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Abstract. The electricity tariffs available to Polish customers depend on the volt-

age level to which the customer is connected as well as contracted capacity in 

line with the user demand profile. Each consumer, before connecting to the power 

grid, declares the demand for maximum power which is considered a contracted 

capacity. Maximum power is the basis for calculating fixed charges for electricity 

consumption. Usually, the maximum power for the household user is controlled 

through a circuit breaker. For the industrial and business users the maximum 

power is controlled and metered through the peak meters. If the peak demand 

exceeds the contracted capacity, a penalty charge is applied to the exceeded 

amount which is up to ten times the basic rate. In this article, we present a solution 

for entrepreneurs which is based on the implementation of two stage approach to 

predict maximal load values and the moments of exceeding the contracted capac-

ity in the short-term, i.e., up to one month ahead. The forecast is further used to 

optimize the capacity volume to be contracted in the following month to mini-

mize network charge for exceeding the contracted level. As shown experimen-

tally with two datasets, the application of multiple output forecast artificial neural 

network model and genetic algorithm for load optimization delivers significant 

benefits to the customers. 

Keywords: contracted capacity, optimization, genetic algorithm, electricity 

load time series forecasting. 

1 Introduction 

Energy storage and supply conditions are demanding and difficult on the electricity 

market when compared to other inputs of a typical production system. Therefore, fore-

casting the load demand is of high importance. To deal with those inconvenient condi-

tions, energy producers propose different energy tariffs and contract options to their 

customers. Usually, voltage level and individual contracted capacity are the main fac-

tors to assign proper tariff. This strategy ensures that fluctuations in energy demand are 

controlled, what gives an insight for the energy quantity required to be generated and 

allows to transmit it to the customers. 
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The Polish demand side of the retail electricity market comprises end-users. In total, 

there are over 17.05 million of them, out of whom 90.3% (15.4 million) are the cus-

tomers in G tariff group, with a great majority of household consumers (over 14.5 mil-

lion) who purchase electricity for individual consumption [1]. The rest of end-users are 

industrial, business and institutional clients and they may belong to A, B or C tariff 

group [2]. There are three voltage levels distinguished in Poland: high voltage (110 kV 

and higher), medium voltage (higher than 1 kV but lower than 110 kV) and low voltage 

(less than 1 kV). Tariff groups A and B comprise customers supplied from the high and 

medium voltage grids, i.e., the so-called industrial customers, whereas group C is typ-

ical for the customers connected to the. low voltage grid consuming electricity for the 

purpose of small and medium business activity. 

One of the main variables considered in the tariff structures is the capacity compo-

nent so the users are charged for the availability to use the maximum power, in line 

with the connection agreement which is the maximum value of the averaged consumed 

power within the period of 15 minutes in an hour span [3]. In practice, households and 

small business are not obliged to monitor the level of power consumed on an ongoing 

basis. Customers who are using these tariffs are not charged for exceeding the con-

tracted capacity. On the other hand, if the declared capacity quantity is exceeded by the 

consumer of tariff groups (C, B or A) penalty charge is levied. In line with the govern-

ment’s regulation with regards to the specific rules for the determination and calculation 

of the tariffs and billing in electricity industry [3], a fee is charged for exceeding the 

contractual capacity defined in the contract. The fee constitutes the product of the rate 

of capacity charge and the sum of ten largest quantities of the surplus consumed capac-

ity over the contractual capacity, indicated by the measuring and clearing device or ten 

times the maximum amount of surplus of consumed capacity over the contracted ca-

pacity recorded during the reference period.  

Large companies which are connected to medium or high voltage lines, usually have 

an energy specialist who takes care of the energy consumption parameters and super-

vises them on an ongoing basis. The level of power consumed is monitored by the me-

tering systems, and in case of exceeding the contractual level, an additional fee related 

to exceeding value appears on the invoice. In practice, big companies are rarely uncon-

scious about exceeding their contractual capacity. On the other hand, entrepreneurs op-

erating in the field of services, production and processing, who are connected to low 

voltage with contracted capacities above 40 kilowatts [3], do not always have the time, 

appropriate information, and knowledge to control their energy consumption parame-

ters to ensure their optimal adjustment. Generally, in order to avoid over-contracted 

capacity amount, customers declare a level of contracted capacity that is much higher 

than their needs. On the other hand, those customers who are not using the planned 

capacity pay for the unused power. 
Time horizon selection. Numerous papers consider load forecasting, but only few 

of them use the short-term load forecasting for tariff optimization. Most of the works 

are mainly related to long-term optimization of the electricity purchase and distribution 

process by suppliers and distributors. In general, load forecasting has been investigated 

by utilities and electricity suppliers where Long-Term Load Forecasts (LTLF) are used 
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to predict the annual peak of the power system [4, 5] in order to manage future invest-

ments in terms of modernization and launching new units to maintain stability of na-

tionwide electricity demand over time periods of up to 20 years [6]. The Medium-Term 

Load Forecasts (MTLF) use hourly loads to predict the weekly peak load for both, 

power and system operations planning [7]. The Short-Term Load Forecasts (STLF) 

usually aim to predict the load up to one-week ahead, while the Very Short-Term Load 

Forecasts (VSTLF) are used for a time-horizon of less than 24 hours. Both, STLF and 

VSTLF have engaged the attention of most researchers, since they provide necessary 

information for the day-to-day utilities’ operations [8]. These forecasts become also 

useful when dealing with smart grid, micro grids, peak load anticipation, and intelligent 

buildings [9, 10].  

STLF techniques. There are number of papers dedicated to short-term load fore-

casting of the commercial customers for the purpose of contract capacity optimization. 

Also, there are numerous approaches applied to load forecasting with good accuracy. 

Importantly, the quality of the forecast improves when the forecasting is applied to the 

higher aggregation levels (like group of customers, power stations or cities) and this 

can be achieved with quite low errors. In the earliest works, some classical techniques 

including auto regression (AR) models [11], linear regression models [12], dynamic 

linear and nonlinear models, general exponential smoothing models, spectral methods, 

and seasonal ARIMA models were used for forecasting[13-15]. Unfortunately, their 

capability to solve time series with complex seasonality and non-linear series is limited, 

in favor of artificial neural networks (ANN) techniques and expert systems [16 -19]. 

Interestingly, load forecasting field is one of the most successful applications of ANN 

in power systems. Neural networks are able to deliver better performance when dealing 

with highly non-linear series resulting from e.g. the non-integer seasonality appearing 

as a result of averaging ordinary and leap years.  

Optimization. Various types of hardware and software solutions. Load limiters [20] 

are currently used to prevent overruns. Another, more sophisticated option like Electric 

Power Distribution and Utility Monitoring System provided by [21] support large and 

medium-sized sites in Japan in terms of energy efficient management, preventive 

maintenance and capacity overruns. A measurement data screen is provided to display 

real-time measurement data which alarms if the predicted demand exceeds the present 

level. Then actions can be taken automatically or manually.  

For small companies a simple and uncomplicated solutions using e.g. Excel are ap-

plicable to analyze the relation between the contracted capacity and the actual con-

sumption. When contracted capacity levels are exceeded, they have then the ability to 

increase the level of contracted capacity or change the structure of energy consumption. 

As a result of the analysis, the client can reduce consumption in periods when the ca-

pacity is exceeded and increase consumption in periods when there is a capacity re-

serve. Unfortunately, these solutions are ineffective because they are based on the 

monthly averaged data from the electricity consumption invoices, while the excess of 

power is determined based on averaged data recorded over 15-minute periods. More 

effective solutions for contracted capacity optimization can be achieved using different 

models including deep learning neural networks [22], Particle Swarm Optimization 
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(PSO)[23], Genetic Algorithm (GA) [24] or Linear Programming (LP) optimization 

[25]. 

Motivated by aforementioned discussions, this paper presents solution for small and 

medium-sized enterprises from the C tariff group, concerning short-term load forecasts 

as a basis for calculating and optimizing the capacity required to avoid any additional 

fee related to exceeding contracted capacity level. 

Specifically, Long Short-Term Memory (LSTM) Artificial Neural Network (ANN) 

is constructed to forecast the load values and the moments of exceeding the contracted 

capacity in the short-term horizon, i.e., up to one month ahead. The forecast is further 

used to optimize the capacity volume to be contracted in the following month for the 

commercial customer to minimize network charge for exceeding the contracted level. 

Long Short-Term Memory networks belong to a complex area of deep learning 

methods. These are type of recurrent neural network (RNN) capable of learning order 

dependence in sequence prediction problems like time series. The reason for using re-

current networks is that these are different from traditional feed-forward neural net-

works and, in addition to the complexity and volatility in electricity time series, comes 

with the expectation to reveal new patterns and behaviors that the traditional methods 

cannot achieve [26, 27]. Standard RNNs often fail to learn correctly in the presence of 

time lags greater than 5 – 10 discrete time steps between the input events and target 

signals. The problem with disappearing error raises question whether standard RNNs 

can indeed provide significant practical advantages over time window-based feedfor-

ward networks. As provided in [28], LSTM model is not affected by this problem and 

it can learn to bridge minimal time lags in excess of 1000 discrete time steps by enforc-

ing constant error flow through “constant error carrousels” (CECs) within special units, 

called cells. 

The remainder of this paper is organized as follows. Section 2 proposes two stage 

approach to optimize electricity contract capacity problem. First stage presents multiple 

output strategy for forecasting supported by LSTM ANN model. The second stage uses 

genetic algorithm to optimize the electricity contract capacity. Section 3 provides a de-

tailed description of the tariff structure in Poland. Section 4 applies the models to real 

datasets for two commercial customers in Poland. Section 5 concludes with the com-

ments and provides directions for the future research. 

2 Two stage approach to optimize electricity contract 

capacity problem 

2.1 Stage one – LSTM electricity load time series forecasting 

Time series forecasting is typically considered as one-step prediction. Due to the fact 

that electricity load forecasting is essential for both, the utility and the customer, it can-

not be designed with one step prediction. Maximum power is used by the utility to 

provide the right amount of power for customers, whereas it is the basis for calculating, 

usually monthly, fixed charges for the industrial and business electricity users. Predict-

ing multiple time steps is considered a multi-step forecasting and it includes prediction 
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of the load values [L+1, …, L+t] of historical load time series [L1 ,…., LN] composed 

of N load observations, where t>1 denotes the forecasting horizon. In this paper we 

used multiple output strategy for forecasting which involves the development of a sin-

gle model that is capable of predicting the entire forecast time horizon in a one-shot 

approach. Therefore, to predict load required for the next e.g. two data points, we would 

develop one model and use it to predict the next two data points as one operation. The 

model form would be as follows:  

L_prediction(t+1), L_prediction(t+2) = model1(L (t-1), L (t-2), ..., L (t-n)) 

The model can learn the dependence structure between inputs and outputs as well as 

between outputs. Specifically, for this approach, the LSTM Artificial Neural Networks 

were constructed to forecast the load values and the moments of exceeding the con-

tracted capacity in the short-term horizon, i.e., up to one month ahead and hour by hour. 

The forecast is further used to optimize the capacity volume to be contracted in the 

following month for the commercial customer to minimize network charge for exceed-

ing the contracted level. 

Additionally, the naive forecast was considered in the following manner: for the 

forecasting horizon, the values observed for the same hour and same day of the four 

previous week were averaged and taken as a forecast. However, the forecasts were far 

from the optimal and therefore, these were not further optimized.  

2.2 Stage two – load forecast optimization 

In this article, we consider peaks over contracted capacity in a given month. Most cus-

tomers order the same amount of power for individual months of the year. If the peak 

demand does not exceed the contractual capacity, a fixed capacity charge will be levied. 

It constitutes the product of the fixed capacity rate R [PLN/kW], where PLN stands for 

Polish Zloty and contracted capacity demand for month Rt in kW. For exceeding the 

contractual capacity defined in the contract an additional surcharge for excess demand 

will be added. The annual fee per year can be, therefore, expressed as: 

 𝐶𝑜𝑠𝑡𝑚 = {
𝑅𝑚 ∗ 𝑑𝑚                                                      𝑑𝑚 < 𝑑𝑚

𝑐

𝑅𝑚 ∗ 𝑑𝑚 + 𝑅𝑚 ∗ (𝑑𝑚 − 𝑑𝑚
𝑐 ) ∗ 𝑛𝑚       𝑑𝑚

𝑐 < 𝑑𝑚
 (1) 

 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝑜𝑠𝑡𝑚 
year
𝑚=1  (2) 

where  
dm

c  – contracted capacity (kW) in month m; 
dm – maximum demand amount (kW) in month m; 
nm – the sum of up to ten largest amounts of surplus consumed capacity over the con-
tractual capacity, indicated by the measuring. 
Rm – rate of contractual capacity (PLN/kW) in month m. 
 

In this work, since 12 months of data us available, we consider the total cost over 10 

months, i.e., March–December 2016, due to the fact that January and February were 
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considered for model training (including variable calculations with delays). The solu-

tion that minimizes the annual total contracted capacity cost and the penalties for ex-

cessive consumption over the fixed capacity amount can be solved using Particle 

Swarm Optimization, Genetic Algorithm (GA) or even the Excel’s solver for linear 

programing. However, in this paper we propose GA which can find multiple Pareto 

solutions for a multi-objective optimization problem in one run.  

In principle, genetic algorithms are stochastic search algorithms inspired by biolog-

ical evolution and natural selection processes. GAs simulate the evolution process 

where the fittest individuals dominate over the weaker ones, by reflecting the biological 

mechanisms of evolution, such as selection, crossover and mutation. For the experi-

ments we used R package for GA as it provides a collection of various functions for 

optimization using genetic algorithms. The package includes a flexible set of tools for 

implementing genetic algorithms search in both the continuous and discrete case, 

whether constrained or not. Several genetic operators are available and can be com-

bined to explore the best settings for the analyzed problem. Basically, the default pa-

rameters settings were used to maximize a fitness function using genetic algorithms in 

line with documentation [https://cran.r-project.org/web/packages/GA/GA.pdf] 

3 Data characteristics and tariff structure 

There were two separate data sets used in the analysis. Each data set consists of data 

points at 15 minutes intervals gathered for medium-size commercial customers and 

covering time interval time between January 1st, 2016 and December 31st, 2016. In 

total, there are 35 136 observations in each data set. The customers belongs to C tariff 

group which is applicable to small and medium-size enterprises where the electricity is 

supplied with low voltage lines. The group includes C2x tariffs where contracted ca-

pacity is over 40 kilowatts and the letter “x” designates the number of energy consump-

tion zones per day. The following tariffs are available: C22a tariff with two-zones meas-

urement (peak and off-peak), C22b tariff with two-zones measurement (day and night) 

and C23 tariff with three zones measurement per day. 

The first data set contains details for the customer who belongs to C22a tariff. The 

customer is classified as a small pharmaceutical plant with a contracted capacity greater 

than 40 kilowatts and who is mainly using electricity during the day hours. The con-

tracted capacity for the customer is 51 kW. Fig. 1a shows lower electricity consumption 

during morning and evening peak hours. Much higher consumption is observed be-

tween 10:00 and 16:00. The second data set contains details for the customer who be-

longs to C22b tariff. It is a confectionery plant which performs majority of its activities 

during the night. The contracted capacity for the customer is 80 kW. Fig. 1b shows 

lower electricity consumption in the daytime zone, i.e., between 6:00 and 21:00 and 

higher consumption in the night time zone, between 21:00 and 6:00. 

Most of the users within C2x tariff groups, do not possess detailed usage data to 

control energy consumption parameters and to ensure their optimal adjustment. As 

shown on Fig. 2. the contracted capacity is not adequately set as it is often being ex-

ceeded in the reality. On the other hand, average load consumption does not exceed 
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70% of the contracted capacity level, which translates into losses due to unused capac-

ity. Therefore, it is crucial to determine the optimal contract capacity for each month 

so as to minimize the total cost of the 

electricity bills. 

Fig. 1.  Daily and weekly energy consumption structures of two different users: (a) user C22a, 

(b) user C22b. 

Fig. 2. Consumed load and contracted capacity (a) for customer C22a and (b) customer C22b. 
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4 Numerical experiments  

In this section, we use the multiple output forecast approach for electricity load fore-

casting as outlined in Section 2.1, and then, as the second stage, we apply genetic algo-

rithm to optimize the user’s contract capacity. 

At the beginning, we start with hourly forecasts month by month through the entire 

year. Although the settlement with the power plant or electricity supplier is made on 

the basis of the monthly characteristics (including frequency and the volume of peaks), 

the hourly forecast is necessary for load optimization at second stage. These values 

constitute the input data to predict and then optimize the amount of capacity required 

in the next monthly period. 

For the forecasting approach we determine the following components: (1) The quan-

tities and costs incurred on the basis of the actual load consumptions and contract ca-

pacity, i.e., the constant value declared by the user at the beginning of the contract pe-

riod; (2) The optimal load amount and the cost that user would incur. This is the case 

when we know, in advance, the amount of power required at the end of the billing 

period. (3) The optimal amount and the costs that user would incur on the basis of the 

predicted load quantities using a LSTM neural network. Ultimately, we determine the 

optimal contract capacity using a genetic algorithm. 

 

The capacity contract optimization 

 

We used the Multiple output forecast strategy with ANN to predict the contract value 

with the maximum consumption values as well as the maximum load at specific hours 

and days of the week. These values were used further as the input to the genetic algo-

rithm in order to establish such monthly contract capacity values that would help the 

user to avoid charges for exceeding the contracted level. The analysis were carried out 

for q100 quantile in order to check how large the maximum loads are and based on 

those, we searched for the optimal contract values using the genetic algorithm. The loss 

in Quantile Regression for an individual data point is defined as: 

 ℚ(𝜍𝑖|𝛼) = {
𝛼𝜍𝑖 ,              𝑖𝑓 𝜍𝑖   ≥ 0

(𝛼 − 1)𝜍𝑖 , 𝑖𝑓 𝜍𝑖  < 0
  (3) 

where alpha is the required quantile (a value between 0 and 1) and 

 𝜍𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖)  (4) 

where f(x) is the predicted (quantile) model and y is the observed value for the corre-

sponding input x. 

At the following the results of the forecasting experiments and optimization will be 

discussed. The following notations are used in the Tables 1–2:  

 Actual contract – the value of the customer's contracted capacity in kW; 

 Actual cost – the customer's total cost of contracted capacity and the penalties of 

exceedances the contracted capacity level in PLN; 

 Above actual contract – the number of loads consumed over the contracted level in 

kW;  
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 Opt contract capacity – the optimal amount of consumed capacity based on the his-

torical usage in kW; 

 Opt contract cost – the optimal cost of consumed capacity based on historical usage 

in PLN; 

 Above opt contract – the number of loads over the contracted capacity based on 

historical usage;  

 Opt contract capacity pred – the optimal contract based on the forecast obtained by 

neural network and optimized by GA in kW;  

 Opt cost capacity pred – the total cost of optimal contract predicted by the network 

and optimized by GA in PLN;  

 Above opt capacity pred – the number of loads over the contracted capacity based 

on the forecast obtained by neural network and optimized by GA. 

Table 1. Multiple output forecast strategy with Q100 for C22a tariff user. 

 
Table 1 shows the results of the analysis for the customer who belongs to C22a tariff 

group, having a contracted capacity of 51 kW per month. During June-August period 

the customer consumed more capacity and therefore, the contracted level was exceeded 

several times in those months, even 122 times in July, what significantly increased the 

cost. In total, the actual cost for the customer between March and December was 

6166.37 PLN. With a retrospective analysis, based on historical usage, one could see 

that the optimal values for contracted capacity would vary between 46 kW and 57 kW, 

depends on the month, as presented in the Table 1. Knowing that, the customer could 

benefit from lower bills, so the cost of the optimal contract would be 5093.99 PLN, 

which is 17.4% less than actual cost. Of course, for the customer it is difficult to specify 

correctly what would be the capacity required in the following months, therefore the 

optimal contract capacity should be forecasted. In our case we used multiple output 

forecast strategy with LSTM neural network to estimate maximum load for each hour 

and these values were used further as the input to the genetic algorithm the forecast for 

the optimal contract level so the total cost is minimized. As the result the forecasted 

capacity was between 48 kW and 57 kW, depends on the month. Importantly, only 

Month

Actual 

contract 

[kW] 

Actual 

cost [PLN]

Above 

actual 

contract 

Opt 

contract 

capacity 

[kW] 

Opt 

contract 

cost [PLN] 

Above 

Opt 

contract 

Opt 

contract 

capacity 

pred [kW]

Opt cost 

capacity 

pred [kW]

Above opt 

capacity 

pred

Mar 51 510 0 50 506.74 1 53 530 0

Apr 51 510 0 47 471.39 1 49 490 0

May 51 510 0 50 501.72 1 51 510 0

Jun 51 522.89 2 52 520 0 52 520 0

Jul 51 950.3 122 56 560 0 56 560 0

Aug 51 1123.16 95 57 571.31 1 57 571.31 1

Sep 51 510 0 49 490 0 54 540 0

Oct 51 510 0 46 466.28 2 48 480 0

Nov 51 510 0 50 500 0 50 500 0

Dec 51 510 0 50 506.52 3 51 510 0

Total 6166.36 5093.99 5211.31

Optimal values based on historical 

usage  

Optimal values based on predicted 

usage
Actual values
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once, in August we would exceed the contracted capacity. This helped to keep the total 

cost very low, i.e., close to the optimal cost values. Eventually, the total cost of optimal 

contract predicted by the network and optimized by genetic algorithm was 5211.32 

PLN which is very close to the optimal one (5093.99 PLN). In comparison to the actual 

cost, the benefit of the customer is quite material and amounts to 955.05 PLN (6166.37 

– 5211.32) which is 15.5% of the actual bills.  

In the similar manner the analysis for the second customer was prepared. Table 2 

shows the results of the analysis for the customer who belongs to C22b tariff group, 

having a contracted capacity of 80 kW per month. During March, November and De-

cember the customer consumed more capacity and therefore, exceeded the contracted 

level many times, specifically even 266 times in December, what significantly impacted 

the actual bills. In total, the actual cost for the customer between March and December 

was 10789.34 PLN. With a retrospective analysis, based on historical usage, one could 

see that the optimal values for contracted capacity would vary between 72 kW and 90 

kW, depends on the month, as presented in the Table 2. Knowing that, the customer 

could benefit from lower bills, so the cost of the optimal contract would be 7930.49 

PLN, which is 26.5% less than actual cost. Once again, we used multiple output forecast 

strategy with ANN to estimate maximum load for each hour and these values were used 

further as the input to the genetic algorithm the forecast for the optimal contract level 

so the total cost is minimized. As the result the forecasted capacity was between 73 kW 

and 89 kW, depends on the month. There were instances where the usage would exceed 

the contracted capacity, e.g. 1 times in November and December. Finally, the total cost 

of optimal contract predicted by the network and optimized by genetic algorithm was 

8068.66 PLN. In comparison to the actual cost, the benefit of the customer is also ma-

terial, similarly to the previous customer, and amounts to 2720.68 PLN (10789.34 – 

8068.66) which is 25.2% of the actual bills.  

Table 2. Multiple output forecast strategy with Q100 for C22b tariff user. 

 

Month

Actual 

contract 

[kW] 

Actual 

cost [PLN]

Above 

actual 

contract 

Opt 

contract 

capacity 

[kW] 

Opt 

contract 

cost [PLN] 

Above 

Opt 

contract 

Opt 

contract 

capacity 

pred [kW]

Opt cost 

capacity 

pred [kW]

Above opt 

capacity 

pred

Mar 80 1402.71 62 86 860.27 1 88 880 0

Apr 80 800 0 78 786.63 1 85 850 0

May 80 800 0 72 722.82 1 77 770 0

Jun 80 800 0 72 724.28 1 73 730 0

Jul 80 800 0 73 737.81 2 74 740 0

Aug 80 800 0 74 740 0 74 740 0

Sep 80 800 0 76 760 0 76 760 0

Oct 80 800 0 78 780 0 78 780 0

Nov 80 1547.07 58 87 874.71 1 87 874.71 1

Dec 80 2239.55 266 90 943.96 1 89 943.96 1

Total 10789.34 7930.48 8086.66

Optimal values based on historical 

usage  

Optimal values based on predicted 

usage
Actual values
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5 Conclusion 

In this paper two stage approach is proposed to determine appropriate contract capacity 

amount that minimize financial losses in case of exceeding the amount of capacity de-

fined in the contract. The LSTM neural network model was developed. The first stage 

was to forecast hourly capacity values as the basis for determining the monthly maxi-

mum capacity required. These maximum values were used to determine the optimal 

monthly capacity values at the second stage, so the values were provided as the input 

to the genetic algorithm in order to establish such monthly contract capacity level that 

would help the user to avoid charges for exceeding the contracted level.  

As shown through the experiments, the application of multiple output forecast arti-

ficial neural network model and genetic algorithm for load optimization delivers sig-

nificant benefits to the commercial customers. In comparison to the actual costs, the 

benefit for the customers, due to optimization, is material. Specifically, the benefit for 

the C22a customer is 15.5% of the actual bills while for the C22b customer it is 25.2%.  

As a future work, we would continue the research towards fitting the models so these 

could potentially better deal with seasonality of the demand on the customers end. Alt-

hough this research deals with Polish tariffs, we believe it can be applied to other elec-

tricity customers in capacity cost decision making. 
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