 0 0 0 0 0 0 0

0.99 0.01 0 0 0 0.01 0 0

0.01 0.98 0 0 0 0.98 0 0

opt

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

A  (16) 

 

7 Conclusions 

The paper introduced a method of counteracting a major systemic distortion in distri-

bution networks – the bullwhip effect – through an appropriate transportation channel 

assignment. A nontrivial multi-echelon topology, with arbitrary interconnection struc-

ture and time-delayed good relocation, is considered. The channel allocation is ob-

tained via a formally stated optimization problem, solved using a population-based 

evolutionary technique – BBO. BBO allows one to circumvent the computational 

intricacy related to random demand and a dimensionality obstacle originating from 

the retarded argument in the network dynamical description. The allocation method 

allows for both the BE and transportation costs reduction. The validity is verified via 

numerical tests conducted for an example real-world transportation network. In a 

further study, other than OUT inventory policies will be considered and more elabo-

rate tuning procedures covering sensitivity and robustness aspects. 
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