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Abstract. In this paper, we propose efficient and practical data-driven
methods for weather forecasts. We exploit the information brought by
historical weather datasets to build machine-learning-based models. These
models are employed to produce numerical forecasts, which can be im-
proved by injecting additional data via data assimilation. Our approaches’
general idea is as follows: given a set of time snapshots of some dy-
namical system, we group the data by time across multiple days. These
groups are employed to build first-order Markovian models that repro-
duce dynamics from time to time. Our numerical models’ precision can
be improved via sequential data assimilation. Experimental tests are
performed by using the National-Centers-for-Environmental-Prediction
Department-of-Energy Reanalysis II dataset. The results reveal that nu-
merical forecasts can be obtained within reasonable error magnitudes in
the L2 norm sense, and even more, observations can improve forecasts
by order of magnitudes, in some cases.

Keywords: Data Assimilation · Markovian Model · Machine Learning.

1 Introduction

Numerical weather forecasts are of extreme importance in different aspects of
life, particularly in scenarios wherein human lives can be compromised (i.e.,
forecasts of storms, floods, hurricanes, and tsunamis) [10]. Numerical models
are commonly employed to mimic the behavior of actual system dynamics, for
instance, the ocean and/or the atmosphere [6, 2, 9]. Since numerical models are
computationally demanding, high-performance-computing is a must to produce
forecasts within reasonable computational times, especially for high-resolution
grids. On the other hand, we can find data-driven models that can exploit
decades of meteorological information to represent the future as some potential
combination of the past. For instance, the National-Centers-for-Environmental-
Prediction Department-of-Energy (NCEP-DOE) Reanalysis II [5] is a data set
that holds meteorological information since 1979 onto global grids at varying
resolutions. It is possible to use these sources of information to come up with
statistical forecasts. We think there is an opportunity to compute cheap models
that produce forecasts with low computational effort, and even more, we can im-
prove such forecasts by injecting real-time data via sequential data assimilation.
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This paper is organized as follows: in Section 2 we discuss topics related to
sequential data assimilation and machine learning models, Section 3 presents a
sequential data assimilation method via machine learning models wherein numer-
ical models are replaced by statistical ones, in Section 4 experiments are carried
out by employing the NCEP-DOE Reanalysis II data set, and the conclusions
of this research are stated in Section 5.

2 Preliminaries

In this section, we discuss some topics related to Machine Learning and Sequen-
tial Data Assimilation methods. These are necessary for the understanding of
our proposed methods.

2.1 Machine Learning Models

In the context of Machine Learning (ML), parametric models can be seen as
structures for the solution of the inverse problem [11]:

y = f (β, z) + ε , (1)

where y is an observation, β ∈ Rp×1 is a vector holding the parameters, p is the
number of parameters, variables are stored in vector z ∈ Rv×1, v is the number
of variables, f : Rp×1 × Rv×1 → 1, and ε can be described by some probability
density function. The simplest model in which one can think is a linear one of
the form:

y =

v∑
u=1

βu · zu + ε, with ε ∼ N
(
0, σ2

)
, (2)

where v = p, βu and zu denote the u-th component of vectors β and z, respec-
tively. Since Gaussian assumptions can be easily broken on residuals in (9), local
linear models can be built to preserve Gaussian shapes (i.e., by considering, local
modes of error distributions). There are many manners to do this, the simpler,
to weight each sample xj ∈ Rv×1, for 1 ≤ j ≤ m, with regard to its distance to
the observations y ∈ Rm×1,

y =

K<m∑
j=1

βj · αj(xj ,y) · xj + ε, with ε ∼ N
(
0, σ2 · I

)
, (3a)

where m is the number of samples (observations), K is the number of closest
points to y onto the hyperplane formed by the samples xj , ε is a vector holding
the residuals. Likewise, αj(xs,y) is a weight/distance function, common choices
are the Uniform distance

αj(xj ,y)∞ = ‖xj − y‖−1∞ , (3b)
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or the reciprocal of the Euclidean distance (L2-norm):

αj(xj ,y)2 = ‖xj − y‖−12 . (3c)

This kind of strategy is well-known in the statistical context as the K-Nearest-
Neighbors (KNN) regression [12].

2.2 Sequential Data Assimilation

The ensemble Kalman filter (EnKF) is a well-established sequential Monte Carlo
method for parameter and state estimation in highly non-linear models [3, 4]. The
EnKF describes the error statistics via an ensemble of model realizations:

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (4)

where xb[e], for 1 ≤ e ≤ N , is the e-th ensemble member, N is the ensemble
size, and n denotes the model dimension. The background ensemble (4) can be
employed to estimate the moments of the background error distribution, this is,
the background state xb ∈ Rn×1

xb ≈ xb =
1

N
·

N∑
e=1

xb[e] ∈ Rn×1 , (5a)

and the background error covariance matrix B ∈ Rn×n

B ≈ Pb =
1

N − 1
·∆Xb ·

[
∆Xb

]T ∈ Rn×n , (5b)

where xb is the ensemble mean, and Pb is the ensemble covariance. Likewise,
∆Xb ∈ Rn×N stands for the matrix of member deviations ∆Xb = Xb − xb ·
1T
N wherein 1N is an N -dimensional vector whose components are all ones.

Observations are related to model states via the linear observation operator
H ∈ Rm×n

y = H · x + ε ∈ Rm×1 ,

where H maps model states onto observation spaces, m is the number of obser-
vations, the white noise vector reads ε ∼ N (0,R), and R ∈ Rm×m is the data
error covariance matrix. By using Bayes’ theorem, we can find the state that
maximizes the posterior probability given an observation y as follows:

xa = xb + Pb ·HT ·
[
R + H ·Pb ·HT

]
·
[
y −H · xb

]
∈ Rn×1 , (6)

Since model realizations come at high computational costs, ensemble sizes are
constrained by the hundreds while model resolutions range in the order of mil-
lions. This tigers spurious correlations between errors in distant model compo-
nents. To mitigate this, better estimations of B are sought. For instance, sparse
precision covariances of the form can be computed as follows:

B̂−1 = L̂T · D̂−1 · L̂ ∈ Rn×n (7)

where L̂ ∈ Rn×n is a sparse lower triangular matrix, and D̂−1 is a diagonal ma-
trix [1]. By replacing (7) in (6) the EnKF via a modified Cholesky decomposition
[7, 8] can be obtained.
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3 Proposed Method

Consider time snapshots of some physical variables onto a numerical mesh grid
(i.e., the NCEP-DOE Reanalysis II data set). We group the snapshots (data) by
time across different S days:

X` =
[
x
[1]
` , x

[2]
` , . . . , x

[S]
`

]
∈ Rn×S , (8)

where X` is the ensemble holding all snapshots at time t` across different days,

for 1 ≤ ` ≤ L, L is the number of snapshots in a single day, x
[s]
` ∈ Rn×1 is the

snapshot of day s, for 1 ≤ s ≤ S, at time t`, and S is the number of days (number
of snapshots for time t` across different days). We consider evenly-spaced time
snapshots, and we assume that the same number of snapshots are available for
all ensembles X`. We then consider to fit models of the form:

X` = M`,`−1 ·X`−1 + E` , (9)

where E` ∈ Rn×S holds the residuals, and M`,`−1 ∈ Rn×n is a data-driven model
which partially captures the evolution of system dynamics from time t`−1 to t`.
We then consider cost functions of the form:

J (M`,`−1) =
1

2
· ‖X` −M`,`−1 ·X`−1‖22 , (10)

to estimate linear operators M`,`−1 which transport dynamics from time t`−1 to
t`, the optimization problem to solve reads:

M∗`,`−1 = arg min
M`,`−1

J (M`,`−1) . (11)

It can be easily shown that the gradient of (10) reads

∇M`,`−1
(J (M`,`−1)) = X` · [X`−1]

T −M`,`−1 ·X`−1 · [X`−1]
T
, (12)

from which the solution of (11) reads:

M∗`,`−1 = X` · [X`−1]
T ·
[
X`−1 · [X`−1]

T
]−1

. (13)

We now have a piecewise linear model
{
M∗`,`−1

}L

`=1
which mimics the behavior

of the dynamical system in a single day. Note that, these set of models can be
seen as first order Markovian models wherein all information needed to propagate
dynamics from time t`−1 to t` is condensed into M`−1,`.

3.1 Sequential Data Assimilation

Since linear models of the form (13) can partially capture the actual dynamics,
we can improve their accuracies by using sequential data assimilation. For each
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time t`, we can build the precision matrix B̂−1` via the ensemble (8) and the
modified Cholesky decomposition:

B̂−1` = L̂T
` · D̂−1` · L̂` ∈ Rn×n , (14)

where the factors L̂`, and D̂−1` are computed as in Section 2. We model the
uncertinties of any state at time t` by (14). Consider the analysis state xa

`−1, it
is clear that:

xb
` = M∗`,`−1 · xa

`−1 = X` · [X`−1]
T ·
[
X`−1 · [X`−1]

T
]−1
· xa

`−1 . (15)

Consider the observation y` ∈ Rm×1, at time t` , the analysis state can be
computed as follows:

xa
` =

[
B̂−1` + HT

` ·R−1` ·H`

]−1
·
[
B̂−1` ·X` · [X`−1]

T ·
[
X`−1 · [X`−1]

T
]−1
· xa

`−1 + HT
` ·R−1` · y`

]
(16)

The analysis state (16) is propagated until new observations are available.

3.2 Building Local Linear Models

In practice, model dynamics can be highly non-linear and therefore, Gaussian
assumptions on residuals in (9) can be easily broken. To mitigate this, consider
the ensemble X(xa

`−1,K) ∈ Rn×K formed by the K nearest states to xa
`−1 from

the ensemble of snapshots X`−1 at time t`−1: the ensemble X(xa
`−1,K) can be

exploited to build local linear models

xb
` = M

(
xa
`−1, K

)∗
`, `−1 · x

a
`−1 , (17a)

following a similar reasoning to that of (3). This is, by considering the reciprocal
of Uniform or Euclidean distances. Besides, K can be employed as well to fit
local Gaussian models for prior errors by using the forecast state (15), and its
K nearest states (neighbors) in (8), X(xb

`,K) ∈ Rn×K ; from here we can obtain
local approximations of precision matrices of the form (14):

B̂−1
(
xb
`, K

)
`

= L̂
(
xb
`, K

)T
`
· D̂
(
xb
`, K

)−1
`
· L̂
(
xb
`, K

)
`
∈ Rn×n , (17b)

where L̂
(
xb
`, K

)T
`
∈ Rn×n, and D̂

(
xb
`, K

)−1
`
∈ Rn×n are computed similar

to those in (14). We decide to make use of the precision matrix B̂−1 in our
formulation since it allows us to exploit the use of computational resources (the
resulting estimator is sparse).

The background state (17a) and the precision matrix (17b) can be easily
incorporated into the data assimilation framework (16), this is, we can produce

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_25

https://dx.doi.org/10.1007/978-3-030-77970-2_25
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forecasts via (17a), and analysis states:

xa
` (K) =

[
B̂−1

(
xb
`, K

)
`

+ HT
` ·R−1` ·H`

]−1
·
[
B̂−1

(
xb
`, K

)
`
M
(
xa
`−1, K

)∗
`, `−1 · x

a
`−1 + HT

` ·R−1` · y`

]
(17c)

Based on equation (17c), we denote by xa
` (K)

∞
the analysis produced by

using weights (3b) in the computation of (17a), and by xa
` (K)

2
the analysis

obtained by employing weights (3c) in the computation of (17a).
Now, we are ready to test our proposed methods by using real-life meteoro-

logical data.

4 Experimental Results

To assess the accuracy of our method, we make use of the NCEP-DOE Reanalysis
II dataset [5]. In this set, some physical variables such as air temperature T ,
relative humidity q, and wind components u and v are available four times daily,
and those are the ones that we consider in our experiments. In this context, t`
denotes the hour of the day in which snapshots are taken, t` ∈ {0, 6, 12, 18}.
Thus, we have four linear models:

– model M∗(x0,K)0,1 propagates a state x0 from hour 0 to hour 6,
– model M∗(x1,K)1,2 propagates a state x1 from hour 6 to hour 12,
– model M∗(x2,K)2,3 propagates a state x2 from hour 12 to hour 18, and
– model M∗(x3,K)3,0 propagates a state x3 from hour 18 to hour 0 (next

day).

For each hour t`, by using the ensemble of snapshots X`, a B̂−1` matrix is es-
timated. A general structure of our piecewise linear model under these settings
can be seen in figure 1.

Fig. 1: Piecewise first order Markovian model for the NCEP-DOE Reanalysis II
dataset.
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Additional settings are described below:

– for all physical variables, we consider snapshots on the surface level,
– we consider the number of nearest states K ∈ {10, 20, 50},
– local linear models are computed by using the weights (3b) and (3c),
– the local models are trained with snapshots from January 1st to July 31rd,

2020,
– the forecast and data assimilation process are carried out between august

24, 2020 to august 27,2021,
– observations are taken every six hours (corresponding with the elapsed time

between snapshots), these are simulated from the dataset by employing the
following standard deviation for observation errors:
• Temperature 1Ko.
• Zonal Wind Component 1m/s.
• Meridional Wind Component 1m/s.
• Specific Humidity 10−3 kg/kg.

,
– the number of observations is only 5% of model components, these are ran-

domly placed during assimilation steps,
– as measures of accuracies, we consider the L2-norm of errors

εk = ‖x∗k − xk‖2 , (18)

where x∗k and xk are the reference state (actual snapshot) and its approxima-
tion at time t`, respectively. xk can be obtained via pure forecasts or analysis
states. The Root-Mean-Square-Error (RMSE) measures, in average, the per-
formance of a method within an assimilation window with M time spaced
set of observations {yk}Mk=1:

ε =

√√√√ 1

M
·

M∑
k=1

εk . (19)

4.1 Time Evolution of Errors

In figure 3, the L2-norm of errors are shown for pure forecasts as well as analysis
states. The results are shown for different values of K and the uniform weights
(3b) (U) and the Euclidean ones (3c) (E). We let dashed and solid lines represent
forecasts and analysis errors, respectively. As can be seen, the proposed models
(3a) can produce accurate forecasts. For instance, error levels remain almost
constant for the entire assimilation window for all model variables. This can be
explained as follows: since our general model is piecewise linear, linear models
can properly capture actual dynamics in time periods of six hours. Moreover, by
injecting “current” information into the system, such forecasts can be improved.
For instance, errors in model variables such as T , u, and v can improve over a
magnitude, in some cases. Improvements can be seen in the q variable as well for
the overall time window. Note that forecast errors are sensitive to the choices
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(a) Error evolution for T (b) Error evolution for q

(c) Error evolution for u (d) Error evolution for v

Fig. 2: Error evolution of model variables in the L2 norm. Dashed lines denote
pure forecasts while analysis solutions are shown in solid lines. Results are pre-
sented in the log-scale for easiness in reading.

of the number of neighbors K and the chosen distance (U or E). This is very
common in the context of ML methods. Besides, those parameters are strictly
related to the computation of (3a). For some variables, the differences in model
trajectories for pure forecasts are evident. Nevertheless, the analysis solutions
for all cases remain similar; their differences are imperceptible (recall that errors
are in log-scale). This is very relevant since one of the current challenges in ML
based methods is the tune of model parameters such as K. However, by using
data assimilation (17c), the resulting states seem to be non-sensitive to the
choices of K nor the weighing metric for distances. Of course, further research
is needed to come up with a satisfactory answer to this.

4.2 Mean of Errors for the Assimilation Window

In figure 3, we show the average of L2-norm of errors for some model variables. As
can be seen, the assimilation of observations can improve the quality of forecasts.
For instance, in the T variable, many dense regions owing to the accumulation
of errors can be dissipated by using the information brought by observations of
the system. Furthermore, the use of local information for computing the preci-
sion matrices (17b) allows for the dissipation of spurious correlation in errors of
distant model components (in space). The use of local samples (snapshots) can
mitigate the impact of multi-modal prior error distributions (which are com-
monly in highly non-linear models). In this manner, samples that potentially
belong to another mode of the prior distribution are neglected during the esti-
mation of prior error moments. Similar behavior can be noted for other model
variables such as v.
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(a) Forecast T (b) Analysis T

(c) Forecast v (d) Analysis v

Fig. 3: Mean of L2-norm of errors in the log-scale for the assimilation window
for K = 10 and the weighting metric U.

In figure 4, we show the initial background, analysis state, and reference
snapshot for the variable T . This step is of interest since no actual information
of the system has been injected into the numerical model. We can see some
spurious waves near the south pole for the forecast state. For instance, a lower
level of temperature than those of the actual state is reported. We can see that,
by using only 5% of observations, the accuracy can be drastically improved.
For instance, the temperature levels are adjusted similarly to those of the actual
snapshot. This mainly obeys the implicit background error correlations captured
in B̂−10 (x0¸

b, K): analysis increments are properly weighted as background error
correlations are well estimated. This has a very important impact on the updat-
ing process of model components wherein no observations are available. In our
settings, most of the Earth is unobserved (95%).

In the Table 1, we report the RMSE values for all model variables and all
configurations. As we mentioned before, errors in forecasts are highly sensitive
to ML parameters, as should be expected since these models rely on parameters
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(a) Actual Snapshot (b) Forecast State (c) Analysis State

Fig. 4: Snapshots in the globe for the T variable by using Euclidean weights and
K = 10.

such as K. Something that is very attractive is that we do not see high variations
in errors, which is important since ML parameters can be hard to tune (i.e.,
parameter selection can vary from problem to problem). Hence, forecast errors
are of similar magnitude regardless of the choice of K, for instance. On the other
hand, we can see similar results of analysis errors for each configuration. Again,
this obeys the fact that background error correlations are properly estimated
during assimilation steps. Furthermore, the impact of multi-modal prior error
distributions can be mitigated by considering similar snapshots to xb

` during the

estimation of B̂−1(xb
`, K)`.

Analysis Forecast
K 10 20 50 10 20 50

Distance Variables

E (3c)

T 0.0288 0.0287 0.0283 0.0790 0.0786 0.0802
q 0.2190 0.2192 0.2187 0.2528 0.2482 0.2427
u 0.1629 0.1626 0.1625 0.2479 0.2454 0.2624
v 0.1713 0.1712 0.1705 0.2709 0.2540 0.2442

U (3b)

T 0.0288 0.0287 0.0283 0.0790 0.0789 0.0803
q 0.2190 0.2190 0.2187 0.2513 0.2481 0.2425
u 0.1629 0.1626 0.1625 0.2466 0.2448 0.2616
v 0.1712 0.1712 0.1705 0.2692 0.2540 0.2439

Table 1: Root-Mean-Square-Error values for the entire assimilation window, for
all variables and different configuration of parameters.

5 Conclusions

In this paper, we propose a piecewise first-order Markovian model for the weather
forecast. The proposed method employs linear models to mimic the behavior of
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the system in time intervals. For each time interval, a linear model is built to
forecast system states. The accuracy of the forecast can be improved by using
Machine Learning models such as the K-Nearest-Neighbor regression. In this
context, we employ weighing distances to compute linear models: the reciprocal
of the uniform and the euclidean distances. Besides, sequential data assimilation
can be exploited to inject real-time information of the system into our Marko-
vian model. The estimation of background error correlation is performed by
using a modified Cholesky decomposition and considering the K nearest snap-
shots to the forecast state. Experimental tests are performed by employing the
National-Centers-for-Environmental-Prediction Department-of-Energy Reanaly-
sis II dataset. The results reveal that numerical forecasts can be obtained within
reasonable error magnitudes in the L2 norm sense, they do not blow up, and
even more, observations can improve forecasts by order of magnitudes, in some
cases, for the entire assimilation window.
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