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Abstract. Time series modelling and forecasting techniques have a wide
spectrum of applications in several fields including economics, finance,
engineering and computer science. Most available modelling and fore-
casting techniques are applicable to a specific underlying phenomenon
and its properties and lack generality of application, while more general
forecasting techniques require substantial computational time for train-
ing and application. Herewith, we present a general modelling framework
based on a recursive Schur - complement technique, that utilizes a set
of basis functions, either linear or non-linear, to form a model for a gen-
eral time series. The basis functions need not be orthogonal and their
number is determined adaptively based on fitting accuracy. Moreover, no
assumptions are required for the input data. The coefficients for the ba-
sis functions are computed using a recursive pseudoinverse matrix, thus
they can be recomputed for different input data. The case of sinusoidal
basis functions is presented. Discussions around stability of the resulting
model and choice of basis functions is also provided. Numerical results
depicting the applicability and effectiveness of the proposed technique
are given.

Keywords: Forecasting · Pseudoinverse matrix · Modelling.

1 Introduction

General time series modelling and forecasting has become an essential tool in
several scientific fields and business sectors, spanning from physics and engineer-
ing to workforce prediction and finance. Several methods have been proposed in
the literature for modelling and forecasting time series based on either statisti-
cal or Machine Learning techniques. The most notable methods in the statistical
methods class include Exponential Smoothing (ES), Auto-Regressive Integrated
Moving Average (ARIMA), State Space and Structural models, Kalman filter,
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Nonlinear models and Generalized Auto-Regressive Conditionally Heteroscedas-
tic (GARCH) models.

Exponential Smoothing (ES) was proposed in the 1960s by Brown, Holt and
Winters [3, 11, 27], has been used extensively along with its variants due to its
simplicity and adaptability to various scientific fields [14, 25]. Auto-Regressive
(AR), Auto-Regressive Moving Average (ARMA) and Auto-Regressive Inte-
grated Moving Average (ARIMA) models were first proposed by Box and Jenkins
[2] in the 1970s. Estimation techniques for the parameters of such methods have
been discussed in [2]. Several univariate time series forecasting variants of such
models have been proposed in the literature including ARARMA [18], Vector
ARIMA (VARIMA) [21, 23], Automatic univariate ARIMA type models [24] and
seasonal approaches such as STL or X−11 [4, 5]. In the 1980s, state space mod-
els have been also used including Dynamic Linear Models (DLM) [9] and Basic
Structural Models (BSM) [10] along with several variants [20]. In the quantita-
tive finance domain Generalized Auto-Regressive Conditionally Heteroscedastic
(GARCH) models [6] have been used. Nonlinear variants that handle asymmetric
volatility have been also presented and studied [1, 17].

Research around non-linear modelling techniques has also been conducted
however not in such extent. This is primarily because of their increased com-
plexity and the lack of closed form formulas. In this field notable contributions
include the work of Wiener [26] and others [19]. Detailed overview on the ad-
vances of time series modelling and forecasting techniques over the last decades
are given in [8] and references inside. Moreover, large scale benchmarking of
popular modelling and forecasting techniques are given in [15].

Despite the popularity and wide use of the aforementioned techniques, they
are mostly dedicated tools tuned specifically to a use case relying on restrictive
assumptions for the form and nature of the data. General models such as Ar-
tificial Neural Networks or Support Vector Machines handle those limitations
but they require substantial amounts of data, increased training and retraining
times, as well as substantial tuning of the large number of hyperparameters. A
different approach is followed by Fast Orthogonal Search (FOS) and its vari-
ants [12, 13, 16], which can form general models using combinations of linear and
non-linear basis functions. These methods are based on Gram - Schmidt and
Modified Gram - Schmidt orthogonalization as well as a Cholesky type factor-
ization approaches. These methods build the model incrementally based on a
re-orthogonalization approach. The time series is projected to this orthogonal
set and until a prescribed modelling error is achieved. However, inherently par-
allel orthogonalization procedures have instabilities and stable variants are in-
herently sequential, thus cannot take advantage of novel multicore architectures.
Furthermore, for models composed of a large number of trigonometric compo-
nents, retraining the model requires re-computation of the coefficients performed
by backward - forwards substitution, which is inherently sequential.

In this article a novel inherently parallel Schur complement based pseudoin-
verse matrix modelling and forecasting technique is proposed. The proposed
scheme is based on a recursive pseudoinverse matrix to form a model based on
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a predefined set of linearly independent (linear or non-linear) basis functions.
Basis functions are accumulated recursively into the model until a prescribed
error is achieved. The stability of the model is ensured by enforcing positive
definiteness of the dot product matrix of basis functions through monitoring of
error reduction as well as monitoring the magnitude of the diagonal elements.
Retraining of the produced model is limited to the pseudoinverse matrix by vec-
tor product. By exploiting orthogonality features, computing the residual time
series is avoided, improving computational complexity. Discussions and imple-
mentation details regarding the computation of the pseudoinverse matrix and
model formation are also provided. The case of sinusoidal basis functions is also
discussed along with a technique to accurately determine frequencies based on
the proposed approach. The efficiency and applicability of the proposed scheme
is assessed in a variety of time series with different characteristics.

In Section 2, the recursive Schur complement based pseudoinverse matrix of
basis functions is introduced. In Section 3, the Schur complement based pseu-
doinverse matrix is utilized in the design of the proposed modelling technique
in order to computed the weights of the respective basis. Discussions on the
stability of the scheme and implementation details are also provided. In Section
4, the case of sinusoidal basis functions is examined and discussed. In Section 5,
numerical results are presented depicting the applicability and accuracy of the
proposed scheme along with discussions for several time series.

2 Recursive Schur complement based pseudoinverse
matrix of basis functions

Let us consider a matrix composed of a set of n basis functions:

X =
[
x1(t) x2(t) . . . xn(t)

]
, (1)

where xi(t), 1 ≤ i ≤ n are the basis functions and t is the time variable. We can
expand a general time series y based on the xi(t):

y = a1x1(t) + a2x2(t) + . . .+ anxn(t) + ε(t), . (2)

where ε(t) is the error term and ai, 1 ≤ i ≤ n are the unknown coefficients that
have to be determined. The eq. (2) can be written in block form:

y = Xa. (3)

or equivalently,
a = X+y = (XTX)−1XT y. (4)

Thus, the coefficients can be determined by solving the least squares linear
system (3) or through the pseudoinverse X+ (4). However, in many cases the ba-
sis functions are not known a priori and are computed iteratively or recurrently
up to prescribed tolerance. This requires formation and solution of multiple least
squares linear systems, which increases substantially the computational work. To
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avoid such issues modelling techniques such as Fast Orthogonal Search (FOS)
and variants [12, 13, 16] have been proposed, based on Gram - Schmidt and Mod-
ified Gram - Schmidt orthogonalization as well as Cholesky factorization type
approaches. These methods build the model incrementally by adding basis func-
tions and re-orthogonalize with the already computed ones in order to project
the time series and reduce the modelling error.

In order to avoid computational costs and instabilities involved in using or-
thogonalization procedures, while retaining the flexibility of incrementally build-
ing the model, a novel approximate inverse scheme is proposed. Let as consider
the matrix Xi containing up to the i-th base and an additional base F :

Xi+1 =
[
Xi | F

]
(5)

or:

Ki+1 = XT
i+1Xi+1 =

[
XT

i Xi X
T
i F

FTXi F
TF

]
=

[
Ki b
bT d

]
, (6)

where b = XT
i F and d = FTF . It should be noted that the matrix XT

i+1Xi+1 is
Symmetric Positive Definite and thus invertible, under the assumption that the
basis function are linearly independent.

Computing the inverse of the matrix Ki+1 enables formation of the pseudoin-
verse X+

i+1 and consequently the computation of the coefficients ai to form the
model. The matrix Ki+1 can be factored to enable easier inversion and avoid the
update step for the elements of the inverse of the matrix Ki, which is essential
in case of non-factored inverse matrices [7]:

Ki+1 =

[
G−T

i 0
bTK−1

i 1

] [
Di 0
0 si

] [
G−1

i K−1
i b

0 1

]
(7)

or equivalently:

K−1
i+1 =

[
Gi −K−1

i b
0 1

] [
D−1

i 0
0 s−1

i

] [
GT

i 0
−bTK−1

i 1

]
= Gi+1D

−1
i+1G

T
i+1 (8)

where the matrix Di retains the Schur complements si corresponding to each
addition of a basis functions. The Schur complements are of the form: si =
d− bTGiD

−1
i GT

i b. Due to the symmetric nature of the the inverse K−1
i+1 only the

factors Di+1 and Gi+1 are required. Thus, we have:

Gi+1 =

[
Gi −GiD

−1
i z

0 1

]
and D−1

i+1 =

[
D−1

i 0
0 (d− zTD−1

i z)−1

]
(9)

where z = GT
i b. Addition of a new basis is limited to simple “matrix times

vector” operations, which can be efficiently performed in modern CPUs or ac-
celerators such as GPUs. The storage requirements for the inverse are limited
to the upper triangular matrix Gi, which retains i(i + 1)/2 elements, and the
diagonal matrix Di retaining i elements.
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In order to avoid breakdowns in case of weak linear independence between
different basis functions or loss of numerical precision, a condition on the mag-
nitude of the diagonal element (Schur Complement) should be imposed. If the
diagonal element is close to machine precision, in practice less than

√
εmach, it

is substituted with
√
εmach, thus avoiding breakdowns.

3 Schur based pseudoinverse matrix modelling and
forecasting

The choice of basis functions for creating a model can be arbitrary, since they
are evaluated and stored in the columns of matrix X. However, the amount and
type of functions chosen affects the accuracy of the model and computational
work. Considering the basis functions of eq. (1), the general time - series of eq.
(2) and the recursive inverse matrix of eq. (8) we can obtain the coefficients ai,
after the addition of the i+ 1 basis function, as follows:

[
ai
b

]
=

[
Gi −GiD

−1
i GT

i X
T
i F

0 1

] [
D−1

i 0
0 s−1

i

] [
GT

i 0
−FTXiGiD

−1
i GT

i 1

] [
XT

i y
FT y

]
(10)

where si = FTF − FTXiGiD
−1
i GT

i X
T
i F . The addition of a basis function in-

volves updating of the values of already computed coefficients ai corresponding
to the i basis functions. Let gi+1 = −GiD

−1
i GT

i X
T
i F then we have:

ai+1 =

[
a∗i
b

]
=

[
ai + gi+1b

s−1
i (FT + gTi+1X

T
i )y

]
(11)

where ai = GiD
−1
i GT

i X
T
i y and si = FT (F + Xigi+1). The coefficients a∗i are

updated after the inclusion of basis function F , while matrix Xi retains all basis
functions up to i-th. The residual time series update equation, with respect to
the addition of a new basis function can be formed using eq. (11) as follows:[

Xi F
]
ai+1 =

[
Xi F

] [a∗i
b

]
(12)

or:

ri+1 = y−
[
Xi F

] [a∗i
b

]
= y−Xia

∗
i −Fb = r∗i −Fb = ri − (Xigi+1 +F )b. (13)

Using eq. (13) the norm of the residual, after addition of a basis function,
can be computed as follows:

ri+1 = ri−(Xigi+1+F )b = ri−(I−XiGiD
−1
i GT

i X
T
i )Fb = ri−(I−PXi

)Fb, (14)

where PXi
is an orthogonal projection operator onto the subspace spanned by

the columns of Xi. The eq. (14) implies also the following:

PXi
ri = 0 or ri ⊥ span(Xi). (15)
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Thus, we have:

‖ri+1‖22 = ‖ri‖22 − ‖(Xigi+1 + F )b‖22 = ‖ri‖22 − b2si, (16)

or

‖ri+1‖2 =
√
‖ri‖22 − b2si. (17)

Eq. (17) can be used to assess progress of fitting, instead of computing the
norm of the residual at each iteration, substantially improving performance espe-
cially in the case of increased number of basis functions. Moreover, the quantity
b2s is positive since matrix XT

i Xi is Symmetric Positive Definite, thus its Schur
Complement is also Symmetric Positive Definite, leading to monotonic reduction
of the norm of the residual ri+1.

Algorithm 1 Pseudoinverse Matrix Modelling
(a = pmm(y, Fi, ε))

1: Let y (T×1) be the input time series of length T , Xi is the matrix retaining the up
to the i-th basis function, Fi+1 the i+1 basis function, M is the maximum number
of basis functions, ai the coefficients corresponding to the i-th basis function and
ε is the prescribed tolerance.

2: G1 = 1, D1 = (FT
1 F1), s = FT

1 F1

3: b = s−1FT
1 y

4: ρ = ‖y‖22, ρ0 = ρ
5: a1 = b
6: ρ = ρ− b2s
7: X1 = F1

8: for i = 1 to M − 1 do
9: g = −GiD

−1
i GT

i X
T
i Fi+1

10: F ∗ = Fi+1 +Xig
11: s = FT

i+1F
∗

12: if |s| < √εmach then
13: s =

√
εmach

14: end if
15: b = s−1(F ∗)T y
16: a1:i = a1:i + gb, ai+1 = b

17: Gi+1 =

[
Gi g
0 1

]
18: Di+1 = s, Xi+1 = Fi+1

19: ρ = ρ− b2s
20: if

√
ρ < ε

√
ρ0 then

21: return a1:i+1

22: end if
23: end for

The initial conditions for eqs. (11) and (13) are the following:

G1 = 1 (18)
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D−1
1 = (XT

1 X1)−1 (19)

and
a1 = (XT

1 X1)−1XT
1 y. (20)

The procedure for computing the coefficients ai is described in the Alg. 1. The
chosen basis functions are evaluated for t = 1, ..., T and stored in the columns
of matrix X. Thus, the model can be formed by computing Xa. The formed
model can be used to compute forecasts up to predefined horizon h. This can
be achieved by initially progressing the set of basis function in time, e.g. eval-
uate them for t∗ = T + 1, ..., T + h and store them to the columns of a matrix
X∗ = [x1(t∗) . . . xn(t∗)]. Then, the forecasts can be computed by X∗a. In prac-
tice, the choice of basis functions can be arbitrary, e.g. linear or non-linear or
combinations.

The stability of the model with respect to each addition of a basis function
can be ensured by allowing basis function to be added only if the error reduction,
caused by such an addition, is positive (b2s ≥ 0) and the reduction of the error
does not render the error term negative ρ < 0 (ρ ≥ b2s). These conditions ensure
invertibility of the matrix XT

i Xi and positive definiteness of the inverse matrix
GiD

−1
i GT

i , by allowing inclusion of basis functions that are suitably linearly
independent to the already selected ones.

4 The case of sinusoidal basis functions

Sinusoidal basis functions can be used to form a model for general time series.
In the case of strong trigonometrical phenomena in a time series, such basis
functions can be used to capture them. The sinusoidal basis functions are of the
following form:

bi(t) = Acos(ωit) +Bsin(ωit), (21)

where ωi is the frequency. Estimation of frequencies can be performed using
techniques such as the Fast Fourier Transform through the spectrum or the
Quinn - Fernandes algorithm [22]. The proposed scheme allows for determining
frequencies with arbitrary accuracy through frequency searching similar to the
procedure described in [12]. In case of the proposed technique basis function of
the form F = cos(ωit) followed by a basis function of the form F = sin(ωit)
for various frequencies ωi ∈ (0, pi] are fitted and the frequency that results in
maximum error reduction is selected. The selected frequency becomes part of the
model, is excluded from the search space, and the procedure continues until the
error criterion is met. The search space (0, pi) is sampled based on a prescribed
sampling interval δω. The choice of δω affects the accuracy in which the frequen-
cies are determined. The advantages of this technique are that frequencies can
be determined in parallel while the residual time series need not be computed
explicitly.

In order to assess the accuracy of the technique the following example is
provided. Let us consider the following:

y(t) = cos(ω1t) + 3sin(ω2t) + 2cos(ω3t)− cos(ω4t) + sin(ω4t) + σ(t) (22)
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where σ(t) is following uniform random distribution with average equal to 0.5.
The frequencies ωi are: ω1 = 0.0546, ω2 = 0.83120, ω3 = 1.87120 and ω4 =
1.91320. The frequencies are estimated using Fast Fourier Transform (FFT),
Quinn - Fernandes method based on FFT as initial guess coupled with Ordinary
Least Squares (OLS) method and the proposed technique. The results are given
in Table 1.

Table 1: Percentage errors for frequency estimation.
Frequency FFT QF-OLS δω = 10−4 δω = 10−5

ω1 3.5690 0.0250 0.1167 0.0592

ω2 0.2189 0.0007 0.0079 0.0003

ω3 0.0636 0.0091 0.0132 0.0048

ω4 0.1626 0.0021 0.0016 0.0017

The choice of δω, in the proposed scheme, should be less than the sampling
interval of the Fast Fourier Transform, e.g. δω ≤ 2∗pi

N , in order to allow accurate
determination of the frequencies and avoid undersampling.

The proposed technique can be used to estimate the frequency to improved
accuracy compared to FFT or the QF-OLS method. The proposed scheme can
be coupled also with either the FFT or QF-OLS method and hybrid schemes
can be designed leveraging the advantages of those schemes. This will be studied
in future work.

5 Numerical results

In this section the applicability and accuracy of the proposed scheme is exam-
ined by applying the proposed technique to three time series. The two error
measures used to assess the forecasting error was Mean Absolute Percentage
Error (MAPE) and Mean Absolute Deviation (MAD):

MAPE =
100

T

T∑
i=1

|yi − ŷi|
|yi|

and MAD =
1

T

T∑
i=1

|yi − ŷi|, (23)

where yi are the actual values, ŷi the forecasted values and T the length of the
test set. The basis functions chosen to model the selected time series were:

F1 = 1, F2 = t, F3 = et, Fi = Acos(ωit) +Bsin(ωit), i ≥ 4, t ≥ 0. (24)

The linear and exponential basis were added to automatically capture such
trends in the data. It should be mentioned that the time variable t is scaled for
the linear and exponential components to improve numerical behavior during
inversion of the matrix of basis functions.
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5.1 US airline passenger volume

This US airline passenger volume dataset was extracted from R Studio and is
composed of monthly total volumes of passengers spanning from January 1949
to December 1960 (144 samples). The training part was composed of 75% of the
dataset, while the test part was composed of 25% of the dataset, specifically the
training part included 108 samples and the test part included 36 samples, as pre-
sented in Fig. 1. The prescribed interval δω for frequency search was set to 0.001
and the prescribed tolerance for fitting the model was set to ε = 0.01. The fore-
casted values along with the actuals are given in Fig. 2. The MAPE and MAD
of the forecasts were 9.3474 and 40.0410, respectively. From Fig. 2 we observe
that the proposed scheme captured the exponential and linear tendency auto-
matically as well as the underlying trigonometric phenomena, without requiring
any pre-processing steps for the input data apart from maximum scaling.
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Fig. 1: Train and test parts for the US airline passenger volume dataset.
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Fig. 2: Forecasted and actual values for the US airline passenger volume dataset.

With respect to the value of the coefficients comprising the model the time
series exhibits a significant exponential component, a weak linear component
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along with a strong low frequency harmonic component, because of the yearly
periodicity of the time series.

5.2 Monthly expenditure on eating out in Australia

The monthly expenditure on eating out in Australia dataset was extracted from
R Studio and is composed of the monthly expenditure on cafes, restaurants and
takeaway food services in Australia in billion dollars. The dataset is composed of
426 samples spanning a period from April 1982 to September 2017. The training
part was composed of ≈ 80% of the dataset while the test part was composed
of ≈ 20% of the dataset, specifically the training part included 342 samples and
the test part included 84 samples, as presented in Fig. 3. The prescribed interval
δω for frequency search was set to 0.001 and the prescribed tolerance for fitting
the model was set to ε = 0.01. The forecasted values along with the actuals are
given in Fig. 4. The MAPE and MAD of the forecasts were 4.5292 and 0.1465,
respectively.
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Fig. 3: Train and test parts for the monthly expenditure on eating out in Aus-
tralia dataset.
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Fig. 4: Forecasted and actual values for the US airline passenger volume dataset.
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With respect to the value of the coefficients comprising the model the time
series exhibits a strong exponential component, a strong linear component along
with a relatively significant medium frequency harmonic components.

5.3 Call volume for a large North American bank

The call volume for a large North American bank dataset was extracted from R
Studio and is composed of the volume of calls, per five minute intervals, spanning
164 days starting from 3 March 2003. The dataset is composed of 27716 samples.
The training part was composed of ≈ 80% of the dataset while the test part was
composed of ≈ 20% of the dataset, specifically the training part included 22325
samples and the test part included 5391 samples, as presented in Fig. 5. The
prescribed interval δω for frequency search was set to 10−5 and the prescribed
tolerance for fitting the model was set to ε = 0.088. The value of the tolerance ε is
chosen as below that margin the rate of error reduction slows down significantly
due to the presence of noise in the form of a large number of frequencies with the
same magnitude in the spectrum. This issue can be overcome by increasing the
samples of the spectrum, however this substantially increases the computational
work, without significant improvement in the forecasting error. The forecasted
values along with the actuals are given in Fig. 6. The MAPE and MAD of for
the forecasts were 15.1580 and 25.4576, respectively.
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Fig. 5: Train and test parts for the call volume for a large North American bank
dataset.

With respect to the value of the coefficients the model has a weak exponential
component that is counteracted by a weak linear component. There are also
strong low frequency components that contribute significantly in the reduction
of the error.

5.4 Discussions

The proposed scheme was able to capture the dominant characteristics of the
different time series. The choice of the basis functions substantially affects the
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Fig. 6: Forecasted and actual values for call volume for a large North American
bank dataset.

estimation and the forecasting error. For example, for the model problem of
Subsection 5.3 the linear and exponential basis do not contribute significantly to
the accuracy of the model, while also increasing the computational complexity
since the dimensions of the pseudoinverse matrix grow. However, to preserve
generality and wide applicability, a common set of basis functions was retained
for all experiments.

Another important issue is the estimation of frequencies, which for the low
value of the δω parameter requires substantial computational work especially
in the case of large training data. In order to reduce computational complexity,
frequency estimation can be performed by means of either FFT or the Quinn -
Fernandes algorithm [22] or hybrid approaches which will be studied in future
research.

The generality of the approach allows the incorporation of basis functions
based on nonlinear modelling techniques such as Artificial Neural Networks
(ANN) and Support Vector Machines (SVM) trained by subsets of the avail-
able dataset. The effect of such basis functions will be studied also in future
research.

6 Conclusion

A novel Schur complement based pseudoinverse matrix approach for modelling
and forecasting general time series has been proposed. The proposed technique
can incorporate linear and non-linear components during model formation, thus
avoiding preprocessing and transformation of the time series or restrictive as-
sumptions related to the statistical properties of the data. Stability of the model
is ensured by enforcing positive definiteness of the dot product matrix of basis
functions (XTX) and its inverse, and monotonic reduction of the error. A fre-
quency detection technique is also presented based on the proposed scheme. The
proposed scheme does not require preprosessing of time series and is assessed
by modelling several time series exhibiting combinations of exponential, linear,
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trigonometric and random characteristics. Moreover, the model relies on a single
parameter and it is suitable for modelling general time series.

Future work is directed towards the design of a parallel approximate pseu-
doinverse matrix approach in order to reduce storage requirements especially in
the case of large number of basis functions. Moreover, an adaptive approach for
frequency estimation is under further research.
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