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Abstract. The paper focuses on complex metaheuristic algorithms, namely
multi-objective hierarchical strategy, which consists of a dynamically
evolving tree of interdependent demes of individuals. The main contri-
bution presented in this paper is the introduction of elitism in a form
of an archive, locally into the demes and globally into the whole tree
and developing necessary updates between them. The newly proposed
algorithms (utilizing elitism) are compared with their previous versions
as well as with the best state of the art multi-objective metaheuristics.
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1 Introduction

Contradictory objectives are present in the optimization area and such problems
are much harder to solve than global-optimization ones. Their difficulty is even
increased, as we have to seek not only one optimum but a whole set of Pareto-
optimal solutions. We have to try to distribute those solutions evenly, make sure
that we do not lose good solutions between the subsequent approximations of
the Pareto-front, especially when the number of those functions becomes higher
than several (many-objective problems). Natural weapons of choice to deal with
such problems are metaheuristic algorithms.

One of the very interesting and successful metaheuristics is Hierarchic Ge-
netic Search, introduced by Schaefer and Kolodziej [22]. It assumes a very strict
structuralization of the sub-populations in a form of a tree. Particular demes are
created when interesting solutions are found and the parameters of the search
are adapted (the search grid is modified). The demes can sprout other demes.
Of course, the demes can also be removed so the whole structure is dynamic.

HGS algorithm was successfully applied to solving global optimization prob-
lems, however, later it was adapted by  Lazarz et al. [17] to multi-objective prob-
lems and further developed in this area. In this paper we want to present a
subsequent, important development of the HGS-related multi-objective meta-
heuristics, introducing the notion of elitism, by applying local and global archives
into HO-mHGS, which step is necessary in to retain good solutions in the current
frontier.
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The next section of this paper shows the most important aspects of elitism
in the area of multi-objective optimization, then the multi-objective hierarchical
strategy is discussed along with the presentation of the aspects of local and
global archives, then the experimental results are presented, showing not only
the relation between newly introduced algorithms and its older versions but also
referring to the most known state of the art algorithms, like NSGAII.

2 Elitism in multi-objective evolutionary algorithms

Elitism, in a broad sense, is a mechanism enhancing evolutionary computation.
It works by ensuring that the current best individuals have a higher chance
of remaining in the population throughout the iterations (or being otherwise
involved in the search process). As a result, it guarantees evolution towards the
objective function improvement (or at least prevents deterioration to inferior
solutions) [10]. On the other hand, it may decrease the population diverseness
due to increased selection pressure.

There have been numerous attempts at implementing this paradigm in prac-
tice. One approach is to simply combine the population with its offspring and
then apply the survival selection [20]. Its variation, known as multi-elitism [1],
instead keeps in population the so-called residents — individuals occupying sep-
arate peaks of the fitness function. Another option, popular in the case of multi-
objective problems, is to employ a relaxed version of the idea (termed controlled
elitism [6]), where solutions are first divided into an ordered sequence of subsets
(called fronts), and then each of them contributes to the next generation several
individuals based on geometric distribution. Finally, δ-similar elimination [21]
procedure can be used to filter the joint parent-offspring population and ensure
that no two individuals are within a given distance from one another, thus giving
an advantage to more exploratory solutions. All those variants have one thing in
common: they strive to preserve the elitism benefits while simultaneously trying
to counteract its deficiencies.

An alternative to those techniques is to store the chosen individuals, not in
the working population, but in a separate set, usually referred to as archive [8].
Specific optimisation models tend to differ by both their organisation and how
archived organisms are utilised during the run. PAES [14] keeps an archive of
non-dominated solutions with additional crowding-based thinning. Its contents
are used in two situations: to estimate the true dominance ranking in a pair
of otherwise incomparable solutions, and to be returned as the final outcome.
MOIPSO [26] modifies this scheme by making use of the distribution entropy as
a crowding measure, introducing Gaussian mutation throw points as a way of im-
proving the external archive uniformity, and applying it to a particle swarm op-
timisation technique. A similar archive system is also successfully adopted in the
case of chaos optimisation algorithms, such as MPCOA [18]. ME-MOEA/D [9]
(a decomposition-based method) identifies elite solutions based on a dominance
index, fine-tunes them using a local search mechanism, and transfers them to
the isolated external population afterwards. This supplementary population is
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then used as a potential substitute source of individuals during the crossover op-
eration. Other notable examples of effective archive integration are the classical
algorithms PESA-II [4] and SPEA2 [31].

Naturally, certain solutions elude being classified by such a simple dichotomy.
For example, BBO [25] is an algorithm utilising a multi-population island-based
computation scheme, with organisms representing solutions emigrating from and
immigrating to the said islands. Its elitism is enforced by prohibiting migration
for the top portion of individuals in each subset. Other researchers experiment
with unbounded archives and propose novel frameworks for assembling the final
result from the subset of all examined solutions [13]. Lastly, some studies explore
the potential of methods that completely abstain from employing any forms of
elitism whatsoever, demonstrating that they are still able to perform significantly
well on particular types of problems [27].

3 Optimizing MO-mHGS with archives

3.1 Multi-Objective Hierarchical Strategy

Multi-Objective Hierarchical Strategy (MO-HGS) [2] is a framework designed
to adapt and run multi-objective evolutionary algorithms (MOEAs) in an en-
vironment split into several populations (called demes). MO-HGS dynamically
creates population nodes and lays them out in a tree-like hierarchy. Each node
runs an independent instance of MOEA (denoted as node’s driver) and its search
accuracy depends on its depth in the hierarchy. Nodes closer to the root perform
a more chaotic search to find promising areas.

The process of MO-HGS consists of several steps, called metaepochs. In each
metaepoch driver runs several epochs, progressing in an evolutionary process.
Additionally, HGS-specific mechanics are applied. The most promising individ-
uals (delegates) of each node have a chance to become seeds of next-level child
nodes (sprouting procedure). A child node runs with reduced variance settings
so that its population will mostly explore that region. To eliminate the risk of re-
dundant exploration of independently evolving demes, two trimming procedures
are performed. If the area is already explored by one of the other children, then
sprouting is cancelled and the next candidate for sprouting is considered (branch
comparison). Moreover, after each metaepoch MO-HGS checks if populations at
the same level of the tree perform a search in the common landscape region or
already explored regions and removes such nodes (branch reduction).

MO-HGS was inspired by a more general hierarchical scheme, Hierarchical
Genetic Strategy [23], which was adapted into a multi-objective environment.
Further improvements were made to the model, including the hypervolume-based
sprouting procedure introduced in [17]. The result meta-model was denoted as
Multiobjective Optimization Hierarchic Genetic Strategy with maturing (MO-
mHGS).

With MO-mHGS we focus mainly on reducing the cost of fitness evaluation.
We proved that this meta-model can be a perfect tool to solve problems with
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a high cost of the evaluation. It can be achieved by providing fitness operators
with different accuracies bound to specific HGS tree levels. However, in the recent
research [12] we have shown that even without this fitness adjusting mechanism,
MOEA enforced by MO-mHGS can achieve better performance comparing to
the situation when it’s run alone. It is possible thanks to the natural parallel
execution capabilities of the hierarchical model.

In this paper, we continue the exploration of MO-mHGS features as a generic
tool improving the performance of its driver (preferably: any MOEA). This time
we will consider two approaches to elitism in the MO-mHGS meta model: global
fitness archive and local node-level archives. We expect it should lead to better
convergence and more stable results, regardless of the incorporated driver.

3.2 Global Fitness Archive in MO-mHGS

In each metaepoch MO-mHGS delegates the work to its internal driver of the
given tree node. As a result, it obtains a new state of all demes that can be used
in further procedures (sprouting, reduction). These populations are completely
independent which by design (combined with redundancy reduction procedures)
leads to better coverage of multiple different areas. But, at the same time, we lose
information about solutions found during the process, that might be valuable but
were abandoned with simulation progress. Furthermore, we strongly rely on a
driver ability to provide any elitism mechanics and compose the final MO-mHGS
result as a union of final populations of all nodes. Such result population may be
large in the case of broader HGS trees. It is unnecessary – there’s no guarantee
that a larger set of solutions is better in terms of individuals distribution over
a Pareto front. To address these issues we modified our MO-mHGS model by
adding a global fitness archive located in the nodes supervisor.

This MO-mHGS variant (denoted as Multi-Objective Elitist Hierarchical Ge-
netic Strategy, MO-EHGS or EHGS) offers a new metaepoch procedure presented
in Listing 1. Each alive (still progressing and not redundant) node invokes sev-
eral steps of its driver and produces finalized population. How the population is
finalized is driver-dependent – it may be similar to the delegates set described in
the following section. Solutions from the population are inserted into the archive.
Eventually, the archive is truncated according to the comparison operator. In our
experiments, we use the crowding distance attribute from fast non-dominated
sorting to compare results. Note that solutions from dead nodes can be still
present in the final result if they are strong enough to prevail.

Additionally, in simulations driven by a budget of allowed fitness evaluations
number, it is important to preserve fair assumptions – solutions are added to the
archive only if node execution does not exceed the budget. Finally, fitness-based
archive size can be easily constrained so we can now control the maximum size
of MO-EHGS result front approximation. In our experiments, we set maximum
archive size |A| depending on a number of a problem’s objectives k. According
to the rules set in the CEC09 competition [29]: |A| = 100 for k = 2, |A| = 150
for k = 3 and |A| = 800 for k = 5.
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Algorithm 1 MO-EHGS metaepoch procedure with elitism support

Require:
hgsNodes, list of all HGS nodes
archive, fitness based archive
budget , maximum allowed evaluation cost
totalCost < budget , current cost of HGS simulation

1: for each node in hgsNodes do:
2: if isAlive(node) then
3: totalCost ← totalCost + runMetaepoch(node)
4: if isBudgetMet(budget , totalCost) then
5: break
6: end if
7: nodePopulation ← finalPopulation(node)
8: archive ← archive ∪ nodePopulation
9: end if

10: end for
11: truncate(archive,CrowdingDistanceOperator())

3.3 Local archives

During our previous research, we observed OMOPSO [24] algorithm was the
driver most significantly improved by MO-mHGS. OMOPSO is one of the par-
ticle swarm optimizers adjusted to solve multi-objective problems. This spe-
cific observation has lead us to the conclusion that characteristics of OMOPSO
could be applied in the general scheme of the MO-HGS model to recreate these
phenomena in other applications. The crucial part of OMOPSO algorithm is
the way it handles elitism. There are two layers of best individual storages:
swarm leaders archive and global ε-archive. The latter is based on the concept
of ε-dominance [16]. A search space vector X1 ε-dominates solution X2 when:
fi(X1)/(1 + ε) ≤ fi(X2),∀i=1...k and fi(X1)/(1 + ε) < fi(X2),∃i ∈ 1..k, where
f1, ..fk are objective functions of k-objective problem. The value of ε should be
greater than 0 and is set arbitrary, depending on a solved problem.

An archive built on ε-dominance trimming operator can be used as an addi-
tional filter of best solutions, reducing outcomes size. This procedure may also
supplement the MO-mHGS nodes sprouting process. After a metaepoch, each
HGS node selects delegates – individuals that will seed new populations when-
ever sprouting is performed. Choosing the right delegates is specific to a driver,
e.g. in NSGAII we take the first layer of non-dominance sorting results, while in
SPEA2 we consider the whole result archive. More generically we could assume
that the delegates set consists of the whole current node’s population. It may lead
to worse MO-mHGS performance, but sometimes it is hard to find a better adap-
tation that could take advantage of driver characteristics. However, by adding
an additional layer in form of ε-archive we could improve this process and insti-
tute more robust independence from a used driver. Figure 1 shows how the final
delegates nomination procedure works in another MO-mHGS modification (de-
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Fig. 1. Presentation of MO-ε-EHGS node ε-archive update process for 2-objective prob-
lem example. Results of each metaepoch are filtered in two stages: as population dele-
gates (specific to a driver) and as ε-archive truncation outcomes.

noted as Multi-Objective ε-Elitist Hierarchical Genetic Strategy, MO-ε-EHGS or
ε-EHGS). At the end of a metaepoch node produces a new population. Then we
choose the best solutions using driver-specific mechanics. Finally, the delegates
are inserted into ε-archive. At later stages, the sprouting procedure randomly
selects new seeds from the archive.

It is also worth noting that each node possesses a separate (local) ε-archive.
The state of each local archive is preserved between metaepochs thus it serves
not only as a filtering operator but also as elitist storage. When MO-ε-EHGS
gathers its final results from all nodes, it receives the content of these local
archives (instead of finalized populations).

4 Experiments and results

4.1 Preparing the experiment’s environment

The main aim at this stage of experiments was to compare MO-EHGS and MO-
ε-EHGS with specific MOEA-based driver against basic (single-deme) version of
this MOEA. The previous (non-elitist) version of MO-mHGS was also included
in the survey. We selected two drivers basing on two different MOEA approaches:
NSGAII [5] and SPEA2 [31]. Additionally, we prepared a separate set of simu-
lations for NSGAIII [7] driver, intended to solve many-objective problems.

We conducted several simulations that were set up according to rules inspired
by CEC09 competition [29]: each algorithm had a maximum budget of 300000
fitness function evaluations and was run independently 30 times for each test
problem to improve statistical accuracy. Simulations were run on benchmark
problems from two widely known families: ZDT [30] and CEC09. We divided
problems into 3 categories: basic 2-objective (ZDT1-ZDT6), more demanding
2-objective (UF1-UF7) and complex with more objectives. The last category
included a 3-objective (UF8-UF10) and one 5-objective (UF11). Problems from
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the first two groups were tested with NSGAII and SPEA2 drivers and problems
from the third group with NSGAIII.

At the end of each run (after reaching the maximum budget), result popu-
lations were stored and evaluated with 3 different quality indicators. Inverted
Generational Distance (IGD) [3] computes the average size of the gap between
the members of optimal Pareto front and the one approximated by an assessed
algorithm. Hypervolume (HV) [28] measures the volume of the result space dom-
inated by the found solution. Spacing [3] describes how uniformly distributed the
points in solution are.

Metric values from all 30 runs were then statistically analyzed. We calculated
minimum, average and maximum value with standard deviation. To ensure sta-
tistical significance we also performed Kruskal-Wallis [15] and Mann-Whitney
U [19] tests. Basing on the tests results, we were able to create set of indifferent
algorithms Iαi

for each result of an algorithm αi. We define a result as a global
winner if it outperforms other algorithms and Iαi = ∅. Because we are inter-
ested in analyzing impact of MO-mHGS in improving driver’s performance we
also introduce concept of local winners. An algorithm αi is marked as strong
if it outperforms other algorithms and:

Iαi =

{
∅ ∨ {αj | αj ∈ AHGS ∧ 0 ≤ j ≤ N ∧ j 6= i} αi ∈ AHGS
∅ ∨ {αj | 0 ≤ j ≤ N ∧ j 6= i} ∧AHGS ( Iαi

otherwise

where AHGS is set of all MO-mHGS algorithm variants and N number of all
algorithms included in the simulation. In other words, MO-mHGS results have to
be statistically different from single-deme algorithms, but they can be indifferent
about other MO-mHGS variants. On the other hand, a single-deme algorithm
should win over at least one MO-HGS variant to be a local winner.

For completeness, we also put in our summary number of weak winners,
that is algorithms that outperformed other solutions regardless of significance
test result.

All described simulations were performed with the use of kEMO 1, our
new platform written in Kotlin. It is also a wrapper for popular Java library,
MOEA Framework [11] containing implementations of state-of-the-art MOEAs
and multi-objective problems. Therefore, all algorithm parameters were set with
default values provided by MOEA Framework. That includes i. a. ε values used
in ε-archives specific to each considered benchmark.

4.2 Improving MOEA performance

Tables 1, 2 and 3 show comparison of MO-mHGS, MO-EHGS and MO-ε-EHGS
with reference to NSGAII driver. In all problems but one MO-mHGS variants
offer better performance than NSGAII in terms of Hypervolume and IGD. While
final Hypervolume outcomes were close to each other in all cases (with notable

1 https://github.com/Soamid/kEMO
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Table 1. Summary of NSGAII with different variants of MO-mHGS after 300000
fitness evaluations (Hypervolume indicator, higher is better).

Hypervolume

NSGAII MO-mHGS+NSGAII MO-EHGS+NSGAII MO-ε-EHGS+NSGAII

Problem Min Average Max Error Min Average Max Error Min Average Max Error Min Average Max Error

zdt1 0.65561 0.65678 0.65765 0.00041 0.66034 0.66086 0.66120 0.00019 0.662015 0.662049 0.662073 0.000016 0.66071 0.66112 0.66139 0.00020
zdt2 0.32265 0.32395 0.32486 0.00050 0.32706 0.32756 0.32785 0.00018 0.328736 0.328764 0.328797 0.000016 0.32765 0.32789 0.32814 0.00013
zdt3 0.51374 0.51412 0.51455 0.00020 0.515289 0.515455 0.515604 0.000070 0.5159753 0.5160028 0.5160215 0.0000099 0.51372 0.51468 0.51507 0.00033
zdt4 0.00 0.08 0.34 0.10 0.02 0.33 0.66 0.20 0.04 0.34 0.66 0.16 0.04 0.31 0.66 0.15
zdt6 0.39564 0.39632 0.39693 0.00035 0.39828 0.39964 0.40021 0.00038 0.40050 0.40073 0.40105 0.00011 0.39901 0.39957 0.39992 0.00022
UF1 0.470 0.558 0.609 0.033 0.515 0.565 0.612 0.028 0.545 0.601 0.634 0.022 0.546 0.599 0.631 0.022
UF2 0.6145 0.6222 0.6301 0.0039 0.6094 0.6251 0.6371 0.0063 0.6232 0.6320 0.6389 0.0047 0.6252 0.6342 0.6386 0.0035
UF3 0.353 0.452 0.525 0.051 0.369 0.458 0.524 0.043 0.375 0.469 0.553 0.052 0.351 0.454 0.544 0.050
UF4 0.2518 0.2564 0.2591 0.0018 0.2397 0.2488 0.2562 0.0042 0.2321 0.2426 0.2536 0.0053 0.2338 0.2445 0.2527 0.0049
UF5 0.055 0.169 0.297 0.069 0.152 0.235 0.303 0.031 0.179 0.243 0.304 0.031 0.133 0.232 0.305 0.036
UF6 0.000 0.193 0.324 0.084 0.193 0.273 0.356 0.048 0.060 0.231 0.349 0.072 0.088 0.247 0.352 0.074
UF7 0.10 0.34 0.46 0.11 0.192 0.364 0.461 0.099 0.193 0.383 0.478 0.095 0.207 0.397 0.477 0.091

Weak wins 1 1 1 2 1 1 1 2 6 8 9 6 4 2 1 2

Local wins 1 1 1 2 1 1 1 2 5 7 8 6 4 2 1 2

Global wins 1 1 1 2 0 0 0 2 4 4 5 6 1 1 0 2

Table 2. Summary of NSGAII with different variants of MO-mHGS after 300000
fitness evaluations (IGD indicator, lower is better).

Inverted Generational Distance

NSGAII MO-mHGS+NSGAII MO-EHGS+NSGAII MO-ε-EHGS+NSGAII

Problem Min Average Max Error Min Average Max Error Min Average Max Error Min Average Max Error

zdt1 0.00693 0.00736 0.00814 0.00028 0.003863 0.004020 0.004190 0.000083 0.003639 0.003683 0.003717 0.000018 0.003795 0.003906 0.004091 0.000068
zdt2 0.00676 0.00751 0.00815 0.00033 0.00406 0.00423 0.00458 0.00011 0.003739 0.003788 0.003869 0.000027 0.00399 0.00421 0.00451 0.00012
zdt3 0.00483 0.00534 0.00589 0.00025 0.002848 0.002982 0.003098 0.000052 0.002668 0.002713 0.002791 0.000026 0.00326 0.00361 0.00450 0.00027
zdt4 0.26 0.73 1.60 0.34 0.00 0.29 0.68 0.21 0.00 0.28 0.67 0.17 0.00 0.30 0.67 0.16
zdt6 0.00498 0.00578 0.00891 0.00087 0.00308 0.00338 0.00423 0.00028 0.003126 0.003308 0.003519 0.000084 0.00356 0.00389 0.00440 0.00019
UF1 0.045 0.080 0.148 0.025 0.040 0.076 0.121 0.024 0.020 0.044 0.081 0.017 0.022 0.047 0.082 0.017
UF2 0.0258 0.0350 0.0545 0.0055 0.0212 0.0342 0.0604 0.0089 0.0179 0.0263 0.0461 0.0064 0.0190 0.0249 0.0370 0.0043
UF3 0.101 0.183 0.317 0.058 0.089 0.162 0.231 0.044 0.083 0.166 0.302 0.054 0.086 0.200 0.341 0.060
UF4 0.0484 0.0501 0.0542 0.0013 0.0499 0.0556 0.0641 0.0034 0.0525 0.0602 0.0703 0.0045 0.0529 0.0584 0.0668 0.0039
UF5 0.169 0.280 0.583 0.096 0.157 0.192 0.250 0.020 0.146 0.186 0.234 0.020 0.148 0.200 0.349 0.041
UF6 0.09 0.24 0.53 0.14 0.059 0.139 0.317 0.061 0.09 0.19 0.45 0.11 0.07 0.20 0.51 0.13
UF7 0.02 0.19 0.57 0.17 0.02 0.16 0.43 0.15 0.01 0.14 0.42 0.14 0.01 0.12 0.40 0.14

Weak wins 1 1 1 1 2 2 2 2 9 7 7 5 0 2 2 4

Local wins 1 1 1 1 2 1 1 2 8 7 7 5 0 2 2 4

Global wins 1 1 1 1 1 1 1 2 3 3 3 5 0 0 0 4

Table 3. Summary of NSGAII with different variants of MO-mHGS after 300000
fitness evaluations (Spacing indicator, lower is better).

Spacing

NSGAII MO-mHGS+NSGAII MO-EHGS+NSGAII MO-ε-EHGS+NSGAII

Problem Min Average Max Error Min Average Max Error Min Average Max Error Min Average Max Error

zdt1 0.0074 0.0109 0.0133 0.0014 0.00229 0.00292 0.00386 0.00031 0.00067 0.00095 0.00124 0.00017 0.003 0.059 0.156 0.045
zdt2 0.00825 0.01066 0.01240 0.00088 0.00281 0.00352 0.00478 0.00035 0.00067 0.00096 0.00160 0.00021 0.00250 0.00325 0.00410 0.00044
zdt3 0.0090 0.0131 0.0166 0.0015 0.00342 0.00408 0.00485 0.00047 0.00192 0.00249 0.00304 0.00032 0.006 0.051 0.219 0.048
zdt4 0.0116 0.0145 0.0195 0.0022 0.004 0.026 0.080 0.028 0.001 0.010 0.073 0.017 0.00 0.16 1.25 0.28
zdt6 0.0070 0.0088 0.0110 0.0010 0.0032 0.0042 0.0091 0.0011 0.00055 0.00095 0.00145 0.00022 0.002 0.010 0.196 0.035
UF1 0.0017 0.0040 0.0098 0.0022 0.0006 0.0024 0.0060 0.0015 0.0018 0.0040 0.0099 0.0021 0.0012 0.0034 0.0084 0.0017
UF2 0.0073 0.0093 0.0116 0.0010 0.0037 0.0090 0.0225 0.0053 0.0033 0.0051 0.0079 0.0013 0.0030 0.0075 0.0267 0.0051
UF3 0.000 0.022 0.061 0.018 0.000 0.016 0.084 0.019 0.0001 0.0094 0.0360 0.0092 0.0001 0.0061 0.0290 0.0084
UF4 0.0097 0.0115 0.0137 0.0010 0.0039 0.0053 0.0093 0.0012 0.0037 0.0053 0.0129 0.0016 0.0039 0.0065 0.0104 0.0014
UF5 0.000 0.030 0.117 0.031 0.006 0.048 0.133 0.032 0.001 0.034 0.186 0.041 0.000 0.088 0.364 0.095
UF6 0.000 0.026 0.170 0.035 0.000 0.033 0.092 0.028 0.000 0.029 0.147 0.031 0.00 0.10 0.77 0.19
UF7 0.0002 0.0048 0.0116 0.0037 0.0002 0.0042 0.0141 0.0036 0.0008 0.0042 0.0129 0.0027 0.0005 0.0034 0.0137 0.0027

Weak wins 3 2 3 4 1 2 3 2 6 6 5 5 2 2 1 1

Local wins 1 1 2 4 1 2 2 2 6 6 5 5 2 1 1 1

Global wins 0 0 0 4 1 1 1 2 5 6 5 5 1 1 1 1

MO-mHGS winners), in IGD indicator we can observe improvement up to 50-
60% for simpler ZDT problems and 20-30% for UF familly. Spacing of the out-
comes also is the best in MO-mHGS variants, but it’s less consistent – in simpler
problems spacing gains even 90% improvement, but the last 3 UF problems reach
slightly (but insignificantly) better results without MO-HGS.

Concerning elitist mechanics impact on MO-mHGS performance, it is also
clear that MO-EHGS figures as the best variant in any considered metric. It wins
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Table 4. Comparison of NSGAII and SPEA2 results with different variants of elitist
MO-mHGS after 300000 fitness evaluations (Hypervolume indicator, higher is better).

Hypervolume

NSGAII EHGS+NSGAII ε-EHGS+NSGAII SPEA2 EHGS+SPEA2 ε-EHGS+SPEA2

Problem Average Error Average Error Average Error Average Error Average Error Average Error

zdt1 0.65678 0.00041 0.662049 0.000016 0.66112 0.00020 0.65849 0.00021 0.661858 0.000058 0.66078 0.00016
zdt2 0.32395 0.00050 0.328764 0.000016 0.32789 0.00013 0.32548 0.00020 0.328655 0.000052 0.32782 0.00013
zdt3 0.51412 0.00020 0.5160028 0.0000099 0.51468 0.00033 0.51448 0.00013 0.515841 0.000042 0.51446 0.00012
zdt4 0.08 0.10 0.34 0.16 0.31 0.15 0.09 0.12 0.21 0.13 0.18 0.14
zdt6 0.39632 0.00035 0.40073 0.00011 0.39957 0.00022 0.39771 0.00011 0.40051 0.00022 0.39932 0.00024
UF1 0.558 0.033 0.601 0.022 0.599 0.022 0.553 0.021 0.618 0.021 0.622 0.014
UF2 0.6222 0.0039 0.6320 0.0047 0.6342 0.0035 0.6250 0.0085 0.6351 0.0031 0.6348 0.0033
UF3 0.452 0.051 0.469 0.052 0.454 0.050 0.433 0.041 0.488 0.048 0.499 0.043
UF4 0.2564 0.0018 0.2426 0.0053 0.2445 0.0049 0.2626 0.0016 0.2548 0.0036 0.2546 0.0025
UF5 0.169 0.069 0.243 0.031 0.232 0.036 0.155 0.088 0.264 0.037 0.261 0.048
UF6 0.193 0.084 0.231 0.072 0.247 0.074 0.232 0.083 0.305 0.054 0.311 0.045
UF7 0.34 0.11 0.383 0.095 0.397 0.091 0.32 0.11 0.404 0.089 0.431 0.080

Weak wins 0 1 5 4 0 0 1 3 2 1 4 3

Local wins 0 1 5 4 0 0 1 3 2 1 4 3

Global wins 0 1 4 4 0 0 1 3 0 1 0 3

in 6-8 out of 12 test cases with all competitors (bold values in the tables), almost
always beating NSGAII significantly (in terms of local wins), but in several
situations is also statistically different than other considered MO-mHGS variants
(denoted with red bolding in the tables). MO-ε-EHGS is generally worse in this
case, generating similar outcomes to the basic MO-mHGS algorithm.

Table 5. Comparison of NSGAII and SPEA2 results with different variants of elitist
MO-mHGS after 300000 fitness evaluations (IGD indicator, lower is better).

Inverted Generational Distance

NSGAII EHGS+NSGAII ε-EHGS+NSGAII SPEA2 EHGS+SPEA2 ε-EHGS+SPEA2

Problem Average Error Average Error Average Error Average Error Average Error Average Error

zdt1 0.00736 0.00028 0.003683 0.000018 0.003906 0.000068 0.00626 0.00013 0.003743 0.000044 0.004033 0.000072
zdt2 0.00751 0.00033 0.003788 0.000027 0.00421 0.00012 0.006224 0.000094 0.004006 0.000090 0.00430 0.00012
zdt3 0.00534 0.00025 0.002713 0.000026 0.00361 0.00027 0.00492 0.00013 0.002794 0.000040 0.00363 0.00014
zdt4 0.73 0.34 0.28 0.17 0.30 0.16 0.68 0.29 0.42 0.17 0.46 0.19
zdt6 0.00578 0.00087 0.003308 0.000084 0.00389 0.00019 0.00495 0.00026 0.00378 0.00020 0.00439 0.00031
UF1 0.080 0.025 0.044 0.017 0.047 0.017 0.087 0.017 0.033 0.015 0.031 0.010
UF2 0.0350 0.0055 0.0263 0.0064 0.0249 0.0043 0.036 0.016 0.0226 0.0042 0.0236 0.0041
UF3 0.183 0.058 0.166 0.054 0.200 0.060 0.202 0.047 0.143 0.046 0.144 0.043
UF4 0.0501 0.0013 0.0602 0.0045 0.0584 0.0039 0.0469 0.0012 0.0527 0.0027 0.0536 0.0019
UF5 0.280 0.096 0.186 0.020 0.200 0.041 0.290 0.094 0.168 0.029 0.172 0.031
UF6 0.24 0.14 0.19 0.11 0.20 0.13 0.22 0.13 0.101 0.039 0.101 0.066
UF7 0.19 0.17 0.14 0.14 0.12 0.14 0.22 0.16 0.12 0.13 0.08 0.12

Weak wins 0 0 5 5 0 1 1 1 4 1 2 4

Local wins 0 0 5 5 0 1 1 1 4 1 2 4

Global wins 0 0 5 5 0 1 1 1 0 1 0 4

In order to ensure if driver reinforced by elitist MO-mHGS can be still
competitive when compared to another MOEA, we also show a comparison of
NSGAII and SPEA2 (with their MO-mHGS versions) in Tables 4, 5 and 6.
Again, basic single-deme versions of the algorithms are rarely seen as winners,
with MO-EHGS+NSGAII remains the most profitable in ZDT familly and MO-
EHGS+SPEA2 in UF problems.

Figure 2 shows detailed simulation run of SPEA2 with elitist MO-mHGS in
UF1 problem. While final results of MO-EHGS+SPEA2 and MO-ε-EHGS+SPEA2

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_17

https://dx.doi.org/10.1007/978-3-030-77970-2_17


10 Micha l Idzik, Rados law  Lazarz, and Aleksander Byrski

Table 6. Comparison of NSGAII and SPEA2 results with different variants of elitist
MO-mHGS after 300000 fitness evaluations (Spacing indicator, lower is better).

Spacing

NSGAII EHGS+NSGAII ε-EHGS+NSGAII SPEA2 EHGS+SPEA2 ε-EHGS+SPEA2

Problem Average Error Average Error Average Error Average Error Average Error Average Error

zdt1 0.0109 0.0014 0.00095 0.00017 0.059 0.045 0.00519 0.00067 0.00198 0.00069 0.036 0.033
zdt2 0.01066 0.00088 0.00096 0.00021 0.00325 0.00044 0.00536 0.00062 0.00287 0.00072 0.00365 0.00058
zdt3 0.0131 0.0015 0.00249 0.00032 0.051 0.048 0.00662 0.00087 0.00355 0.00052 0.0142 0.0074
zdt4 0.0145 0.0022 0.010 0.017 0.16 0.28 0.0068 0.0010 0.025 0.032 0.101 0.089
zdt6 0.0088 0.0010 0.00095 0.00022 0.010 0.035 0.00377 0.00044 0.00170 0.00053 0.0055 0.0092
UF1 0.0040 0.0022 0.0040 0.0021 0.0034 0.0017 0.010 0.021 0.0040 0.0026 0.0025 0.0012
UF2 0.0093 0.0010 0.0051 0.0013 0.0075 0.0051 0.0062 0.0025 0.0057 0.0022 0.0069 0.0020
UF3 0.022 0.018 0.0094 0.0092 0.0061 0.0084 0.019 0.018 0.021 0.015 0.023 0.014
UF4 0.0115 0.0010 0.0053 0.0016 0.0065 0.0014 0.0067 0.0020 0.00458 0.00040 0.0053 0.0012
UF5 0.030 0.031 0.034 0.041 0.088 0.095 0.055 0.057 0.082 0.077 0.12 0.11
UF6 0.026 0.035 0.029 0.031 0.10 0.19 0.10 0.21 0.047 0.050 0.06 0.11
UF7 0.0048 0.0037 0.0042 0.0027 0.0034 0.0027 0.009 0.022 0.0028 0.0014 0.0050 0.0032

Weak wins 2 2 5 5 1 1 1 1 2 2 1 1

Local wins 1 2 4 5 1 1 1 1 1 2 0 1

Global wins 0 2 4 5 1 1 0 1 1 2 0 1
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Fig. 2. Quality indicators values over number of fitness evaluations in UF1 (2-objective)
problem (SPEA2 algorithm).

does not differ significantly, they both quickly reach Hypervolume and IGD val-
ues far from single-deme algorithm. Better convergence of MO-ε-EHGS+SPEA2
at earlier stages of simulation is also worth mentioning. Spacing metrics tend to
have much higher variance and thus their outcomes are not always interpretable,
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Table 7. Summary of NSGAIII results with different variants of MO-mHGS after
300000 fitness evaluations (Hypervolume indicator, higher is better).

Hypervolume

NSGAIII MO-mHGS+NSGAIII MO-EHGS+NSGAIII MO-ε-EHGS+NSGAIII

Problem Min Average Max Error Min Average Max Error Min Average Max Error Min Average Max Error

UF8 0.000 0.193 0.257 0.041 0.124 0.172 0.221 0.023 0.000 0.218 0.266 0.048 0.207 0.243 0.307 0.034
UF9 0.408 0.521 0.618 0.092 0.389 0.450 0.516 0.035 0.461 0.537 0.590 0.044 0.440 0.562 0.616 0.051
UF10 0.000 0.056 0.162 0.044 0.013 0.058 0.130 0.029 0.001 0.061 0.152 0.034 0.002 0.072 0.185 0.048
UF11 0.016 0.051 0.103 0.023 0.0000 0.0014 0.0089 0.0020 0.049 0.084 0.124 0.017 0.167 0.195 0.229 0.014

Weak wins 0 0 1 0 1 0 0 4 1 0 0 0 2 4 3 0

Local wins 0 0 1 0 0 0 0 4 0 0 0 0 2 2 2 0

Global wins 0 0 0 0 0 0 0 4 0 0 0 0 2 2 2 0

Table 8. Summary of NSGAIII results with different variants of MO-mHGS after
300000 fitness evaluations (IGD indicator, lower is better).

Inverted Generational Distance

NSGAIII MO-mHGS+NSGAIII MO-EHGS+NSGAIII MO-ε-EHGS+NSGAIII

Problem Min Average Max Error Min Average Max Error Min Average Max Error Min Average Max Error

UF8 0.13 0.19 0.75 0.11 0.142 0.170 0.209 0.018 0.10 0.17 0.75 0.11 0.094 0.150 0.207 0.039
UF9 0.079 0.169 0.310 0.095 0.126 0.171 0.217 0.024 0.089 0.130 0.207 0.038 0.070 0.109 0.186 0.038
UF10 0.23 0.38 0.66 0.11 0.206 0.261 0.325 0.032 0.211 0.298 0.441 0.061 0.19 0.38 0.70 0.13
UF11 0.411 0.536 0.678 0.059 0.629 0.747 0.846 0.056 0.407 0.455 0.513 0.024 0.313 0.342 0.385 0.016

Weak wins 0 0 0 0 0 1 1 3 0 0 0 0 4 3 3 1

Local wins 0 0 0 0 0 1 1 3 0 0 0 0 3 3 3 1

Global wins 0 0 0 0 0 1 1 3 0 0 0 0 2 2 2 1

Table 9. Summary of NSGAIII results with different variants of MO-mHGS after
300000 fitness evaluations (Spacing indicator, lower is better).

Spacing

NSGAIII MO-mHGS+NSGAIII MO-EHGS+NSGAIII MO-ε-EHGS+NSGAIII

Problem Min Average Max Error Min Average Max Error Min Average Max Error Min Average Max Error

UF8 0.000 0.098 0.181 0.037 0.038 0.077 0.304 0.047 0.010 0.056 0.072 0.012 0.040 0.057 0.102 0.013
UF9 0.024 0.057 0.110 0.021 0.042 0.070 0.152 0.027 0.0391 0.0546 0.0785 0.0094 0.0334 0.0517 0.0732 0.0099
UF10 0.033 0.125 0.410 0.075 0.091 0.145 0.268 0.048 0.038 0.112 0.205 0.039 0.000 0.093 0.216 0.057
UF11 0.157 0.228 0.313 0.038 0.216 0.255 0.305 0.023 0.1455 0.1601 0.1815 0.0078 0.126 0.155 0.184 0.013

Weak wins 2 0 0 0 0 0 0 0 0 1 3 4 2 3 1 0

Local wins 1 0 0 0 0 0 0 0 0 1 2 4 1 1 0 0

Global wins 1 0 0 0 0 0 0 0 0 0 1 4 1 1 0 0

but there’s a visible trend of MO-ε-EHGS+SPEA2 minimizing both indicator
value and error rate at later stages.

4.3 Evaluation of many-objective problem

The last group of benchmarks were problems with higher objective dimension-
ality. In Tables 7, 8 and 9 we present outcomes of NSGAIII driver, whose basic
form was designed to deal with many-objective problems. This time basic, non-
elitist version of MO-mHGS was not able to improve MOEA – its performance
was meaningfully worse (about 10-30% or even more in the hardest, 5-objective
problem). At the same time, elitist variants provided the best possible solutions
regardless of metrics. Furthermore, even though MO-EHGS outperformed bare
NSGAIII, it is MO-ε-EHGS that should be considered as a winner here. Local
archives used in sprouting procedure improved delegates selection and in the end
resulted in up to 2-3 times better improvement than MO-EHGS with only one,
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Fig. 3. Quality indicators values over number of fitness evaluations in UF11 (5-
objective) problem (NSGAIII algorithm).

global archive. This behaviour is also visible in Figure 3 of NSGAIII run solving
the hardest, 5-objective problem. MO-ε-EHGS+NSGAIII reaches new regions in
terms of Hypervolume and IGD while remaining stable and well distributed.

The reason why MO-ε-EHGS was considerably less impressive in previous ex-
periments may be connected with our previous hypothesis about delegates nom-
ination procedure impact. NSGAII and SPEA2 both incorporate simple elitism
mechanics internally thus reducing their delegates set with ε−archive might not
have been necessary. NSGAIII does not use an archive by itself and delegates
nomination is based mainly on results of non-dominated sorting.

5 Conclusions

In this paper, we have shown the evolution of multi-objective hierarchical strat-
egy, by introducing a notion of elitism by adding local and global archives into
the search tree. We did our best to compare the proposed algorithms using a
carefully selected set of benchmarks as well as the competitors.

Both proposed elitism upgrades of the MO-mHGS model were able to im-
prove the performance of the hierarchical meta-model. While MO-EHGS stands
out as a generic multi-purpose tool and may be paired with any MOEA in most
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of the considered situations, applications of MO-ε-EHGS are more specific to a
driver. The good performance of MO-ε-EHGS in problems with more objectives
is also notable and should be further investigated in future research. Correlation
between MO-mHGS delegates nomination procedure and sprouts quality and
other methods of controlling MO-mHGS node progress are also very promising
topics that will be considered as next steps in our research project.

In our further research, we will also focus on the matters of concurrent im-
plementation of the proposed algorithms, especially considering the scalability.
Such hierarchical systems, constantly dynamically changing, should be imple-
mented utilizing matters of concurrent processes, going towards parallelization,
especially using HPC environments, which can help in speeding up the running
of actually very complex metaheuristic algorithms.
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