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Abstract. The research is focused on the numerical analysis of the in-
verse Poisson problem, namely the identification of the unknown (input)
load source function, being the right-hand side function of the second
order differential equation. It is assumed that the additional measure-
ment data of the solution (output) function are available at few isolated
locations inside the problem domain. The problem may be formulated
as the non-linear optimisation problem with inequality constrains.
The proposed solution approach is based upon the well-known Monte
Carlo concept with a random walk technique, approximating the solu-
tion of the direct Poisson problem at selected point(s), using series of
random simulations. However, since it may deliver the linear explicit re-
lation between the input and the output at measurement locations only,
the objective function may be analytically differentiated with the respect
to unknown load parameters. Consequently, they may be determined by
the solution of the small system of algebraic equations. Therefore, draw-
backs of traditional optimization algorithms, computationally demand-
ing, time-consuming and sensitive to their parameters, may be removed.
The potential power of the proposed approach is demonstrated on se-
lected benchmark problems with various levels of complexity.

Keywords: inverse Poisson problem · optimisation problem · Monte
Carlo method · meshless random walk

1 Introduction

Problems of computational mechanics and civil engineering may be classified
as direct and inverse ones. In case of direct problems, the input data (geom-
etry, material, load) are known and, therefore, the resulting initial-boundary
problem remains well-posed and yields a unique output solution (displacement,
temperature, flux, strain, stress), determined by means of rather numerical than
analytical tools. However, in case selected input data are unknown, we deal with
the inverse problem, either of topological optimisation or material/load iden-
tification nature. Additional information is required, for instance optimisation
criteria (e.g., minimal mass or maximal capacity) or measurement data of out-
put functions at selected points of the problem domain and its boundary. The
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2 S. Milewski

optimal number of measurements as well as their appropriate locations are sub-
stantial since ill-posed inverse problems, suffering from information shortage, are
usually ill-conditioned (in Hadamard sense) and, therefore, extremely sensitive
to small data modifications.

Load identification problems are considered in this research, being the im-
portant stage of the recovery process of the full current static/dynamic/thermal
state of existing engineering constructions. This process is usually based upon
non-destructive, contact (e.g., sensors attached to the construction) or non-
contact (e.g., vision techniques) measurements, done at few selected locations
(nodes, bars, surfaces). In this manner, the determination of the current state of
the structure allows for the estimation of time of its safe operation and exploita-
tion, which is a part of a wide range of SHM (Structural Health Monitoring)
issues.

The attention is laid upon the Poisson differential equation, modelling a vari-
ety of processes occurring in nature, for instance the gravitational field potential
in the presence of sources, selected linear elasticity problems (torsional deflection
of a prismatic bar, plane stress/plane strain/axial symmetry), stationary heat
flow, distribution of electric potential, or filtration through porous systems. In
case of the inverse Poisson problem, the source load (input) function, being the
right-hand side function of the Poisson equation, is considered as the additional
unknown, along with the primary output function. The source function may be
interpreted, for instance, as the intensity of an external live load, subjected to
the construction, or as the intensity of a heat generation inside the domain.
Since it cannot be directly measured, its comprehensive determination (values,
support, localization, gradient) is crucial for the entire solution procedure.

The solution approach to inverse source problems strongly depends on the
type of additional data. The simplest and rather not realistic cases, though
allowing for the avoidance of the ill-conditioning, assume the existence of a con-
tinuous input/output solution, partially given on the boundary and/or inside the
domain. Therefore, the original heterogeneous problem (with non-zero unknown
source function) may be transformed into the auxiliary homogeneous problem,
being solved using traditional computational tools, like Finite Element Method
(FEM) [1], Boundary Element Method (BEM) [2], Finite Difference Method
(FDM) or meshless methods [3, 4], and then retransformed. The iterative algo-
rithm with the source function, partially known on the boundary, is presented
in [5]. Consideration of noisy data requires additional restoration algorithms,
usually of probabilistic type, preceding an reverse transform [6, 7]. On the other
hand, more experimentally oriented approaches take real measurement data into
account. Measurements, with assigned uncertainties, have fixed locations or may
be arbitrarily scattered in the problem domain. Consequently, the non-linear op-
timisation problem is formulated and solved [8, 9], incorporating aforementioned
deterministic (FEM, FDM, meshless methods [10, 11]) as well as stochastic solu-
tion approaches (genetic algorithms, neural networks [12, 13]). Ill-conditioning of
the original inverse problem is reduced by appropriate regularization techniques
[10, 14].
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Inverse Poisson problem by Monte Carlo method 3

Although a variety of optimisation methods exists, most of them exhibit seri-
ous drawbacks, for instance time–consuming searching algorithms (non-gradient
methods), computationally demanding multiple solutions of auxiliary differen-
tial problems for fixed source parameters, numerical evaluation of the objec-
tive function’s gradient and/or Hessian, sensitiveness to initial guess solutions
(for iterative procedures) as well as requirement for admissible solution inter-
vals. The proposed Monte Carlo optimization method allows for the reduction
of those disadvantages. It is based upon the old concept of the Monte Carlo
(MC) method with a random walk technique for an approximate solution of the
Laplace problem at the selected point of the rectangular grid of points [15]. Se-
ries of simulations (random walks) are performed, starting from the considered
point and terminating at the boundary, where the solution is known. Sum of all
boundary indication numbers, related to the total number of trials and scaled
by boundary solution values, is an unbiased estimator of the Laplace problem at
this point. Moreover, it is convergent to the corresponding finite difference (FD)
solution of the same problem, providing the number of trials is large enough [16,
17].

Its novel application to inverse source problems assumes the determination of
indication numbers, separately for all measurement points, coinciding with ap-
proximation nodes, regardless of their distribution. Afterwards, resultant explicit
relations between the input (source function parameters) and output (solution
values at measurement points) may be substituted into the objective function,
minimising the measurement error. This move allows for its analytical differen-
tiation towards fulfilment of the necessary condition of the existence of its ex-
treme. Eventually, one obtains small symmetric system of algebraic equations.
Once the source function is recovered, the problem becomes a direct one, and
the unknown output function along with its derivatives may be determined us-
ing standard computational tools. The entire solution procedure is a two-step
one and it does not require any a-priori knowledge concerning the unknown so-
lution and source function. The solution of the inverse problem is obtained in
an explicit form, using semi-analytical transformations, based upon combined,
stochastic (MC)–deterministic (FD) model.

The paper is organized in the following manner. Section 2 presents the formu-
lation of the analysed inverse problem. Section 3 introduces the source function
recovery, using either its global approximation or independent approximation
mesh. Section 4 presents results of several benchmark problems. The paper is
briefly concluded and directions of future work are indicated.

2 Formulation of the inverse Poisson problem

The following 2D Poisson equation is considered

∇2F = f (x) in Ω (1)

with essential boundary conditions

F = F̄ (x) on ∂Ω (2)
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where ∇2 = ∆ =
∂2

∂x21
+

∂2

∂x22
is the Laplace operator, Ω = {x =

[
x1 x2

]
} ∈ <2

is the problem domain, ∂Ω – its boundary, F : x ∈ Ω → < is the unknown C2

scalar output function, with given values F̄ (x) at every boundary point x ∈ ∂Ω.
It is assumed that the right–hand side input function f = f (x) is unknown

and has to be determined on the basis of additional data

F̂k ± ∆F, k = 1, 2, ...,m (3)

being measurements F̂k of the output function F with given tolerance ∆F at

m measurement points x̂k =
[
x̂
(k)
1 x̂

(k)
2

]
. Furthermore, let us assume that the

unknown function f is represented by the finite set of its nf parameters (de-
grees of freedom), denoted as α =

[
α1 α2 ... αnf

]
. Therefore, coefficients of α

constitute the set of primary unknowns to the considered inverse problem and
F = F (x,α), f = f (x,α). The relevant non–linear optimisation problem may
be formulated, namely find such optimal parameters

αopt = argmin(α)J (α) (4)

that minimise the following objective function

J (α) =

√√√√ 1

m

m∑
k=1

(
F (x̂k,α)− F̂k

∆F

)2

(5)

with inequality constraints∣∣∣F (x̂k,α)− F̂k

∣∣∣ < ∆F, k = 1, 2, ...,m (6)

where F (x̂k,α) are values of F at measurement points. The necessary condition
of the existence of the extreme of (5) is

∇αJ (α) = 0 (7)

which leads to the algebraic system of nf equations with nf unknowns. After
substitution of (5) to (7), one obtains the following expression

∇αJ (α) =

m∑
k=1

(
F (x̂k,α)− F̂k

)
∇αF (x̂k,α) (8)

in which ∇αF is the [nf × 1] gradient vector

∇αF (x,α) =

{
∂F

∂αl
, l = 1, 2, ..., nf

}
(9)

The sufficient condition of the existence of the minimum of (5) is the positive-
definitiveness of the Hesse matrix (Hessian) of (5), defined as H (α) = ∇2

αJ (α),
which corresponds to the convex objective function.
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3 Recovery of the source function

Let us assume that the square grid Ωh with boundary ∂Ωh, represented by
one mesh modulus h and consisting of nF nodes xF ∈ Ωh, has been gener-
ated. Therefore, each node xF may be expressed using two indices (i, j), namely

xi,j =
[
x
(i,j)
1 x

(i,j)
2

]
(Fig 1a). Applying the finite difference solution approach to

(1), we replace the differential operators with difference ones, using appropriate
configurations of nodes (stars) as well as we generate difference equations at
internal nodes using collocation technique, namely

Fi−1,j + Fi,j+1 + Fi+1,j + Fi,j−1 − 4Fi,j

h2
= fi,j (10)

By terms rearrangement, we obtain the relation between the central value of a
star and the remaining ones

Fi,j =
1

4
Fi−1,j +

1

4
Fi,j+1 +

1

4
Fi+1,j +

1

4
Fi,j−1 −

h2

4
fi,j (11)

which factors may be considered as probabilities of selection of a next move
within each random walk component, equal for each sense of directions (top,
right, bottom, left). The final Monte Carlo formula

Fi,j ≈
1

N

 ∑
(r,s)∈∂Ωh

F̄r,sN̄(i,j),(r,s) −
h2

4

∑
(r,s)∈Ωh

fr,sN(i,j),(r,s)

 , (i, j) ∈ Ωh

(12)
is the stochastic approximation of all a–priori known problem parameters. Here,
N denotes the total number of all random walks, terminating at boundary

nodes xr,s =
[
x
(r,s)
1 x

(r,s)
2

]
∈ ∂Ωh with known solution values F̄r,s. Moreover,

N̄(i,j),(r,s) and N(i,j),(r,s) denote nodal indications, being the number of hits of
each boundary node (r, s), and the number of visits of each internal node (r, s),
respectively, for a random walk starting from the internal node (i, j). Error
bounds of (12) may be estimated using the a–priori formula

e =

∣∣∣∣∣Fi,j − F fdm
i,j

F fdm
i,j

∣∣∣∣∣ < 1√
N

(13)

where F fdm
i,j is the corresponding finite difference solution of (1) at the internal

node (i, j).

3.1 Simplest constant approximation

In case we expect the unknown source function to be a smooth one, namely values
of its gradient are small, we may use the simplest constant approximation of f ,
in order to have the general impression concerning its basic features. Therefore,
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Fig. 1. Scheme of random walks for a regular grid of point (a) as well as exemplary
regular distributions of approximation nodes xF of F (red and white circles), mea-
surements x̂ (blue squares) and approximation nodes xf of f (magenta crosses) with
a meshless star for a local approximation of f at xF (b)

we assume that the function f is ascribed by one unknown constant parameter
α1 = f = const. In that case, the Monte Carlo relation (12) becomes

Fi,j (f) =
1

N

 ∑
(r,s)∈∂Ωh

F̄r,sN̄(i,j),(r,s) −
h2f

4

∑
(r,s)∈Ωh

N(i,j),(r,s)

 (14)

Condition (7) of existence of extreme solution
dJ

df
= 0 leads to the following

equation
m∑
i,j

(
Fi,j (f)− F̂i,j

) ∑
(r,s)∈Ωh

N(i,j),(r,s) = 0 (15)

which solution may be explicitly determined

fopt =

4

m∑
i,j

(
S̄i,jSi,j −NF̂i,jSi,j

)
h2

m∑
i,j

S2
i,j

,


S̄i,j =

∑
(r,s)∈∂Ωh

F̄r,sN̄(i,j),(r,s)

Si,j =
∑

(r,s)∈Ωh

N(i,j),(r,s)

(16)

in a stochastic, semi-analytical manner. Since fopt corresponds to the analytical
solution of (7), the inequality constraints (6) are a–priori satisfied.

3.2 Global approximation of an arbitrary order

More general approximation of the unknown source function on the global level
may incorporate the vector of nf degrees of freedom α as well as the vector of
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nf global basis functions Φ = {Φl, l = 1, 2, ..., nf}, namely

f (x,α) =

nf∑
l=1

αl Φl (x) = α Φ (x) (17)

In most approaches, degrees of freedom α are values of f (physical degrees
of freedom), providing basis functions are dimensionless (e.g., standard shape
functions). However, since the initial values of α are not required here, α may
be arbitrary mathematical degrees of freedom whereas basis functions may be
simple monomials. On the basis of the Monte Carlo relation

Fi,j (α) =
1

N

 ∑
(r,s)∈∂Ωh

F̄r,sN̄(i,j),(r,s) −
h2

4

∑
(r,s)∈Ωh

α Φ (x̂r,s)N(i,j),(r,s)


(18)

as well as the necessary conditions

∂J

∂αl
=

m∑
i,j

(
Fi,j (α)− F̂i,j

) ∑
(r,s)∈Ωh

Φl (x̂r,s)N(i,j),(r,s) = 0, l = 1, 2, ..., nf

(19)
we obtain the symmetric and positive–definite system of linear equations which
solution may be expressed in the following matrix notation

Aαopt = B, αopt = A−1B (20)

where

Ak,l =

m∑
i,j

S
(k)
i,j S

(l)
i,j , Bk =

4

h2

m∑
i,j

(
S̄i,j −NF̂i,j

)
S
(k)
i,j , k, l = 1, 2, ..., p

S̄i,j =
∑

(r,s)∈∂Ωh

F̄r,sN̄(i,j),(r,s), S
{(k),(l)}
i,j =

∑
(r,s)∈Ωh

Φ{k,l} (x̂r,s)N(i,j),(r,s)

(21)
For instance, the linear approximation of f (nf = 3) may be assumed as

f (x,α) = α1Φ1 (x) + α2Φ2 (x) + α3Φ3 (x) = α1 + α2x1 + α3x2 (22)

whereas the optimal set of mathematical degrees of freedom α =
[
α1 α2 α3

]
may be obtained from (20), namely

m∑
i,j

(
S
(1)
i,j

)2 m∑
i,j

S
(2)
i,j S

(1)
i,j

m∑
i,j

S
(3)
i,j S

(1)
i,j

m∑
i,j

S
(1)
i,j S

(2)
i,j

m∑
i,j

(
S
(2)
i,j

)2 m∑
i,j

S
(3)
i,j S

(2)
i,j

m∑
i,j

S
(1)
i,j S

(3)
i,j

m∑
i,j

S
(2)
i,j S

(3)
i,j

m∑
i,j

(
S
(3)
i,j

)2




α1

α2

α3

 =
4

h2



m∑
i,j

(
S̄i,j −NF̂i,j

)
S
(1)
i,j

m∑
i,j

(
S̄i,j −NF̂i,j

)
S
(2)
i,j

m∑
i,j

(
S̄i,j −NF̂i,j

)
S
(3)
i,j


(23)
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3.3 Local approximation using independent mesh

In case the unknown source function f is expected to be highly non–linear or
localized, the global approximation (17) may provide the general information
concerning its values and distribution. On the other hand, monomial terms,
which order is higher than 2, may not have a significant influence on the final
results. Therefore, a local approximation of f may be assumed, using physical de-
grees of freedom α = f , based upon a mesh of nf internal points Ωf = {xf ∈ Ω}
(Fig 1b). The meshΩf may be totally independent from the approximation mesh
Ωh = {xF } for the primary function F , whereas its density may be directly re-
lated to the number (m) of measurement locations x̂. Therefore, the additional
mapping, between both approximation meshes, namely Ωf (of function f) and
Ωh (of function F ), is required. It may be based upon the Moving Weighted Least
Squares (MWLS) approximation technique [18], typical for meshless analysis, in
which nodes may be distributed totally arbitrarily, without any imposed struc-
ture. Let us assume that the function f is defined by the finite set of its nodal
values f = f (xf ), given at nf nodes xf ∈ Ωf . The function value f as well as
its derivatives up to the p–th order are required at the arbitrary point xF ∈ Ωh.
The configuration (called star or stencil) of mf < nf nodes SF = {xf}, being
neighbours of xF , is assigned to xF . The meshless star my be generated using
various criteria, for instance, a distance criterion in which mf nodes, closest to x,
are selected, or topology oriented ones, like cross or Voronoi neighbours criteria
[19]. Afterwards, the local approximation of f is constructed, using the Taylor
series expansion, namely

f (xF ,x) = p (xF − x)Df (xF ) (24)

where p (xF − x) =
[

1 |xF − x| |xF − x|2 ... |xF − x|p
]

is the vector of local

interpolants, whereas Df (xF ) =

[
f
∂f

∂x1

∂f

∂x2

∂2f

∂x21
...
∂(p)f

∂x
(p)
2

]
xF

is the vector of

subsequent derivatives of f at xF . Fulfilling of (24) at all mf node of the SF

star leads to the over–determined system of linear equations

P (xF )Df (xF ) = f (xF ) (25)

where P (xF ) = p (xF − SF ) and f (xF ) is the vector of nodal values of f at
star nodes. Its solution may be obtained by a minimisation of the weighted error
function

I (xF ) = (P (xF )Df (xF )− f (xF ))
T
W2 (xF ) (P (xF )Df (xF )− f (xF )) (26)

Here, W (xF ) is the diagonal weighting matrix, with singular weightsω assigned
to each node of SF , according to the formula ω (xF − x) = ‖xF − x‖−p−1.
Finally, we obtain the matrix of difference formulas

M (xF ) =
(
PT (xF )W2 (xF )P (xF )

)−1
PT (xF )W2 (xF ) (27)
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rows of which correspond to difference coefficients of subsequent derivatives in
Df , namely

Df (xF ) = M (xF ) f (xF ) (28)

Consequently, the approximation f at nodes xF may be substituted into the
Monte Carlo relation, yielding the following formula

Fi,j (f) =
1

N

 ∑
(r,s)∈∂Ωh

F̄r,sN̄(i,j),(r,s) −
h2

4

∑
(r,s)∈Ωh

M〈1〉 (x̂r,s) f (x̂r,s)N(i,j),(r,s)


(29)

where M〈1〉 denotes the first row of M. The optimal parameters fopt are deter-
mined from (20) with (21) and modified terms

S
{(k),(l)}
i,j =

∑
(r,s)∈Ωh

M1,{k,l} (x̂r,s)N(i,j),(r,s) (30)

General principles of random walk strategy remain unmodified, namely the se-
lection of four equally probable directions of each next move and its termination
at boundary nodes. Moreover, it has to be stressed that for nf > m the matrix
A from (20) is singular, for nf = m the matrix A is ill-conditioned, whereas
its conditioning improves as nf becomes smaller than m. Therefore, appropriate
number of measurements m may be required in order to reproduce the source
function with assumed accuracy.

4 Numerical examples

Results of selected numerical experiments are presented in order to illustrate the
effectiveness of the proposed approach. Since the research is in the preliminary
state, only simulated measurement data are taken into account. The following
strategy, based upon manufacturing solutions, is adopted

1. Geometry parameters, boundary conditions F̄ as well as the right-hand side
function f are assumed.

2. The regular mesh xF ∈ Ωh is generated and the corresponding direct prob-
lem (with known F̄ and f) is solved by means of the finite difference method
(FDM), yielding the nodal solution F at xF .

3. Measurement locations x̂ ∈ Ωh are assumed and measurement data F̂ are
generated on the basis of F values, randomly disturbed with the amplitude
∆F , corresponding to the measurement tolerance.

4. The selected approximation formula ((17) or (24)) for the unknown source
function f is assumed, with the optional generation of additional mesh xf ∈
Ωf and the mapping xf → xF .

5. The first inverse solution step: nodal indications are determined at all m
measurement locations using standard fixed random walk technique.

6. The second inverse solution step: unknown source parameters f are deter-
mined from the system of equations using appropriate Monte Carlo relations.
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Fig. 2. Objective function and optimal solution for two sets of 9 measurement points

7. The source function f is recovered at all nodes xF ∈ Ωh using previously
introduced approximation.

8. The resulting direct problem, with recovered function f , is solved by FDM
and the primary solution F is determined at xF ∈ Ωh.

Preliminary tests are performed for the problem with the constant source inten-

sity f = −2, boundary values F̄ (x) = x21+x22, square domain Ω =
[

0 1
]2

, nodes
number n = 13×13, the number of random walks N = 1000, measurements num-
ber m = 3×3, as well as measurement tolerance ∆F = 0.2 (up to the 10% of the
original value). A–priori estimators allow to estimate the approximation error
ehp = Chp+1−k < 0.0833C (with respect to the unknown exact solution), where
C is the arbitrary constant, though independent from p and h, as well as the
stochastic error (13), namely e < 0.0316 (with the respect to the FD solution).
Fig. 2 presents results (graph of the objective function and the optimal solu-
tion), obtained for fixed parameters, for two types of measurement locations,
namely regular and randomly selected distributions. However, the final results
of stochastic methods cannot be representative unless they are obtained after
appropriate averaging of intermediate results. Therefore, histograms for 1000
various simulations of both random measurement locations and distributions of
indication numbers are shown in Fig. 3. It may be observed that the dispersion
of results is significant, especially for randomized locations. As a consequence,
all following examples are executed in N–based series and properly averaged.
Moreover, the influence of selected input parameters on fopt is examined, using
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Fig. 3. Histograms of the optimal solution fopt, for variability of indication numbers
(left graph) and measurement locations (right graph), for 1000 simulations per 20
classes

Fig. 4. Results of N -convergence (left graph) and h-convergence tests (right graph)

the regular grid of m = 9 measurement points. Fig. 4 presents convergence of
fopt with respect to N (with fixed h, m and ∆F ) and h (with fixed N , m and
∆F ), whereas Fig. 5 shows convergence of fopt with respect to m (with fixed
N , h and ∆F ) and ∆ (with fixed N , h and m). Each time, results are stable
and convergent to the original intensity value (f = −2). Afterwards, the global
monomial approximation (17) of the full second order (nf = 6) is applied for
the recovery of the unknown source function. The simulated measurement data
(m = 9, ∆F = 10% of the original value) are generated on the basis of the FDM
solution, obtained on the regular mesh with nF = 81 nodes and corresponding
to the original source function f (x) = −2 + x1 + 3x2− 5x21 + x1x2 + 7x22. Nodal
indications are determined by means of 10 series of N = 1000 random walks.
Results are presented in Fig. 6. The formula of the recovered source function
as well as relative source and solution errors, evaluated in L2 and max norms,
are given in graphs’ titles. The maximum errors are approx. 2% (for f) and 1%
for (F ). Eventually, the local approximation of the first order as well as the
independent mesh for the approximation of f are applied for the recovery of
the source function, given by more complex formula of exponential type, namely
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Fig. 5. Results of m-convergence (left graph) and ∆F -convergence tests (right graph)

Fig. 6. Recovered source function f (left graph) and primary solution F (right graph)
using global approximation and mathematical degrees of freedom

f (x) = exp
(
−5
(
x21 + (x2 − 9/10x1)

2
))

. It may be computationally demand-

ing even for the direct problem as it requires a dense discretization mesh and,
therefore, a vast computational power. The applied model is based upon the
approximation mesh with nF = 225 nodes and m = 49 measurements, as well
as the regular grid for the source function approximation with nf = 36 physical
degrees of freedom f . Results are presented in Fig. 7. Relative source and solu-
tion errors, evaluated in L2 and max norms, are given in graphs’ titles. Similarly
as in the previous example, the maximum errors are reasonably small, namely
approx. 2.5% (for f) and 1% for (F ). Furthermore, in all cases, the computa-
tional times are negligible (below several seconds). All results are obtained on
16 GB RAM and 1.80 GHz processor, using author’s original software, written
in Matlab R2014b.

5 Final remarks

The semi–analytical approach for the numerical analysis of inverse Poisson prob-
lems is presented. In inverse Poisson problem, the source (load) function is un-
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Fig. 7. Recovered source function f (left graph) and primary solution F (right graph)
using local approximation and physical degrees of freedom

known, whereas set of measurements of the primary function, being the solution
to this problem, may constitute the additional data. The problem may be formu-
lated as the non–linear optimisation problem, in which the objective function is
the average error between the measured and computed values whereas decision
variables are source function parameters. The proposed approach is based upon
the old and well–known concept of the Monte Carlo method as well as random
simulations (random walks), performed on the regular mesh of points. It incor-
porates several features of the standard (selection probabilities) and meshless
(mapping between independent meshes) finite difference methods. On the con-
trary to the standard optimisation methods, this approach requires neither an
iterative procedure nor a searching of the admissible solution space. The optimal
source functions parameters are determined from the system of linear equations,
which source is the analytical differentiation of the objective function, approxi-
mated in the coupled stochastic-deterministic manner.

The future work may include the generalisation of the proposed approach for
more complex geometries, for which unstructured meshes and arbitrarily irreg-
ular clouds of nodes are required as well as for problems with mixed boundary
conditions. Selection directions and probabilities may be determined using mesh-
less approximation techniques, similar to those already applied in the mapping
between two independent approximation meshes. Moreover, the application of
the approach to inverse problems of non–stationary thermal as well as to linear
elastic types is planned.
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