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Abstract. Simulation-based optimal path search algorithms are often
solved using dynamic programming, which is typically computationally
expensive. This can be an issue in a number of cases including near-real-
time autonomous robot or sailboat path planners. We show the solution
to this problem which is both effective and (energy) efficient. Its three
key elements – an accurate and efficient estimator of the performance
measure, two-level pruning (which augments the estimator-based search
space reduction with smart simulation and estimation techniques), and
an OpenCL-based spmd-parallelisation of the algorithm – are presented
in detail. The included numerical results show the high accuracy of the
estimator (the medians of relative estimation errors smaller than 0.003),
the high efficacy of the two-level pruning (search space and computing
time reduction from seventeen to twenty times), and the high parallel
speedup (its maximum observed value was almost 40). Combining these
effects gives (up to) 782 times faster execution. The proposed approach
can be applied to various domains. It can be considered as an optimal
path planing framework parametrised by a problem specific performance
measure heuristic/estimator.

Keywords: heterogeneous computing · spmd-parallel processing · tra-
jectory optimisation · dynamic programming.

1 Introduction

Optimal path search – an important issue in robotics, aerospace engineering,
and optimal control – in a number of cases has to be simulation based since the
corresponding mathematical model is too complex for analytical methods. In
such situations algorithms based on dynamic programming are often used. This
approach usually leads to accurate results but is computationally expensive,
because of the search space size and cost of simulation [8].

High computational costs can be an issue in a number of cases including
(hard) real-time embedded systems but also near-real-time autonomous robot
or sailboat path planners. Some of the time constraints can be met (at least
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partially) by parallelising the algorithms and adapting them to contemporary
cpu-gpu heterogeneous mobile/onboard computers, which are massively parallel
micro hpc platforms. Although effective, this approach is often inefficient – the
computation is accelerated but with no reduction of the algorithm computational
cost. This can be an issue if energy consumption is of primary importance, which
is the case in onboard/mobile computers (especially when at sea).

The aim of this paper, which is a significant extension of [8], is to present a
simulation-based optimal sailboat path planning algorithm which is both effec-
tive and (energy) efficient. Its main contributions are:

– an estimator of the performance measure (i.e., sailing duration) that reflects
its variational character and is accurate without being computationally com-
plex (section 4.2),

– the concept of two-level pruning, which augments the estimator-based search
space reduction with smart simulation and estimation techniques (paragraph
External and internal pruning in section 4.3),

– the spmd-parallel1 algorithm for simulation-based optimal sailboat path
search, based on the above two elements and adapted to on-board heteroge-
neous micro hpc systems (section 4.3),

– numerical results which demonstrate three important aspects of the algo-
rithm: the accuracy of the performance measure estimator, the efficacy of
the two-level pruning, and the spmd-parallelisation capabilities (section 5).

The remainder of this paper is organised as follows. The next section presents
related research. Following that, the search problem under consideration is de-
fined and proposed algorithm is described. After that, experimental results are
presented and discussed. The last section contains the conclusion of the study.

2 Related research

The first scientific formulation of the problem of trajectory optimization2 was
proposed by Johan Bernoulli in 1696 as the brachistochrone problem (see [26]
for discussion). For over two hundred years, the main approach for trajectory
optimization was the calculus of variations (see, for instance [24]) based on Jo-
han’s brother Jakob’s solution for the brachistochrone problem. This situation
was changed when dynamic programming was introduced [1] after the develop-
ment of the digital computer in the 1950’s. Effective shortest path algorithms [2,
9], the Pontryagin Maximum Principle [19] and non-linear programming (NLP)
are foundations for many trajectory optimization algorithms. They are classified
either as direct, to construct the best path step by step like our algorithm, or
indirect in which the best path is a solution of some set of equations [25, 15].
A subgroup of direct methods is a set of algorithms based on the shortest path
algorithm [4, 21].
1 SPMD - Single Program Multiple Data
2 In this paper, the notions of trajectory optimization and optimal path search are used
interchangeably.
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An important part of optimal search problems is those having black-box rep-
resented performance measures. In such cases the performance measure values
are usually computed using computer simulation, and therefore classical opti-
mization methods cannot be used directly. Algorithms for such problems are
often based on heuristics, soft-computing and AI methods [28, 20, 27].

Another important direction of research is related to the parallelisation of
both trajectory optimization and graph algorithms [6, 13] which then can be
executed using GPU3 acceleration [12, 22, 17, 10]. In our research we also utilized
GPU. Although initially we applied machine learning (ML) algorithms with some
success, even better results were obtained using a specially designed performance
measure estimator allowing us to significantly limit the number of performance
measure evaluations.

A different approach to speed up computations is pruning the search graph.
In [11] uniform-cost grid environments are considered. They are simple but com-
monly used in robotics and video games. The authors propose an algorithm
finding optimal paths by expansion of selected nodes only. Pruning rules are de-
fined to decide if a node should be skipped or expanded. In [29] an algorithm for
path planning of a differential drive mobile robot is proposed. It is an extension
of a Bi-directional Rapidly-exploring Random Tree (RRT) method [14]. It im-
proves the performance of path planning by incorporating kinematic constraints
and efficient branch pruning. In [30] another extension of RTT is proposed. An
initial tree covering the whole map is processed using branch pruning, recon-
nection, and regrowth operations. It allows for planning in a complex, dynamic
environments in which obstacles and the destination are moving.

Trajectory optimization is often used in robotics, as mentioned above, and
also in other various domains, for example aerospace engineering [5]. However,
the sailboat domain is also common [23, 18, 7, 31].

3 Problem formulation

Consider a sailboat going from point A(qA, yA) to B(qB , yB), where (qi, yi) are
the coordinates of the corresponding point in either the Cartesian or polar sys-
tem. We assume that the true wind can be expressed by the following vector
field (see Fig. 1)

vvvt(q, y, t) = M(q, y, t) q̂qq +N(q, y, t) ŷyy, (1)

where: M(q, y, t), N(q, y, t) are scalar functions, and q̂qq, ŷyy are the unit vectors
representing the axes of the corresponding coordinate system.

The set of admissible ÃB paths (i.e. the problem domain) consists of C1-
continuous curves which cover the given sailing area SA (see Fig. 1) and do not
violate the constraints embedded in a sailboat model (these constraints can be
related to the state and/or control variables). This model is used to evaluate
each path (y(i)) through simulation, therefore

J [y(i)] = PerformSimulation[y(i), cfg (vvvt, . . .)], (2)
3 Graphics Processing Unit
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True wind vector field

A

B

q

y

A B

y   (q)(*)

y   (q)(2)

y   (q)(1)

True wind (vector) field SA - sailing area

y
max

y
min

Fig. 1. Optimal sailboat path search problem: example admissible paths connecting
points A and B, with y(∗)(q) representing the optimal path.

where: J represents the given performance measure and cfg (vvvt, . . .) – the simu-
lator configuration.

Problem statement. The optimal sailboat path search problem under considera-
tion can be defined as follows:

– find, among all admissible paths, the one with the best value of performance
measure J ;

– the values of J can be found only through simulation;
– only on-board, off-line computers can be used.

Remark 1. In the special case, when J [y(i)] = ∆t[y(i)], with ∆t being the sailing
duration, we get the minimum-time problem.

4 Solution

The approach we propose in this paper is a ”pruning augmented” extension of
the one introduced in [8]. It is based on the following two main steps:

1. transformation of the continuous optimisation problem into a (discrete)
search problem over a specially constructed finite graph (multi-spline);

2. application of pruned dynamic programming to find the approximation of
the optimal path represented as a C1-continuous cubic Hermite spline.

These two steps repeated several times form an adaptive version of the algorithm
in which subsequent grids are generated through mesh refinement making use of
the best trajectory found so far. Key elements of the proposed algorithm are:

– multi-spline based solution space and the spmd-parallel computational topol-
ogy it generates;

– effective estimate of the performance measure (sail duration);
– two-level smart pruning that significantly reduces the time complexity of the

reference algorithm.

They are discussed in the following sub-sections.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_13

https://dx.doi.org/10.1007/978-3-030-77970-2_13


Pruned simulation-based optimal sailboat path search. . . 5

4.1 Multi-spline as the solution space representation

A discretisation of the original continuous problem leads to a grid, G, which
structure can be fitted into the problem domain. A simple example of such a
grid is shown on the left of Fig. 2. The grid is based on equidistant nodes grouped
in rows and columns: four regular rows plus two special ones – containing the
start (A) and the end (B) points – and four columns. The number of nodes in
such a grid is equal to

|G| = nc (nr − 2) + 2 (3)

where nc and nr are the numbers of columns and rows (including the two special
ones), respectively.

BA

y(q) - a trajectory in the solution space
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Fig. 2. Solution space representation: multi-spline built (spanned) on regular grid Gex

Having assigned nts additional values (a vector of nts tangent slopes) to
every node of grid G, we obtain a new structure, Gex, that can store not only
the coordinates of each node but also the nts slopes (angles) of path segments
which start/end in that particular node (see the right part of Fig. 2).

Joining the nodes from subsequent rows of Gex by using cubic Hermite spline
segments, we get a multi-spline [8] which forms a discrete space of C1-continuous
functions (see Fig. 2). The properties of a multi-spline that are important from
the point view of this paper are as follows[8]:

– when seen as a graph (knots are vertices, spline segments are edges) – it is
directed (from A to B or vice-versa), acyclic and topologically sorted (i.e.
the edges in layer l are followed by those from layer l+ 1 and the vertices in
row r are followed by those from row r + 1, see Fig. 2);

– it is built from ncn
2
ts [(nr − 3)nc + 2] different spline segments;

– the discrete search space it spans represents nnr
ts n

nr−2
c different trajectories

connecting points A and B; this value corresponds to the ”inter-row com-
plete” graph (i.e. the one in which all vertices from subsequent rows are
connected);

– each of its internal layers (again, in the ”inter-row complete” graph) consists
of n2cn2ts spline segments.
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Remark 2. Since the details of multi-spline auto-adaptation and formulae for
Hermite spline segments are not of prime importance from the point of view of
this paper, they have been omitted. If necessary, they can be found in [8].

4.2 Performance measure estimate

Simulation is the most complex and time-demanding phase of the optimal path
search algorithm with the critical element being the computation of an instan-
taneous net-force4, F , acting on a sailboat. Although the complete evaluation
of a multi-spline spanned on a Gex〈nr, nc, nts〉 requires ncn2ts [(nr − 3)nc + 2]
simulations (see Section 4.1), and a significant number of them need more than
a thousand computations of F , in a typical scenario, simulations for more than
80% of the multi-spline segments are not really necessary as their performance
measures are significantly worse. Unfortunately, we do not know them up-front
(i.e. before the simulation), and hence the need for a good estimator.

After some experiments with several ML-algorithms (both off-line and on-
line) we have found an estimate that reflects the variational character of the
performance measure and is accurate enough without being computationally
complex. The solution was not at all obvious because of the circular-dependent
nature of the problem: the performance measure of a path segment (tE = tS+dt)
obviously depends on the time of reaching its start point (tS), the initial velocity
(vS), and the segment length (dl). It also depends on F which, in turn, depends
on the current position of the sailboat (see Eq. 1) and its instantaneous velocity,
which depends (circularly) on F . The pseudo-code of the estimator is presented
as Algorithm 1.

The proposed estimator is inspired by the work-energy theorem that states
that the net-work done by the forces on an object (here the sailboat), WAB =
F lAB , equals the change in its kinetic energy, 0.5 ms(v

2
B−v2A), where ms stands

for the sailboat mass. The estimate is calculated simultaneously (as a kind of
side-effect) with the Gaussian quadrature based computation of the segment
length.

Remark 3. The estimation of path segments is also pruned (see line 11 in Algo-
rithm 1).

4.3 Pruned optimal sailboat path search

The graph Gex, on which the solution space (multi-spline) is spanned, is directed,
acyclic (DAG) and has a layered structure. These properties can be naturally
utilised in a parallel version of the dynamic programming based optimal path
search algorithm.

4 i.e., the sum of all forces acting on a sailboat; this can be found taking into account
the wind vector field and the characteristics of the particular sailboat, see [16]
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Algorithm 1: Path segment performance measure estimate
Input:
– s: the segment to be estimated,
– vS : the initial velocity of the sailboat (at the start point of s),
– tS : the time of reaching the start point of s (starting from A),
– tmin: the best estimated performance measure found so far,
– ∆t: the penalty value (e.g., 103 seconds) used when the sailboat stops,
– EM : the ”safety factor” (e.g., 1.2) for turning-on the rough estimation mode

Output: the estimated value of the performance measure of s

1 function estimate(s; vS, tS, tmin, ∆t, EM):
2 v1 ← vS ; dt← 0
3 foreach xi in Gauss nodes for segment s do
4 dli ← the length of the i-th sub-segment of s
5 Fi ← the net-force for the current position and velocity
6 sv ← v21 + 2 Fi dli (ms)−1

7 if sv > 0 then v2 ←
√
sv else v2 ← 0

8 v̄ ← 0.5 (v1 + v2)
9 if v̄ > 0 then dt← dt+ dli (v̄)−1 else dt← dt+∆t

10 v2 ← v1

11 if (tS + dt) t−1
min > EM then return (length (s) (

∑i
k=0 dlk)−1 dt)

12 return tS + dt

Principle of Optimality as the algorithm foundation. At the beginning of the
search process the cost matrix is unknown – the performance measure of each
path segment in the graph will be received from simulation using the Principle
of Optimality [3]. This principle can be expressed for an example path A-Nr,c,s

(see Fig. 3) in the following way:

J̃
Nr,c,s

A = min
cj ,sk

(
J̃
Nr−1,cj ,sk

A + J
Nr,c,s

Nr−1,cj ,sk

)
(4)

where: cj = (0, . . . , nc − 1), sk = (0, . . . , nts − 1), JNe

Ns
is the cost correspond-

ing to the path Ns-Ne (Ns - start node, Ne - end node), J̃ represents the
optimal value of J and Nr,c,s is the node of Gex with ”graph coordinates”
〈row, column, tangent_slope〉 = 〈r, c, s〉.

Fig. 3 (a visualization of Eq. 4) presents the computation state in which the
optimal costs of reaching all nodes in row r− 1 are known (they were calculated
in previous stages of this multi-stage process). The optimal cost of path A-Nr,c,s

is calculated by performing simulations for all spline segments that join node
Nr,c,s, which is located in row r, with nodes from the previous (i.e. (r − 1)th)
row.

Multi-spline generated computational topology. The simulation-based multi-stage
process can be visualized as a propagation of a ”simulation-wave” presented in
Fig. 4.
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Dynamic Programming (see Eq.4).
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Fig. 4. A sequence of parallel simulations for
multi-spline segments from the same layer.

The computation begins from point A in layer 1, taking into account the
corresponding initial conditions, and is continued (layer by layer) for the nodes
in subsequent rows. On the completion of the simulations for the last layer (i.e.
reaching the end node B), we get the optimal path and the corresponding value
of the performance measure. The sequential component of the computation –
presented in Fig. 4 as a synchronization barrier – is the result of the layer-
on-layer dependence (to start simulation for a segment we have to know the
corresponding initial conditions, see Eq. 4).

The algorithm. The multi-spline generated computational topology is reflected
in the spmd structure of Algorithm 2. From its two sequential parts only the
internal one – evaluating all segments which end in the same entry point (ep) –
needs some clarification. It has four important steps:

1. (lines 3-6) – estimation of all segments which end in entry point
2. (lines 7-10) – simulation for the k segments which have the best estimates

(to verify the estimation accuracy; the value of k can be a constant or auto-
adaptive variable);

3. (lines 11-13) – computation of the estimation accuracy measure ∆tsi ;
4. (lines 14-17) – simulation for the rest of the ”promising” segments (if there

are any).

Pruning, discussed in the next paragraph, is applied in steps 1, 2, and 4.

External and internal pruning. Significant reduction of the average-case time
complexity of the algorithm is important at least for two reasons. Firstly, we often
need to know the solution as soon as possible (sometimes for safety reasons).
Secondly, since we only use on-board computers, energy efficiency is critical while
at sea. This is why the reference algorithm has been augmented with two-level
pruning. The first pruning level (external) is related to the explicit reduction
of the search space (lines 14-17 in Algorithm 2) using the performance measure
estimate. The second level pruning mechanism (internal) is embedded both in
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Algorithm 2: spmd-parallel pruned search of the optimal path
Input:
– gAB : initial (layered) grid with the start point, A, and the target point, B,
– vvvt: (true) wind vector field (see Eq.1),
– model: sailboat model definition

Output: minimum time, tmin, sailboat path

1 foreach layer in grid gAB do
2 @parallel foreach entry point ep of its nodes do
3 sgms〈ep〉 ← select segments ending in the entry point ep
4 foreach si in sgms〈ep〉 do
5 t

(est)
si ← estimate (si; v0i, t0i, tmin, . . . )

6 if t(est)si < tmin then tmin ← t
(est)
si

7 k_best← select k segments with best estimates
8 foreach si in k_best do
9 t

(sim)
si ← pruned adaptive simulation for (si)

10 if t(sim)
si < tbest then tbest ← t

(sim)
si

11 foreach si in k_best do
12 ∆tsi ← |t

(est)
si − tbest| t−1

best

13 if ∆tsi > ∆t
(k)
max then ∆t

(k)
max ← ∆tsi

14 foreach si in { sgms〈ep〉 \ k_best } do
15 if |t(est)si − tbest| t−1

best < CM ∆t
(k)
max then

16 t
(sim)
si ← pruned adaptive simulation for (si)

17 if t(sim)
si < tbest then tbest ← t

(sim)
si

18 save the best segment for ep

the process of estimation (line 11 in Algorithm 1) and in simulation (lines 8-10
and 14-17). It terminates the computation from ”inside” that cannot lead to a
better solution than the reference one.

Complexity analysis. Algorithm 2 average-case time complexity is determined
by the number of solution space refinements, ni, the average number of net-force
evaluations5 for a single path segment, n̄F , and the number of such segments,
ncn

2
ts [(nr − 3)nc + 2] (see Section 4.1). For the sequential version of the algo-

rithm it can be expressed as:

Ts = Θ
(
ni n̄F nr n

2
c n

2
ts

)
. (5)

5 values of F are needed both in estimation and in simulation; Runge-Kutta-Fehlberg
4(5) method, used in the simulator, requires at each step six evaluations of F

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_13

https://dx.doi.org/10.1007/978-3-030-77970-2_13


10 R. Dębski et al.

In the spmd-parallel version of the algorithm, the evaluations for all nodes in a
given row can be performed in parallel (using p processing units), thus:

Tp = Θ

(
ni n̄F nr nc nts

⌈
nc nts
p

⌉)
. (6)

As for the reference algorithm [8], Algorithm 2 space complexity formula,
Θ (nrncnts), arises from the solution space representation.

Remark 4. The aim of pruning is to significantly reduce n̄F .

5 Experimental verification

To demonstrate the effectiveness of the pruned optimal sailboat path search al-
gorithm, a series of experiments was carried out using a MacBook Pro6 with
macOS 10.15.7 and OpenCL 1.2, having two (operational) OpenCL-capable de-
vices: Intel Core i7-3740QM @ 2.7 GHz (the CPU) and Intel HD Graphic 4000
(the integrated GPU). The aim of the experiments was to investigate three im-
portant aspects of the algorithm: the accuracy of the performance measure es-
timator, the efficacy of different kinds of pruning, and the spmd-parallelisation
efficiency. The results are presented in the subsequent paragraphs.

Performance measure estimator accuracy. This element has an explicit impact
on the search space reduction since the more accurate the estimator is, the more
segments can be omitted in the simulation phase (see lines 14-17 in Algorithm
2). The results of its experimental evaluation are given in the form of a violin
plot in Fig. 5. The plot shows the distributions of estimation relative errors (i.e.,
|(test − tsim)/tsim|) for path segments from different search spaces.

Remark 5. In all cases the medians of relative estimation errors were smaller
than 0.003 (i.e., 0.3%), which confirms the very high accuracy of the proposed
estimator7.

Pruning efficacy. The application of different types of pruning is one of the two
ways of lowering the total computation time. Its efficacy was verified using the
reduction of the number of net-force computations, (n̄

(base)
F − n̄(prun)F )/n̄

(base)
F ,

as the measure. The corresponding experimental results are given in Table 1 and
Fig. 6. To verify the accuracy of n̄F as the measure of the algorithm time com-
plexity (see Eqns. 5 and 6), the duration of sequential computations, tsim, was
also measured. The results shown in Table 1 prove the very high accuracy since
the Pearson correlation coefficient, ρ(n̄F , tsim), is equal to 1 (up to 5 decimal
places), which means (almost) perfect linear dependence of the two variables.

Remark 6. Different types of pruning working together reduced the sequential
computation time from seventeen to twenty times (see Fig. 6).
6 with 16GB of DDR3 1600 MHz RAM; the laptop manufactured in 2013
7 the samples sizes (i.e., the number of segments) used to compute the distributions
of errors were very large: from 29 760 for nc = 16 to 950 528 for nc = 128
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n
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Fig. 5. Distributions of relative errors of the performance measure estimate, e, for grids
with different nc. In each case the calculation was based on the k best values (lines
7-10 in Algorithm 2) with outliers excluded (i.e., e > ē+ 3 σe).

Table 1. Efficacy of different kinds of pruning: average numbers of net-force evalua-
tions, n̄F , and execution times, t̄sim (in seconds), for different nc. The solution space
with nr = 32, nts = 8; two refinements. Auxiliary notation: ips - internal pruning in
simulation, ep - external pruning [+estimation], ipe - internal pruning in estimation.

nc
base ips ep ips+ep ips+ipe+ep

n̄F tsim n̄F tsim n̄F tsim n̄F tsim n̄F tsim

16 748.8 206.0 165.5 44.3 172.1 15.0 53.7 14.1 44.1 12.2
32 735.8 812.4 142.8 154.9 170.5 59.9 51.6 55.0 42.6 47.3
64 731.4 3351.9 136.0 600.6 170.2 239.3 50.7 210.9 41.6 182.4

128 731.7 12950.2 137.6 2428.7 145.1 810.0 46.0 769.8 37.0 654.8

16

32

64

128

0.00 0.25 0.50 0.75 1.00

reduction of simulation duration

n
c

pruning

IPS+IPE+EP

IPS+EP

EP

IPS

Fig. 6. Reduction of simulation duration for different kinds of pruning and different
nc. The auxiliary notation as in Table 1.

spmd-parallelisation efficiency. Parallelisation is the second way of lowering the
total computation time. Contemporary mobile/embedded computers are usually
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equipped with more than one type of processor, typically one CPU and one or
two GPUs. OpenCL makes it possible to use these heterogeneous platforms ef-
fectively since the same code can be executed on any OpenCL-capable processor.
The performance comparison of the two available processors is shown8 in Ta-
ble 2 and Fig. 7. The results refer to the case of all three types of pruning being

Table 2. spmd-parallelisation efficiency: average execution times, t̄sim (in seconds),
and standard deviations, σ, from ten runs of the parallel version of the algorithm for
different nc. The solution space with nr = 32, nts = 8; two refinements.

nc
i7-3740qm (seq) i7-3740qm+ocl HD4000+ocl
t̄sim σ t̄sim σ t̄sim σ

16 12.2 0.05 2.53 0.06 1.85 0.00
32 47.3 0.88 5.74 0.10 4.34 0.05
64 182.4 3.31 22.16 0.27 8.89 0.01

128 654.8 19.04 72.87 0.21 16.55 0.12

active with the pair of columns annotated with ”seq” corresponding to the refer-
ence (sequential) variant of the algorithm. The two platforms differ significantly
(see Fig. 7), and therefore there is definitely room for processor allocation plan
optimisation done before or during code execution (run-time).

16

32

64

128

0 10 20 30 40

speedup

n
c

platform

HD4000

i7−3740QM

Fig. 7. spmd-parallelisation efficiency: speed-ups, tseq/tpar, for different Open-CL plat-
forms and nc (t(.) measured with −Os flag). The remaining parameters as in Table 2.

Remark 7. The maximum observed speedup was 39.56 (see Fig. 7). Setting the
reference to the case with no pruning gives in total 19.78× 39.56 ≈ 782.5 times
faster execution.

8 the results for nc < 16 are omitted because the search spaces they define are too
coarse-grained; it is worth noting, however, that for such cases the CPU was faster.
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6 Conclusions

It has been shown that the simulation-based optimal sailboat path planning
algorithm can be both effective and (energy) efficient. The three key elements in
achieving this have been an accurate and efficient estimator of the performance
measure (sailing duration), the two-level pruning (which augments the estimator-
based search space reduction with smart simulation and estimation techniques),
and the OpenCL-based spmd-parallelisation of the algorithm.

The numerical results show the high accuracy of the estimator (the medians
of relative estimation errors were smaller than 0.003, see Fig. 5), the high effi-
cacy of the two-level pruning (search space and computing time reduction from
seventeen to twenty times, see Table 1 and Fig. 6), and the high parallel speedup
(its maximum observed value was 39.56, see Fig. 7). Combining these effects has
given (up to) 782.5 times faster execution.

The proposed approach can be applied to various domains. It can be consid-
ered as an optimal path planing framework parametrised by a problem specific
performance measure heuristic/estimator. Further exploration of this idea could
be the first possible future research direction. Another could be the algorithm
space complexity reduction.
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