Graph-grammar based longest-edge refinement
algorithm for three-dimensional optimally
p refined meshes with tetrahedral elements

Albert Mosialek!, Andrzej Szaflarski', Rafal Pych!, Marek Kisiel-Dorohinicki®,
Maciej Paszynski', and Anna Paszytiska?

(W Institute of Computer Science, AGH University of Science and Technology,
Krakow, Poland
(Q)Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian
University, Krakow, Poland

Abstract. Finite element method is a popular way of solving engineer-
ing problems in geoengineering. Three-dimensional grids employed for
approximation the formation layers are often constructed from tetra-
hedral finite elements. The refinement algorithms that avoids hanging
nodes are desired in order to avoid constrained approximation on bro-
ken edges and faces. We present a new mesh refinement algorithm for
such the tetrahedral grids, with the following features (1) it is a two-level
algorithm, refining the elements’ faces first, followed by the refinement
of the elements’ interiors; (2) for the face refinements it employs the
graph-grammar based version of the longest-edge refinement algorithm
to avoid the hanging nodes; and (3) it allows for nearly perfect parallel
execution of the second stage, refining the element interiors. We describe
the algorithm using the graph-grammar based formalism. We verify the
properties of the algorithm, by breaking 5,000 tetrahedral elements, and
checking their angles and proportions. On the generated meshes without
hanging nodes we span the polynomial basis functions of the optimal
order, selected via metaheuristic optimization algorithm. We use them
for the projection based interpolation of formation layers.

1 Introduction

The tetrahedral three-dimensional grids are commonly employed for represen-
tation of the formation layers in geophysics [I]. There are multiple applications
of the three-dimensional tetrahedral grids representing the real earth models
[2[8I456]. The quantities of interest in the geophysical domain can be better ap-
proximated on the grids refined towards them. The mesh refinements algorithms
can generate hanging nodes on broken edges and faces when they refine grids by
breaking tetrahedral elements into smaller ones. The hanging nodes are difficult
to handle, and thus the mesh refinements algorithms avoiding hanging nodes are
needed. On the other hand, the broken elements must keep their proportions,
to avoid approximations over elongated elements. Such the badly shaped ele-
ments i.e. with low angles generate huge numerical errors during factorization.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

2 A. Mosialek et. al.

Uniform h-adaptation might cause significant computation cost with little im-
provement of approximation, especially when most of the error is caused by a
few elements. For this reason, the meshing algorithm should be able to generate
locally dense meshes, without hanging nodes, and keeping the proportions from
the initial mesh elements. Various algorithms of tetrahedral mesh refinements,
avoiding the hanging nodes, and preserving the proportions have been already
proposed. Most of them suggest operations on tetrahedra like bisection[7][8][9] or
refinement to multiple tetrahedra at once[I0][I1]. Algorithms involving erasing
and remeshing regions with high error have also been proposed[12][13].

The state-of-the-art algorithm for refinements of the tetrahedral elements is
the longest-edge refinement algorithm proposed by Rivara [I4]. The algorithm
generates the path of additional refinements required to remove the hanging
nodes. The parallelization of the Rivara longest-edge refinement algorithm in
three-dimensions is only possible by assigning the refinement paths resulting
from breaking different elements at the same time to different threads, and
avoiding conflicts. Recently, we proposed a graph-grammar based version of the
longest-edge refinements algorithm in two-dimensions [I5]. The algorithm ben-
efits from the graph-grammar based implementaton by a better partitioning of
the computational problem into basic undividable tasks that can be executed in
parallel. Comparing to the classical two-dimensional Rivara algorithm [I6] it has
a better parallelization potential, as described in [I5]. But the three-dimensional
implementation of the graph-grammar model is needed.

In this paper we propose for the first time the graph-grammar based model of
the three-dimensional longest-edge refinement algorithm. It starts with executing
the two-dimensional graph-grammar based longest-edge refinement algorithm on
faces of the tetrahedra, taking into account the three-dimensional topology of the
connected faces. Later, it breaks all the interiors of the tetrahedra, with the faces
already broken in the first stage. This method allows for both better concurrency
of the first stage, as shown in [I5], as well as ideally parallel execution of the
breaking of tetrahedral interiors in the second stage.

The structure of this paper is the following. Firstly, we briefly discuss the
longest-edge refinement algorithm. Then, the definition of the hypergraph gram-
mar is introduced. Later, we pesent the graph-grammar based model for breaking
the faces of tetrahedral elements (an extension of the ”flat” 2D model described
n [I5]). Next, we describe the pseudo-code of the graph-transformation break-
ing the interior of a tetrahedral with its faces already broken in the previous
step. Finally, we present some numerical experiments verifying the correctness
of the proposed algorithm. Namely, we break 5,000 tetrahedral elements in the
mesh approximating the geological formation layers, and we monitor the hanging
nodes, the angles and the proportions of the newly created elements.

2 Mesh refinement

In this section we present the definition of hypergraph grammar and all details
concerning tetrahedral faces refinement.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

Graph-grammar based longest-edge refinements for 3D meshes 3

2.1 Longest edge refinement in 2D

The longest edge refinement algorithm simply splits triangles by its longest edge.
The division either creates a hanging node in an adjacent triangle or keeps the
mesh conforming if the longest edge was on the edge of the mesh. Any triangles
with hanging nodes are then refined again to their longest edge until there are
no more triangles with hanging nodes. Note that if a triangle has a hanging
node on an edge F, then it may only be refined to E or to edge longer than F.
This means that hanging nodes may only be propagated to longer and longer
edges. This ensures that the algorithm will eventually stop and the mesh will be
conforming. However, in the worst-case scenario breaking edge E may require
splitting all edges in the mesh longer than F.

2.2 Hypergraph grammar definition

We define a hypergraph as a system G = (V, HE, t,1,a,v), where:

V - set of vertices

HE - set of hyperedges

t - function which maps hyperedge to sequence of vertices

[- function which maps hyperedge to label from label set C

a - function which maps vertex or hyperedge to set of attributes A

v - function which maps vertex or hyperedge attribute to value of that attribute

For our case we define C = {I,E,T} and A = {x,y,2, HN, L, W, R} where:
I - hyperedge label which represents interior of tetrahedron
E - hyperedge label which represents edge of tetrahedron
T - hyperedge label which represents wall of tetrahedron
x € R - vertex attribute; x coordinate of vertex corner
y € R - vertex attribute; y coordinate of vertex corner
z € R - vertex attribute; z coordinate of vertex corner
HN € N - vertex attribute; represents number of adjacent walls for which given
vertex is a hanging node
L € R - hyperedge attribute; represents length of the edge.
W € N - hyperedge attribute; represents number of walls adjacent to given edge
R e {TRUE,FALSE} - hyperedge attribute; flag which denotes whether given
triangle should be refined

We denote graph grammar production as P = (LG, RG,V M, PR), where:
LG and RG are hypergraphs
VM : LG >0 — r € RG is the function which maps some veritices from LG to
RG
PR - predicate of applicability. We can apply production to graph G if there exist
a subgraph of G isomorphic to LG and the predicate of applicability is fulfilled.
Application of production is done by substituting with RG the subgraph of graph

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

4 A. Mosialek et. al.

G isomorphic with LG so that some vertices of subgraph isomorphic to LG are
replaced with corresponding vertices from RG according to V' M mapping.
Hypergraph grammar is a system HG = (Gg, PS), where:
G is the starting hypergraph, P.S is a production set
An example of tetrahedral refinement represented as hypergraph production
is presented in Figure

Fig. 1. Hypergraph production refining tetrahedron into two smaller tetrahedra. Right
side of production has smaller labels for image clarity.

2.3 Walls refinement

In this section, we describe mesh refinement regarding walls and edges. Because
of a 3D domain, our case has the following differences:

1. There are no boundary edges. Each edge have two adjacent walls on the
single tetrahedron.

2. Edge might be shared between multiple tetrahedra and their walls.

3. Each vertex might be a hanging node on multiple walls.

These properties of the graph require some adjustments in graph grammar.
To keep track of hanging nodes, we introduce a hanging node counter (HN) in
each vertex and adjacent wall counter in each hyperedge representing a wall.

Production P1 Production P1 from Figure [2] refines element with no hanging
nodes, marked with R=TRUE into two triangles. New vertex is created in the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

Graph-grammar based longest-edge refinements for 3D meshes 5

midpoint of the longest edge. It becomes a hanging node for all walls adjacent
to split edge but one. Split edge keeps the number of adjacent walls. Both newly
created triangles have R set to false because element is already refined. The new
edge going through triangle has only two adjacent walls. Since this grammar does
not support multiple hanging nodes on triangle edges, we need to ensure, that
ends of the longest edge are not hanging nodes. The predicate for this production
is as follows: R(R1,L1,L2, L3, HN1,HN2) = R1 AND L2 > L1 AND L2 > L3
AND HN2=0 AND HN3=0

W =Ww1
L = L1E

2 3 3
{E} i E HN = HN3
HN = HN2 W= W2 HN = HN3 HN = HN2Z™w = w2 HN=W2-1 W =W2 = x=x3
- L=12 - X = X2 L=12/2 X=(X2+X3)2L=12/2 y=Y3
X = X2 X =X3 Yoy
Y=v2 Y=Y3 = Y=(Y2+Y3)/2 z=273
z=22 z=273 Z=272 Z=(22+23)/2

Fig. 2. Production P1.

Production P2 Production P2 from Figure [3| considers elements with one
hanging node on the longest edge of the triangle. No new vertices are created.
Because the vertex on the longest edge is no longer a hanging node for this wall,
its HN parameter is decremented. Because the algorithm refines all elements
with a hanging node, the value of R parameter does not matter in this produc-
tion. We do not create any new hanging node, so we can also omit HN = 0
conditions in the predicate:

R(L1,L2,L3,L4) = (L2 + L3) > L1 AND (L2 + L3) > L4

HN = HN1

E El
HN =HN2 W =W2 HN = HN3 W = W3 X = X4
X = X2 L=12 X=X3 L=1L3 Y=Y4
Y=Y2 Y=Y3 Z=24
=22 Z=123

Fig. 3. Production P2.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

6 A. Mosialek et. al.

Production P3 Production P3 from Figure [refines the triangle with one
hanging node on other than the longest edge. A hanging node might be left for
the next productions. This production works similarly to P1. The only differences
are that there is strict inequality between edge to be split and edge with hanging
node and refinement does not depend on the R flag. If the edges were the same
length, only P2 could be applied since we prioritize reducing hanging nodes
number. Predicate for P3:

R(L1,L2,L3,L4, HN1,HN3) = L4 > L1 AND L4 > (L2+L3) AND HN1=0
AND HN4 =0

HN = HN1
X=X1

Y=Y1
z=21
W =Ww4
L= 472
W= w1 HN = W4-1
- L= LI +4 X = (X1+X4)/2
Cal <FALSE Y = (Y1+Y4)/2
) = (Z1+24)2
=2 - W = W4
(2.5) 3

—— HN = HN4 E
HN=HN2 W=w2 HN=HN3 W=W3 " x_x4 HN=HN2 W=w2 HN=HN3 W=w3 " x=x4
X =X2 -2 X=X3 L=13 Y=va X = X2 L=12 X=X3 L=13 Y=va
Y=Y2 Y=Y3 z=274 Y=Y2 Y=Y3 z=274
z=22 z=23 z=22 z=23

Fig. 4. Production P3.

Production P4 Production P4 from Figure[5|refines the triangle with 2 hanging
nodes. One of the hanging nodes is placed on the longest edge. Both predicate and
values of parameters of new hyperedge are similar to these in P2. The predicate
for P4: R(L1,L2,L3,L4,L5) = (L4+ L5) > (L2 + L3) AND (L4 + L5) > L1

z2=22

Fig. 5. Production P4.

Production P5 Production P5 from Figure [0] refines the triangle with two
hanging nodes on its shorter edges. As in P3, the length of the edge has to be

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

Graph-grammar based longest-edge refinements for 3D meshes 7

strictly greater than the length of the edges with hanging nodes. The predicate
for P5: R(L1,L2,L3, L4, L5, HN1,HN3) = L5 > (L1 + L2) AND L5 > (L3 +
L4) AND HN1=0 AND HN5=0

Production P6 Production P6 from Figure[f] refines the triangle with hanging
node on each edge. The predicate ensures that hanging node on the longest edge
will be used to split the triangles. The predicate for P6: R(L1, L2, L3, L4, L5, L6) =
(L5+ L6) > (L1+ L2) AND (L5+ L6) > (L3 + L4)

1 procedure refineTetrahedron (IEdge t):

2 q := emptyQueue ()

3 verticesInTetrahedron := emptyList ()

4 tetrahedraToBeCreated := emptyList ()

5 //Find all vertices in the tetragedron

6 Vt := getVertices(t)

7 q.enqueue (Vt[0])

8 verticesInTetrahedron.add(Vt[0])

9 while q is not empty:

10 currentVertex := q.dequeue()

11 for each neighbor of currentVertex:

12 if (neighbor is inside ¢t

13 AND neighbor is not in verticesInTetrahedron):
14 q.enqueue (neighbor)

15 verticesInTetrahedron .add (neighbor)

16 //Find all tetrahedra to be created

17 possibletetrahedra :=

18 getAllFourElementsSubsetsOf(verticesInTetrahedron)

19 for each tetrahedronVertices in possibletetrahedra:
20 allVerticesAreConnected := TRUE

21 for each subset in

22 getAllTwoElementsSubsetsOf (tetrahedronVertices):
23 if subset[0] has no edge 'E’ to subset[1]:

24 allVerticesAreConnected := FALSE

25 if allVerticesAreConnected:

26 tetrahedraToBeCreated.add(tetrahedronVertices)

27 //Add missing walls and tetrahedra

28 for each tetrahedronVertices in tetrahedraToBeCreated:
29 for each subset in

30 getAllThreeElementsSubsetsOf(tetrahedronVertices):
31 if subset elements have no common ’'T’ hyperedge:
32 CreateTEdge (subset)

33 CreatelEdge (tetrahedronVertices)

34 RemovelEdge (t)

Listing 1.1. Tetrahedron refinement based on split walls

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

8 A. Mosialek et. al.

HN = HN1
X =X1
oy=y1
we=w w=wi =z
L=L1 L=1L1 W=ws
. HN = HN2 E gL = L5/2
W= W5 3> X=X2 HN = W5
5 T ovy=v2 g2 X = (X1+X5)/2
E, =FALS Y = (Y1+Y5)2
B W= W2 = (Z1+25)12
w=w2ief =,
=y L=1L2 | (26 E] W=W5
i L(3,6) T} >
R=FADS L =152
3 3 >\§5
E ° E N = HNS T O o N = HNs
HN =HN3 W =W3 HN=HN4 W = w4 < HN = HN3 W = W3 HN =HN4 V7= W Yo xs
=14 X=X5 X=X3 L=13 X=X4 L=L4 -
X=Xx3 L=13 X=X4 L=L4 o
Y=Y5 Y=Y3 Y=Y4 -7
Y=Y3 Y=va Mg el Y=y —
z=23 z=24 =

Fig. 6. Production P5.

HN = HN1

>
| N=W W E
W=Wer T W =Wws (3.6
L=12 L=15 L
3 4 4
—— y —@—F
HN=HN3 W =W3 HN=HN4 W =w4 = HN5 HN = HN3 = w3 HN=HN4 W =wW4 HN =HN5

X = X3 L=13 X=X4 L=Ll4 X=X5 X =X3 L=13 X=X4 L=l4 X=X5
Y=v3 Y =Y4 Y=Y5 Y=v3 Y=Y4 Y=Y5
z-273 z=24 z=25 z=23 z=24 z=25

Fig. 7. Production P6.

2.4 Tetrahedron refinement

Productions described in the previous section leave tetrahedra with split walls.
In this section, we present all possible outcomes of 2D refinement as well as naive
pseudocode for tetrahedron refinement. We have analyzed possible results of 2D
refinement for cases with broken 1-4 walls. There are 20 different cases collected
in figure[T1] The graph-grammar model ensures that there are no hanging nodes.
From such grids with refined faces, we can break tetrahedron in a deterministic
way into smaller pieces by creating new tetrahedron between any fully connected
four vertices. Therefore we may treat tetrahedra represented by nets on figure
as left sides of hypergraph grammar production while the right side would be
multiple tetrahedra generated as described above.

In listing [1.1| we present a procedure which refines tetrahedron which walls
have been already split with 2D refinement. The only argument passed is the
interior edge, which represents tetrahedron to be refined. lines 8-17 performs
Breadth-First Search (BFS) algorithm to find all vertices which are inside the
tetrahedron. More precisely all new vertices have been created on tetrahedron’s
walls and edges, so it is sufficient to check whether the vertex is on any of the
walls of the original tetrahedron. Lines 21-30 check all combinations of 4 vertices
if they are connected with each other with 'E’ hyperedges. If so, new tetrahedron
will be created between the chosen vertices. All new tetrahedra will contain at
least one wall inside the original one, so we need to create missing walls. In lines

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

Graph-grammar based longest-edge refinements for 3D meshes 9

33-39, we add relevant hyperedges representing missing walls and tetrahedra.
Finally, the original tetrahedron is removed.

3 Experimental results

In this section we verify our algorithm on the three-dimensional mesh refined
towards the formation layers data. We start from the cube mesh partitioned
into five tetrahedra, as presented in Figure [0} We refine faces of tetrahedra
that intersects two layers, and we execute the graph-grammar based productions
expressing the longest-edge refinement algorithm removing the hanging nodes
on faces. Finally, we execute the graph-transformation summarized in Listing
1.1 breaking the interiors of the tetrahedra. The final mesh obtained by 5,000
refinements are presented in Figure [)] We monitor the minimal angles between
edges of the created tetrahedra, as well as the ratios between the sum of the
lengths of the three longest edges and the sum of all the edges, in Figure

4 Projection-based interpolation metaheuristic

On each of the tetrahedral finite element we span the hierarchical basis functions
following [17]. Namely, we introduce four master basis functions

M(61,82,83) =1 =& —&&, M(6,6,8) =4
A3(€1,82,63) = &2, Ma(&1,82,8) =&

and we define linear basis functions, one on each element vertex

P1(€1,62,83) = M(&1,82,83) ¥2(61,62,83) = Na(&1,€2,83)
V3(&1,82,83) = Xa(61,62,83) Val€1,62,83) = Aa(&1,62,83)

We also span p; — 1 polynomials of orders 2,...,p; over element edges, (pm —
1)(pn, — 1) polynomials of orders (2,2), ..., (pm,pn) on element faces, and (p, —
1)(pp—1)(p.—1) polynomials of order (2,2,2), ..., (pa, P, Pc) on element interiors.
Exemplary second order polynomials on element edges, faces and interiors are
obtain by multiplications of two, three or four master basis functions

¥5(€1,62,€3) = A1(&1,82,83)A2(61,62, &3
¥6(81,82,83) = A2(€1,€2,83)A3(61, 62,63
P7(61,82,83) = A3(€1, €2, 63) Aa(61, 62,63
P8(€1,62,€3) = Aa(€1,82,83)A1(61,62, &3
Yo(&1,82,83) = M (€1, €2, €3)A2(&1, 62, 63) A3 (61, €2, &3
P10(€1,€2,83) = A2(€1, 82, €3) A3(€1, €2, 63) A (61,62, €3

— — — — — —

V11(61,62,83) = A2(€1, €2, €3) A3 (61, 62, §3) Aa (€1, €2, €3)
P12(61,8€2,83) = A1 (€1, &2, 83) A3(&1, &2, 63) a1, 62, €3)
¥13(€1,62,83) = M(&1, €2, 83) A2(&1, 62, E3) Ma (€1, €2, €3)
P14(€1,€2,83) = A1(61, 82, E3) A2(€1, €2, €3) A3 (1,62, €3)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

g g
2N A8 %)/W)V
B B B
K & 5

D e i B
R

the final published version

DOII 10.1007/978-3-030-77970-2_16

please use

ICCS Camera Ready Version 2021

To cite this paper

https://dx.doi.org/10.1007/978-3-030-77970-2_16

Graph-grammar based longest-edge refinements for 3D meshes 11

Fig. 9. Initial mesh and final mesh refined towards formation layers

Y15(61,62,83) = A1(€1, 82, 83) A2 (81, €2, €3) A3(€1, €2, §3) Aa (€1, €2, €3)

For the full definition of the hierarchical basis functions we refer to [17].

Minimal angle of tetrahedron
50

Three longest edges / sum of all edges

45 = mm———— s

40 <% [T iy

066 = mpm =we = 3 _tmeates —_ = ==
35 -

30
25 T A, ..‘_i- “v"'uln__ls.-x'-q-?_.‘;

20 . e—— - .

0 1000 2000 3000 4000 5000) 1000 2000 3000 4000 5000

Fig. 10. Ratio between the sum of lengths of the three longest edges and the sum of all
the lengths of all the edges for newly created tetrahedra (left panel), and the minimal
angle between edges of the newly created tetrahedra (right panel).

Having the mesh refined towards the formation layers, we compute now the
projection of the terrain data employing the projection-based interpolation al-
gorithm. We compute coefficients for the four vertex functions at the vertices
(x4, Y4i,2;) fori =1,2,3,4

Next, we solve the L2 projection problem over each of six edges e;

U= > aiy) — ajihjllroge;) =+ 0 j=5,6,7,8,9,10 (2)
i=1,...,4
L2 projection over four element faces f;

0= >) —allieg,) — 0 5=11,12,13,14 (3)
i=1,...,10

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOIJ10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

12 A. Mosialek et. al.

and finally L2 projection over element interior

(U - Z aihi) — ars¥is|L2 () — 0 (4)

i=1,...,14

We can select optimal polynomial orders of approximation at element interiors
element faces, and element edges, constructing a projection of the material data.
We employ the metaheuristic algorithm presented in listing[I.2] that is minimiz-
ing both numerical error and the computational cost. The algorithm is an iter-
ative procedure. It first selects the minimal polynomial orders of approximation
on finite element edges, faces and interiors. It solves the projection problem, and
then it increases the polynomial order of approximation by one, in all directions,
on the entire mesh. It solves the projection problem again on the finer mesh.
Having the coarse u(h,p) and the fine u(h,p + 1) mesh solutions, it considers
different refinement strategies. We can increase the polynomial order on selected
edges, selected faces and over element interiors. There are several possibilities,
since we have different orders in different directions. All these possibilities are
considered, and we project the resulting element solution from the fine mesh
into the proposed configuration of basis functions related to the considered or-
ders configuration, given the projected reference solution w. Each refinemenet
comes with the prize to pay, expressed by dnrdof the number of basis functions
added to implement this refinement strategy. We compute the error decrease rate
rate(w) = |u(h,p+1) —u(h,p)|—|u(h,p+1) —w|)/dnrdof the ratio between the
error decrease and the cost. Finally, we select such the refinement, that results in
the maximum error decrease rate. We proceed with these computations element
wise, and for the edges and faces shared between elements we do not change the
optimal orders when we consider the other element.

1 procedure SelectPRefinement (Element K,

2 coarse solution u(h,p), fine solution u(h,p+1):

3 for mesh elements K:

4 for P(i,K) different polynomial configurations over K:
5 ratemin = infinity

6 Compute the projection based interpolant w

7 of u(h,p+1) for polynomial order P(i, K)

8 Compute the error decrease rate

9 rate (w)=(|u(h,p+1)—u(h,p)|—|u(h,p+1)—w]|)/dnrdof
10 if rate(w) < ratemin then

11 ratemin = rate (w)

12 Select P(opt,K) corresponding to ratemin

13 as the optimal refinement for element K

Listing 1.2. Selection of optimal refinements over K

5 Conclusions

We proposed the graph-grammar based model of the three-dimensional longest-
edge refinement algorithm for approximation of the geological formation layers.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

Graph-grammar based longest-edge refinements for 3D meshes 13

4}<VPRﬁW§K‘»
<’ ;(

‘44» '()‘w»«» w
4 4t

A

/A

u“v@ w;&

Fig.11. Exemplary L2 projection of terrain data with three layers as well as the
exemplary distribution of polynomial orders over element faces.

It starts with executing the two-dimensional graph-grammar based longest-edge
refinement algorithm on faces of the tetrahedra, taking into account the three-
dimensional topology of the computational mesh. In particular, it propagates
the refinements between topologically adjacent faces. Next, it breaks all the
interiors of the tetrahedra having some faces already broken by the first stage of
the algorithm. We verified the graph-grammar based algorithm by a sequence of
numerical experiments. Namely, we broke 5,000 tetrahedra towards the geological
formation layers. We checked that the algorithm removed all the hanging nodes,
and it preserved the proportions of the original tetrahedra. We also discussed
the metaheuristic algorithm allowing for the selection of the optimal orders of
approximation on element edges, faces and interiors.

6 Acknowledgement

This work was supported by National Science Centre, grant no. 2019/35/0/ST6/
00571.

References

1. C.G. Farquharson, P.G. Lelieévre, S. Ansari, and H. Jahandari. Towards real earth
models - computational geophysics on unstructured tetrahedral meshes? 2014.

2. Seyedmasoud Ansari and Colin G. Farquharson. Numerical modeling of geophysical
electromagnetic inductive and galvanic phenomena, pages 669-674. 2013.

3. Peter G. Lelievre and Colin G. Farquharson. Gradient and smoothness regular-
ization operators for geophysical inversion on unstructured meshes. Geophysical
Journal International, 195(1):330-341, 07 2013.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOT] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

14

10.
11.

12.

13.

14.

15.

16.

17.

A. Mosialek et. al.

Peter G. Lelievre, Colin G. Farquharson, and Charles A. Hurich. Joint inversion
of seismic traveltimes and gravity data on unstructured grids with application to
mineral exploration. GEOPHYSICS, 77(1):K1-K15, 2012.

V. Puzyrev, J. Koldan, J. de la Puente, G. Houzeaux, M. Vézquez, and J. M. Cela.
A parallel finite-element method for three-dimensional controlled-source electro-
magnetic forward modelling. Geophysical Journal International, 193(2):678-693,
2013.

Christoph Schwarzbach, Ralph-Uwe Borner, and Klaus Spitzer. Three-dimensional
adaptive higher order finite element simulation for geo-electromagnetics—a marine
CSEM example . Geophysical Journal International, 187(1):63-74, 10 2011.
Maria-Cecilia Rivara. Mesh refinement processes based on the generalized bisection
of simplices. SIAM Journal on Numerical Analysis, 21(3):604-613, 1984.

Douglas N Arnold, Arup Mukherjee, and Luc Pouly. Locally adapted tetrahedral
meshes using bisection. SIAM Journal on Scientific Computing, 22(2):431-448,
2000.

Fernando Balboa, Pedro Rodriguez-Moreno, and Maria-Cecilia Rivara. Terminal
star operations algorithm for tetrahedral mesh improvement. In Lecture Notes
in Computational Science and Engineering, pages 269—282. Springer International
Publishing, 2019.

J. Bey. Tetrahedral grid refinement. Computing, 55(4):355-378, December 1995.
Oscar Antepara, Néstor Balcizar, and Assensi Oliva. Tetrahedral adaptive mesh
refinement for two-phase flows using conservative level-set method. International
Journal for Numerical Methods in Fluids, 93(2):481-503, August 2020.

Célestin Marot, Jeanne Pellerin, and Jean-Francois Remacle. One machine, one
minute, three billion tetrahedra. International Journal for Numerical Methods in
Engineering, 117(9):967-990, 2019.

Wei Guo, Yufeng Nie, and Weiwei Zhang. Parallel adaptive mesh refinement
method based on bubble-type local mesh generation. Journal of Parallel and Dis-
tributed Computing, 117:37-49, 2018.

Maria-Cecilia Rivara. Local modification of meshes for adaptive and/or multi-
grid finite-element methods. Journal of Computational and Applied Mathematics,
36(1):79-89, 1991. Special Issue on Adaptive Methods.

Krzysztof Podsiadlo, Albert Oliver, Anna Paszynska, Rafael Montenegro, Ian Hen-
riksen, Maciej Paszynski, and Keshav Pingali. Parallel graph-grammar-based al-
gorithm for the longest-edge refinement of triangular meshes and the pollution
simulations in lesser poland area. FEngineering with Computers, 12 2020.
Maria-Cecilia Rivara. Mesh refinement processes based on the generalized bisection
of simplices. SIAM Journal on Numerical Analysis, 21(3):604-613, 1984.

Leszek Demkowicz, Jason Kurtz, David Pardo, Maciej Paszynski, Waldemar
Rachowicz, and Adam Zdunek. Computing with hp-adaptive finite element method,
Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Ap-
plications. Taylor & Francis, CRC Press, 2008.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77970-2_16 |

https://dx.doi.org/10.1007/978-3-030-77970-2_16

