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Abstract. The paper presents an advanced application of computation
methodology with complicated algorithms and calculation methods dedi-
cated to optimal identi�cation and simulation of dynamic processes.
These models may have an unknown structure (the order of a di�erential
equation) and unknown parameters. The presented methodology uses
non-standard algorithms for identi�cation of such continuous-time models
that can represent linear and non-linear physical processes. Typical ap-
proaches, presented in the literature, most often utilize discrete-time
models. However, for the case of continuous-time di�erential equation
models, in which both, the parameters and the derivatives of the output
variable are unknown, the solution is not easy. In the paper, for the
solution of the identi�cation task, the convolution transformation of
the di�erential equation with a special Modulating Function will be
used. Also, to be able to properly simulate the behaviour of the process
based on the obtained model, the exact state integral observers with
minimal norm will be used for the reconstruction of the exact value of the
initial conditions (not their estimate). For multidimensional process case,
with multiple control signals (many inputs), additional problems arise
that make continuous identi�cation and observation of the vector state
(and hence simulation) impossible by the use of the standard methods.
Application of the above-mentioned methods for solving this problem will
be also presented. Both algorithms, for the parameter identi�cation and
the state observation, will be implemented on-line in two independent
but cooperating windows that will simultaneously move along the time
axis. The presented algorithms will be tested using data collected during
the heat exchange process in an industrial glass melting installation.

Keywords: Complex algorithms · Multidimensional systems · Process
identi�cation · Modulating functions · State observers · Glass forehearth
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1 Introduction

Many industrial processes can be locally approximated by linear models, de-
scribed by ordinary di�erential equations. The parameters of these models are
most often obtained based on performed identi�cation experiments and because
of process non-linearity, can be utilized only in a neighbourhood of speci�ed
operating points. However, performing active identi�cation experiments is often
impossible due to technological reasons, e.g. in many installations step changes of
control signals, during identi�cation experiments, could signi�cantly deteriorate
product quality. What is more, complete information about the process is not
always available.

Passive identi�cation methodology was widely discussed in the literature,
especially for chemical processes, e.g. [1]. On-line implementation of such al-
gorithms can be found in [2]. However, in most cases, discrete models are utilized,
e.g. [3]. For the qualitative analysis of processes with distributed parameters, it is
common to use the Computational Fluid Dynamics (CFD) approach. It enables
precise simulation of glass melting phenomena, however requires a lot of compu-
ting power. Hence, in works [4] and [5] procedures of model reduction based on
the Proper Orthogonal Decomposition (POD) method are presented. Another,
simpler approach, also using Partial Di�erential Equations (PDE), utilizes the
Heat Transfer Equation modelling the glass conditioning process in forehearths,
e.g. [6], [7]. In engineering, linear time invariant (LTI) continuous models with
lumped parameters are most popular. However, after reduction, in many cases
the multidimensionality of such models should be taken into account, i.e. the
fact that the process output depends on many inputs (many control signals) -
Multi Input-Single Output model (MISO).

In some processes operating points are changed very often, that makes the
necessity of changing the process model, which has to be once more re-identi�ed.
Hence, establishing of a passive identi�cation algorithm for MISO models, that
would be fast and accurate, as well as universal, is an important research goal.
This research topic was considered in the previous works of the authors. In
the paper [8] the special approach for the identi�cation of MISO models was
proposed by the assumption of the existence of several separate, internal, low
order SISO sub-models, whose local outputs are unknown (only the main output
is measured). The special iteration procedures for identi�cation of each sub-
model gave good results, but the algorithm occurred to be a bit complicated
and computation time consuming.

In this paper, a new methodology for the identi�cation of MISO models,
without local sub-models, is presented. However, the high order of the main
model has to be assumed. Identi�cation of the parameters of high-order continuous
di�erential equation is not easy, because only the output y(t) is measured and the
values of derivatives y(i)(t) are unknown. To solve this problem, an application
of non-standard methods for parameter identi�cation is proposed. A di�erential
equation is transformed by its convolution with modulating functions.

Modulating Function Method (MFM) is the only identi�cation method that
leads to the optimal identi�cation of parameters, without introducing any es-
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timation or approximations at any stage of the di�erential equation transforma-
tion and during optimization calculations. Other methods used in the continuous
system identi�cation, e.g. by approximation of the input/output functions via
orthogonal polynomials [9] introduce immediately methodological errors by de-
�nition. Additionally, the exact initial state observation is utilized to enable the
model identi�cation and hence the accurate simulation of the process output.
The algorithm has been extended with the procedure of properly selecting new
operating points, which gave very good modelling results and prediction of the
process output values. The presented algorithms was tested using data collected
during the glass conditioning process. The process takes place in a long channel,
called glass forehearth, which is the �nal part of the glass melting installation.

The paper is organised as follows. In Sections 2 and 3 theoretical basis of the
Modulating Functions Method (MFM) and the Exact Integral State Observers
are explained. Developed identi�cation procedure is described in Section 4. Chosen
industrial process of glass conditioning is brie�y described in Section 5. Obtained
simulation results are presented in Section 6. Section 7 draws conclusion.

2 MISO model optimal identi�cation

Linear Tine Invariant (LTI) Multi Input Single Output (MISO) system with K
inputs is given as (1):

n∑
i=0

aiy
(i)(t) =

K∑
k=1

mk∑
j=0

bkju
(j)
k (t) =

m1∑
j=0

b1ju
(j)
1 (t) + . . .+

mK∑
j=0

bKju
(j)
K (t). (1)

Functions y(i), u
(j)
1 , . . . , u

(j)
K are the inputs and output derivatives given on

the interval [t0, TID]. There are n output derivatives and mk derivatives for
the k-th input, where mk ≤ n, ∀k = 1, . . . ,K. Parameters a and b should be
identi�ed. The inputs u and the output y can be measured. A deep discussion
about continuous-time systems identi�cation can be found in the paper [10] and
for MISO systems in [11].

2.1 Modulating Functions Method

Modulating Functions Method (MFM) was developed by M. Shinbrot [12]. Theore-
tical fundamentals of the method can be found in [13]. It utilizes the rule of
integrating by parts. Left and right hand sides of (1) are convoluted with the
known modulating function φ. This function should meet speci�ed conditions:

� φ is supposed to have a compact support of width h (closed and bounded),

� φ ∈ Cn−1[0, h],
� φ(i)(0) = φ(i)(h) = 0 for i = 0, . . . , n− 1,

� y ∗ φ = 0⇒ y = 0 on the interval [t0 + h, TID].
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In the described method, the Loeb and Cahen functions:

φ(t) = tN (h− t)M (2)

were used. Utilizing the properties:

yi(t) = ai

∫ ∞
−∞

y(i)(τ)φ(t− τ)dτ = ai

∫ h

0

y(t− τ)φ(i)(τ)dτ def
= aiyi(t), (3)

ukj(t) = bj

∫ ∞
−∞

u
(j)
k (τ)φ(t− τ)dτ = bj

∫ h

0

uk(t− τ)φ(j)(τ)dτ
def
= bjukj(t), (4)

the set of new known functions yi(t), uj(t) in the interval [t0+h, TID] is obtained.
These functions should be stored in a computer memory. Then, the di�erential
equation (1) can be transformed into the algebraic (5) with the same parameters:

n∑
i=0

aiyi(t) =

m1∑
j=0

b1ju1j(t) + . . .+

mK∑
j=0

bKjuKj(t) + ε(t). (5)

The term ε represents a di�erence between two sides of the equation. It can be
treated as an identi�cation performance index (6) in the Equation Error Method
(EEM) for identi�cation of the parameters in the equations (1) and (5):

ε(t) = cT (t)θ = [y0(t), . . . , yn(t),−u10(t), . . . ,−u1m1
(t), . . . ,−uK0(t),

. . . ,−uKmK
(t)]


a
b1
...
bK

 , (6)

where a, b1, . . . , bK are the column vectors of suitable dimensions n + 1,m1 +
1, . . . ,mK + 1, θ ∈ Rn+m1+...+mK+K+1.

Minimization problem is typically solved using the least squares method. In
[14] a di�erent approach was proposed. Minimization problem is stated in the
function space L2[t0 + h, TID] as:

min
θ
J2 = min ‖ε(t)‖2L2[t0+h,T ] = min ‖c(t)Tθ‖2L2 . (7)

The linear constraint ηTθ = 1 is introduced to avoid the trivial solution. The
norm in (7) can be written down as an inner product in the space L2:

J2 = 〈cT (t)θ, cT (t)θ〉L2 = θT 〈c(t), cT (t)〉θ = θTGθ. (8)

The square real and symmetric Gram matrix G is given as:

G =


Y Y Y U1 . . . Y UK
U1Y U1U1 . . . U1UK
...

...
. . .

...
UKY UKU1 . . . UKUK

 , (9)
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where:
Y Y (i, j) = 〈yi, yj〉 and i = 1 . . . n, j = 1 . . . n,
Y Uk(i, j) = −〈yi, ukj〉 and k = 1 . . .K, i = 1 . . . n, j = 1 . . .mk,
UkY (i, j) = −〈uki, yj〉 and k = 1 . . .K, i = 1 . . .mk, j = 1 . . . n,
UkUl(i, j) = 〈uki, ulj〉 and k = 1 . . .K, l = 1 . . .K, i = 1 . . .mk, j = 1 . . .ml.
The matrix G is created by the inner products in L2 of the c(t) elements, e.g.:

〈yi, uj〉 =
∫ TID

t0+h

yi(τ)uj(τ)dτ. (10)

The optimal vector θ, that minimizes the value of J , can be obtained using the
Lagrange multiplier technique:

min
θ
J2 = min

θ
L = min

θ
(θTGθ + λ[ηTθ − 1]) (11)

as:

θ0 =
G−1η

ηTG−1η
. (12)

3 Exact integral state observers with minimal norm

In dynamic system theory, for every linear system (1) which describes input-
output dependences for a MISO system, one can �nd corresponding to (1)
description of the system in the state space, with the state variable x(t) and
the output variable y(t):

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0
y(t) = Cx(t),

(13)

where:
∀t ≥ t0 : x(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rl,

and the corresponding state, control and observation real matrices are: An×n,
Bn×r, Cl×n and consist of parameters ai, bi from (1) or (5).

In many cases the state vector x(t) is not measured. Only the system output
y(t) can be measured. The calculation of x(t) is not easy because the matrix C is
not square and hence it is not invertible. The reconstruction of the state vector
x(t) for a chosen time t, e.g. t = t0 is well known problem in the control theory.
The knowledge of x(t0) is very important for proper simulation of the real value
of the output variable y(t) for the given matrices A, B, C. To this end, one can
use so called state estimators given by di�erential equations similar to (1), like
Kalman Filter or Luenberger observers.

In contrast to di�erential estimators, the exact state observers have the
structure of two integrals and can exactly reconstruct the state of a linear
system. The described integral observers guarantee obtaining the real value of the
observed state for the observation interval TOB . The theory of optimal observers
with minimal norm was described in [15].

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_22

https://dx.doi.org/10.1007/978-3-030-77970-2_22


6 W. Byrski et al.

In the paper, two types of observers are utilized. The initial state observer
(14) allows obtaining the initial conditions for the identi�ed models when a new
operating point is determined. For t0 = 0, the below equation is given:

x(0) =

∫ TOB

0

G1(t)y(t)dt+

∫ TOB

0

G2(t)u(t)dt, (14)

where:

M0 =

∫ TOB

0

eA
′τC ′CeAτdτ,

G1(t) =M
−1
0 eA

′tC ′,

G2(t) =M
−1
0

[∫ TOB

t

eA
′τC ′CeAτdτ

]
e−AtB.

The �nal state observer, given as (15), is used for simulation of the model
output in the subsequent simulation intervals:

x(TOB) =

∫ TOB

0

G1(t)y(t)dt+

∫ TOB

0

G2(t)u(t)dt, (15)

where:
G1(t) = eATOBM−1

0 eA
′tC ′,

G2(t) = eATOBM−1
0

[∫ t

0

eA
′τC ′CeAτdτ

]
e−AtB.

It allows to obtain the state value x(tj) at the end of j-th interval of width
TOB . The equation for the system state value at the end of each interval for the
moving window version is given as (16):

x(tj) =

∫ tj

tj−TOB

G1(TOB − tj + t)y(t)dt+

+

∫ tj

tj−TOB

G2(TOB − tj + t)u(t)dt, (16)

where the successive time moments are:

tj = p+ T − (p modulo T ) + (j − 1) · T, j = 1, 2, 3, . . .

and p is the current operating point.

4 Adaptive identi�cation method

As it was mentioned previously, the described adaptive methodology assumes
that the non-linear system can be linearised near a selected operating point.
The operating points p are de�ned for time moments in which input and output
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signals are almost unchanging functions of time, which can be veri�ed by checking
if the signal variance is small enough in the de�ned interval. After determining
that the state of the process is steady and the operating point p1 can be de�ned,
the initial model of the process is identi�ed for the nstart intervals assuming zero
initial condition.

In case of �nding another operating points, the new model is identi�ed and
a squared di�erence between the simulated output of this model and the real
system output for the last nreident intervals is calculated and compared with
the previous di�erence, based on the last valid model. If the obtained di�erence
is less than the previous one, the model is updated. If not, then the current
version of the model is upheld. The new value of the initial state, needed for the
simulation procedure, is obtained with the use of the previously presented initial
state observer, whereas the �nal value of the state in the last interval, essential for
the future system output simulation, is determined using the �nal state observer.
It is additionally assumed, that the correlation between the system inputs and
output should be greater than the threshold value trcorr for at least one interval
among those used in the identi�cation procedure. It prevents from obtaining
inaccurate linear models.

The �rst identi�cation window is signi�cantly longer than the window used
for the re-identi�cation procedure. It results from the fact that changes of the
input and output signals are rather small in the �rst intervals and longer signals
are needed to obtain a su�ciently accurate model. In the next steps, the identi-
�cation window is shorter, which allows to obtain the identi�ed model faster,
and at the same time causes that the prediction follows the real system output.
The developed algorithm is presented in details in the form of Algorithm 1. The
marker empty in the description means that the �rst model is still before the
identi�cation procedure

It is worth noting that the MFM does not require zero initial condition. This
advantage of the method is utilized, when the system signals preceding the new
operating point are used in the identi�cation algorithm. The state observers are
used only for simulation purposes when the performance index (17), de�ned as
an integral of the squared di�erence between the real system output and the
simulated model output, is calculated:

E(t0, tend) =

∫ tend

t0

(y(t)− ysim(t))2dt. (17)

The state-space matrices, whose elements were obtained with the MFM, used
in the simulation procedures have the form (18):

A =


0 . . . 0 − a0

an

1
. . .

...
...

...
. . . 0 −an−2

an
0 . . . 1 −an−1

an


(n×n)

, B =


b10
an

. . . bK0

an
...

...
...

b1n−1

an
. . . bKn−1

an


(n×K)

,
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C =
[ [

0 . . . 1
] ]

(1×n)
, D =

[
0 . . . 0

]
(1×K)

. (18)

Algorithm 1 Identi�cation and output simulation procedure.

Step 1. Set the current interval counter j = 1.

Step 2.

if operating point was found in the last nstart intervals and empty(current model)
then

Go to Step 3.
else if operating point was found in the last nreident intervals and not empty(current
model) then
Go to Step 4.

else

Go to Step 5.
end if

Step 3.

if j ≥ nstart and input-output correlation ≥ trcorr then

Perform the identi�cation procedure assuming zero initial condition for the nstart

intervals to obtain the initial model.
end if

Go to Step 5.

Step 4.

if j ≥ nreident and input-output correlation ≥ trcorr then

Perform the identi�cation procedure for the nreident intervals to obtain the new
model.

end if

Calculate the performance index Ecurrent for the current model.
Calculate the performance index values for the new models (de�ned for di�erent
parameters) obtained in the last nreident intervals using the initial state observer.
Select the least value for the obtained models Ereident.

if Ereident < Ecurrent then

Update the current model parameters and save the new operating point.
end if

Go to Step 5.

Step 5.

if not empty(current model) then
Calculate the current state value using the �nal state observer.
Perform the future output simulation.

end if

Increment the interval counter j.
Go to Step 2.
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5 Process description

Zone 1

GAS-AIR MIXTURE

Zone 2 Zone 3
GLASS

T

T

T

T

T

T

T
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t

PID PID PID

F
U

R
N

A
C

E

COOLING AIR

Fig. 1: Forehearth control system

The glass conditioning process involves phased in cooling of a molten glass
smelt in order to obtain desired chemical and physical properties. The process
is conducted in glass forehearths. Fig. 1 presents an example glass forehearth
installation. The forehearth is a long channel divided into several zones. In the
�rst two of them, the glass can be cooled down or heated. The zone controllers
adjust signals for cooling dampers and gas burners. In the last zone, there
are only gas burners installed. Typically the desired temperature in each zone
depends on the type of currently produced container and should be stabilised
with an accuracy of at least 1◦C. Each forehearth zone is controlled regardless
of neighbouring ones.

The on-line identi�cation problem for this installation is associated with
many di�culties. The lack of reliable information about the current glass pull
rate (total weight of glass containers produced per day) seem to be the most
problematic. In most glass factories this parameter is not measured. It can be
evaluated only in steady states, when glass gobs fall into a forming machine
and parameters of the machine are �xed. Transition between two steady states
involves multiple glass pull rate changes, which causes disturbances visible as
temperature �uctuations. In the following experiments, the dynamic model of
the last zone will be identi�ed. The linear MISO model have two inputs:

� temperature in the previous forehearth zone,
� gas-air mixture pressure,

so the corresponding state space matrix B has two columns. Both component
models have the common matrix A, which follows directly from the algorithm
presented in Subsection 2.1.
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6 Experimental results

Simulation experiments were performed for two sets of data collected from the
real glass forehearth installation. The glass pull rate and temperature set point
values were noticeably changed for these sets.

The linear constraint vectors used in the MFM procedure have the suitable
length depending on the rank of identi�ed systems. The values of the parameters
that were used during the experiments are presented in Table 1.

Table 1: Identi�cation procedure coe�cients.
Parameter Description Value

η Linear constraint vector [1...1]
T Single interval width 250

nstart Initial identi�cation intervals 8
nreident Intervals for model re-identi�cation 4
TOBFIN Final state observer window width 500
TOBINIT Initial state observer window width 1000
trcorr Input-output correlation threshold 0.5

The �rst experiment was performed for the glass pull rate changing from 82
t/24h to 60 t/24h. It caused that the model delay for the �rst input varied from
260 s to 319 s. In the second case, the glass pull rate was changed in the range
62 t/24h to 55 t/24h and the corresponding delay values �uctuated from 313 s
to 337 s. The input signals are presented in Figures 2 and 4 accordingly.

The experimental results are presented in Tables 3 and 5. Figures 3 and 5
show the predicted system output in both cases. Alternating blue and yellow
backgrounds denotes the intervals in which subsequent models were applied for
the system output prediction. The �rst green intervals concern the measurements
needed for obtaining the initial model, when the system output could not be
predicted. The same information are presented in Tables 2 and 4. Parameter
Ident. time in Tables 2 and 4 concerns the time window used for the identi�cation
procedure, while the parameter Sim. time refers to the intervals when the
identi�ed model was used for the system output prediction. Subsequent operating
points are depicted as dotted lines in Figures 3 and 5.

7 Conclusion

In the paper an original application of non-standard optimal method for identi-
�cation of di�erential equation parameters was presented. For the purpose of
checking the quality of the obtained models, an on-line simulation is performed.
In order for the simulation to be correct and to guarantee that the models
are accurate at di�erent operating points, a non-standard precise method of
identi�cation (observation) of the initial and �nal states is used. The described
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Table 2: Model properties - 1. experiment
Model Op. Ident. Sim. MFM parameters
nr point time [s] time [s] N M h[s]

1 p1 102-2000 2000-2250 3 4 50

2 p2 1250-2250 2250-2500 3 4 50

3 p2 1500-2500 2500-2750 3 4 50

4 p2 1750-2750 2750-5750 3 4 100

5 p3 4750-5750 5750-8000 3 4 100

Table 3: Identi�ed model parameters - 1. experiment
Model Parameters
nr a0 a1 a2 b10 b11 b20 b21
1 62.86e−6 10.82e−3 1 141.61e−6 − 247.02e−6 −
2 92.77e−6 11.31e−3 1 119.82e−6 − 153.06e−6 −
3 469.26e−6 45.62e−3 1 694.11e−6 5.73e−3 1.52e−3 309.69e−6

4 321.73e−6 49.84e−3 1 337.46e−6 −3.54e−3 1.59e−3 9.01e−3

5 276.74e−6 44.73e−3 1 203.20e−6 16.20e−3 1.57e−3 11.11e−3

Fig. 2: System inputs and glass pull rate - 1. experiment

Table 4: Model properties - 2. experiment
Model Op. Ident. Sim. MFM parameters
nr point time [s] time [s] N M h[s]

1 p1 102-2000 2000-4500 5 6 100

2 p2 3500-4500 4500-4750 5 6 100

3 p2 3750-4750 4750-9500 3 4 50
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Fig. 3: Simulation results - 1. experiment

Table 5: Identi�ed model parameters - 2. experiment
Model Parameters
nr a0 a1 a2 a3 b10 b11 b20 b21
1 8.23e−6 2.6e−3 12.47e−3 1 141.61e−6 − 247.02e−6 −
2 6.13e−6 3.67e−3 15.93e−3 1 6.65e−6 −114.32e−6 110.12e−6 848.23e−6
3 168.80e−6 10.68e−3 1 − 65.79e−6 − 466.39e−6 −

Fig. 4: System inputs and glass pull rate - 2. experiment
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Fig. 5: Simulation results - 2. experiment

parameters identi�cation method using the MFM and the non asymptotic exact
state observers allows to model the glass forehearth installation dynamics. Con-
ducted experiments gave very satisfying results. The linear system output was
very close to the real system one for both cases. The mean square error between
the real system and the simulated output was equal 0.2841 for the �rst experiment
and 0.2028 in the second case. The developed procedure in its current form
can be used for wide variety of problems, e.g. PID controller tuning or feed
forward control. For the purpose of implementation of the designed algorithms
and their testing, an extensive programming environment with many modules
was created. The packages were written in the Matlab language, suitable for
rapid prototyping, and after automatic translation into C++, it would take tens
of thousands of source code lines. It can be used in real computer control systems.
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