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Abstract. Holographic projections are volumetric projections that make
use of the wave-like nature of light and may find use in applications such
as volumetric displays, 3D printing, lithography and LIDAR. Modelling
different types of holographic projectors is straightforward but challeng-
ing due to the large number of samples that are required. Although com-
puting capabilities have improved, recent simulations still have to make
trade-offs between accuracy, performance and level of generalization. Our
research focuses on the development of optimizations that make optimal
use of modern hardware, allowing larger and higher-quality simulations
to be run. Several algorithms are proposed; (1) a brute force algorithm
that can reach 20% of the theoretical peak performance and reached a
43× speedup w.r.t. a previous GPU implementation and (2) a Monte
Carlo algorithm that is another magnitude faster but has a lower accu-
racy. These implementations help researchers to develop and test new
holographic devices.

Keywords: Computer-Generated Holograms (CGH) · Digital Hologra-
phy · GPU Computing (GPGPU) · CUDA · Monte Carlo Integration

1 Introduction

Holography was invented as early as 1947 by Dennis Gabor, but high-resolution
holographic projectors are still not commercially viable[9]. Holograms are the
product of the interference of light-waves[10]. They may find use in applications
such as volumetric displays, 3D printing or LIDAR. Figure 1 shows examples of
two holographic projections.

Modern holographic projectors give full control over an array of light sources
and can display arbitrary distributions of light. The “pixels” of such a projector
emit light of a specific wavelength and can be tuned in intensity and phase. A
major limitation of projectors is the limited pixel pitch of projectors. Due to
the small wavelength of visible light (0.4 µm to 0.7 µm), holographic projectors
would need a pixel pitch of less than 0.2 µm in order to correctly reproduce the
correspondingly small structures in a light field. A larger pixel pitch will cause
under-sampling artefacts in the projections. Typical under-sampling effects can
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Fig. 1: Two holographic projections; a tilted ring (left) and a question mark
symbol (right). The diamond shaped spot is the light source of the projector.

be reduced by placing the pixels at a-periodic or random intervals[13,21]. In
order to study these effects, a prototype of a holographic projector is being
developed, shown in Figure 2. The role of simulations is to predict the effect
that certain components will have on the projections (e.g. the size and positions
of apertures).

The behaviour of light is a common subject to study and there are various
models that can be used under different circumstances[10]. This paper relies on a
single, generic model, namely a point-source model of the electric field component
of light. The projector consists of a number of discrete point light sources of which
the resulting light field is calculated at discrete points in the projection volume.
The light intensity distribution at various positions is obtained by superimposing
the received light components at those positions. Such a component can be
described by

E(t) =
A

δ
exp

(
i

(
φ+

2πδ

λ
+ ωt

))
,

Fig. 2: A schematic (left) and a picture (right) of an experimental setup of a
holographic projector. A beam splitter first splits the light emitted from a laser
into two beams that are reflected by the Spatial Light Modulators (SLM 1 and
2). The reflected light is then superimposed at the beam splitter and directed
through a projection lens and a mask that contains apertures at specific posi-
tions.
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where δ is the distance from the source, A is the source strength, φ the phase
offset of the light source, λ is the wavelength and ω is the frequency of the
light. Because the time-dependent component is the same everywhere in the
projection volume it can be omitted; only the phase offset of the source φ and
the phase shift over distance 2πδ

λ , are taken into account. The superposition
of these components can be formulated as either a summation or an integral
(w.r.t space). The result can be expressed as a phasor or as a polar coordinate.
The computational complexity is quadratic w.r.t the number of sample points
and the computations have to be done in double precision to prevent significant
rounding errors. The spatial frequency of two beams under an angle α is is

given by
2 sin α

2

λ . Simulating large volumes using this approach with at least two
samples per wavelength requires an enormous amount of computing power.

Recently, multiple optimizations for holographic simulations for have been
developed for modern hardware[17,23]. The majority of these models use as-
sumptions that reduce the computational complexity of the problem. An ex-
ample of this is the Fresnel approximation, which assumes that sample points
lie in the near field[10,27]. Compressive holography is a more complex method
that uses compressive sensing to approximate the projection distribution with a
relatively low number of sample points[6,26,28]. These models are applicable to
a limited number of projector configurations. As a result, these models cannot
be used to study arbitrary projector designs. Hence our choice of model makes
a qualitative difference.

Two algorithms, that first optimize computational efficiency and then com-
plexity, have been developed. The corresponding implementations will aid physi-
cists to run larger and more detailed simulations, which they can use to develop
and test new holographic devices.

2 Background

This section gives a brief overview of relevant background material.

2.1 GPU Computing

Over the past decades, the performance and capabilities of computing hardware
has increased[3]. Whereas CPU’s are generally optimized to have a low latency,
for example by maximizing clock frequency, GPU’s are designed to do a narrow
scope of tasks very efficiently[15]. They achieve this by making use of massive
parallelism.

The extend to which applications can make optimal use of GPU hardware
differs. A standard metric to compare performance is throughput, defined as
the number of FLoating-point OPerations per Second (FLOPS). State-of-the-art
linear algebra algorithms can reach 61.4%, 86.8% and over 90% of the theoretical
peak performance for various GPU architectures[25,1,12]. In case of smaller, sub-
optimal input sizes the efficiency decreases, for example to 30%[2]. Depending
on the sparsity of the input, state-of-the-art sparse matrix algorithms may only
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reach a fraction (< 0.08 %) of the the theoretical peak performance[19]. These
results shows that making optimal use of GPU hardware can be difficult, even
for fundamental applications.

This research focuses on NVIDIA GPU’s and the CUDA Programing Model.
CUDA revolves around kernels which are Single Instruction Multiple Thread
(SIMT) functions[7]. In other words, a single function is performed in parallel
on many different threads or cores, with different input values per thread. Ker-
nels are executed on a grid (representing the whole GPU), which contains blocks
of threads (representing multiprocessors and cores). These abstractions allow ar-
bitrary grid and block sizes to be used for different kernels, independent from the
GPU that the program will run on. The number of grids, blocks and threads can
be higher than the actual number of corresponding hardware units. Schedulers
on the GPU act as multiplexers, making use of interleaved execution of tasks
to maximize the utilization of hardware. In addition, the parallel execution of
kernels and data transfers in CUDA can be managed using streams. Streams
can be described as independent virtual containers that allow data transfers and
kernel executions to happen in parallel.

2.2 Numerical Integration

Integrals can be approximated using two general techniques that are based on
summations[8]. The first technique discretizes space and sums the resulting com-
ponents, for example using a middle Riemann sum. The main disadvantage of
this method is that the granularity of the discretization may cause systematic
errors. The second technique is called Monte Carlo sampling and uses randomly
distributed sample points[22]. For a D-dimensional unit hypercube it has the
form ∫

f(x) dx ≈ 1

N

N∑
n=1

f(un) un ∼ U(0, 1)D.

The summation converges, with high probability, for large enough N . This
means that it is possible to make a tradeoff between accuracy and computational
cost by using fewer sample points.

Variance Reduction. It can be shown that the mean absolute error of an
MC estimate grows with a factor σ√

N
, where σ is the standard deviation of

the estimator[16]. This means that the convergence of MC estimates can be
improved by constructing an estimator with lower variance. There exist a vari-
ety of methods that achieve this, but they usually rely on a priori knowledge
about the underlying distribution. This paper focuses on general solutions and
no prior knowledge is assumed. Therefore the technique is stratified sampling
is chosen[22]. It uses a conditional variable to spread out the samples over the
sample space, making each sample set more representative of the original distri-
bution.

An alternative variance reduction method is importance sampling[22]. This
approach focuses the sampling on the areas that contribute the most to the
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estimation. This technique has successfully been applied to holography, albeit
for an older generation of hardware[5].

3 Methods

This section introduces a number of algorithms that compute superpositions,
gradually increasing in complexity. Kernels compute partial superpositions for
multiple source datapoints at multiple target positions. They are combined with
estimators that use these kernels to make estimations of full superpositions.

A number of CUDA-variables are are used. Threads and blocks are indexed
with a threadIdx and a blockIdx and can be divided in multiple dimensions
(x, y, z). The number of threads per block is denoted by blockDim and the num-
ber of blocks per grid is denoted by gridDim. For convenience we define gridSize
as the total number of threads per grid.

3.1 Superposition Kernels

All superposition kernels compute the partial superpositions of a set of source
phasors (with three-dimensional positions u) at certain target positions v. They
use a SIMT approach where each GPU thread applies the following function to
a subset of the input data:

f(A, φ,u,v) :=
A

δ
exp

(
i

(
φ± 2πδ

λ

))
δ ≡ |u− v|. (1)

These partial results are written to a matrix Y. Note that the matrix Y may
not fit in GPU memory; this problem is solved in the next section by splitting
the dataset up in chunks. After a superpositon kernel has terminated a second
kernel is used sum the rows of this matrix, resulting in a vector that contains
the full superpositions. This second kernel is a simple matrix-vector product, for
which we have used the library function cublasZgemv [18].

Fig. 3: The data-structures used in the superposition kernels.
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Naive Kernel. The first thread dimension (x) is mapped to the source data
and the second dimension (y) is mapped to the target data. The Naive kernel
iterates over the source and target datapoints using a strided loop, allowing the
kernel to be used for arbitrary input sizes. This approach is shown graphically
in Figure 3 and in pseudocode in Algorithm 1.

Algorithm 1: Naive Superposition Kernel

Kernel Superposition(a,φ,U,V,Y) :
Result: Written to ym,n ∈ Y ∈ CM×N
input : source phasors with polar coordinates a,φ ∈ RN ,

source positions un ∈ U for n = 1, . . . , N ,
target positions vm ∈ V for m = 1, . . . ,M

〈tx, ty〉 ← GlobalThreadIdx();
for n← tx; n ≤ N ; n← n+ gridSize.x do

// an, φn,un can be cached here

for m← ty; m ≤M ; m← m+ gridSize.y do
ym,n ← f(an, φn,un,vm); // Equation 1

Advanced Kernels. The memory complexity for reading and writing isO (NM)
for the naive kernel (excluding any additional caching). The memory complexity
of the subsequent summation kernel is O (NM) as well because it uses the out-
put of the superposition kernel as input. We will consider two optimizations that
reduce the writing frequency and refer to them as the Reduced kernel and the
Shared kernel. They are formalized together in Algorithm 2, where the Boolean
shared memory is used to distinguish the two approaches.

Algorithm 2: Reduced & Shared Superposition Kernel

Kernel Superposition(a,φ,U,V,Y) :
Result: Written to ym,n ∈ Y
〈tx, ty〉 ← GlobalThreadIdx();
for m← ty; m ≤M ; m← m+ gridSize.y do

if tx > N then continue to next iteration;
y′ ← 0 ; // local temporary memory

for n← tx; n ≤ N ; n← n+ gridSize.x do
y′ ← y′ + f(an, φn,un,vm);

if shared memory then
y′ ← block-level reduction of y′; // using shared memory

if ty = 1 then ym,1+blockIdx.x ← y′ ;

else
ym,tx ← y′;

The Reduced kernel aggregates partial superposition results locally, at the
thread-level. This reduces the writing frequency. The inner and outer loops are
switched s.t. the inner loop becomes a direct summation of partial superposi-
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tions. As a result, writing to global memory happens only once per summation
and there is no additional local memory required.

The Shared kernel reduces the writing frequency further by using shared
data to aggregate the partial results of all threads in a block. The amount of
block-level reduction is a trade-off between workload per thread, synchronization
per block and global memory access. The library CUB provides a number of
reductions that can be used inside CUDA kernels [14,11].

3.2 Estimators

The partial superpositions computed by the kernels are combined by an estimator.
The estimators split the dataset up and send them to the GPU in batches, using
different (concurrent) streams, as shown in Figure 4. The deterministic esti-
mator does this sequentially and is straightforward to implement. The stochastic
estimators are more complex and are given below. This paper describes three
variants. They all use a discrete source dataset, but they can easily be trans-
formed to the case of a continuous source distribution.

Fig. 4: Data traversal using batches and streams. Each batch corresponds to a
single kernel, as shown in Figure 3. Multiple streams can be active at the same
time but the batches within a stream are executed in series (from left to right).

The stochastic estimators improve performance by using Monte Carlo
(MC) sampling to reduce the number of source datapoints that are used. A
trivial solution would be to use the deterministic estimator with a random subset
of the source dataset. However, this would increase the risk of overfitting (over-
generalization) because all target datapoints would use the same subset of data.
The purpose of the stochastic estimators is enforce that target datapoints can
sample independently from the source dataset.

Figure 5 shows a simplified representation of a stochastic estimator for a
single stream. First the source data is shuffled and distributed over the avail-
able streams. Each stream independently computes the partial superpositions of
multiple batches using either one of the kernels described in the previous sec-
tion. This is repeated until a stream has seen enough source datapoints. The
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partial results are then summed and checked for convergence. The stream is ter-
minated when either the corresponding superpositions have converged or when
the maximum number of iterations has been reached.

Fig. 5: A flowchart of the Stochastic Estimator, for a single stream. This scheme
is repeated until all batches are completed. The step “Sync. & Shuffle” is optional
and can be omitted if the target datapoint are chosen during kernel execution.

Sampling Methods The general stochastic estimator algorithm can make use
of two different sampling methods. We will refer to these as True MC and
Batched MC. Both of these can be implemented using either conditional and
unconditional sampling. The relevant combinations are visualized in Figure 6.

The True MC estimator adheres to the traditional MC method. Instead
of iterating over a range of indices, the indices are chosen randomly inside the
superposition kernel. The disadvantage of this method is that it results in random
access of global memory, which is inefficient.

The Batched MC estimator is slightly more complex. Datapoints are grouped
together s.t. each kernel accesses a pre-specified subset of data. This avoids the

Fig. 6: Monte Carlo estimators. The lines indicate which source datapoints are
used by which target datapoints. For Batched MC the target datapoints are
grouped and for conditional MC the source datapoints are grouped as well.
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random access pattern inside the superposition kernel, without increasing the
memory usage. The available input dataset is distributed between the streams
and then shuffled. This independent reshuffling means that the sampling is done
with replacement. The main issue with this approach is that the target sample
points within batches become correlated due to their shared input sample set.

The Conditional Batched MC estimator mitigates this effect by using condi-
tional sampling. This forces the samples to become more representative of the
whole dataset.

Convergence. The stochastic estimators combine two relatively simple con-
vergence criteria, which are both based on a current estimate and a previous
estimate. The first criteria computes the absolute difference between the (nor-
malized) amplitudes of the two estimations and compares it to a threshold. The
second criteria makes use of the fact that a sum of random vectors grows with
the square root of the number of elements in that sum3. It is assumed that
certain, far-away phasors are distributed as random vectors. The second conver-
gence criteria normalizes the amplitudes of the estimations by dividing them by
the square root of the sample sizes.

4 Experiments & Results

This section contains a number of experiments that test the performance of the
kernels and estimators. The three kernels are abbreviated as #1: Naive kernel,
#2: Reduced kernel (with thread-level aggregation) and #3: Shared kernel (with
block-level aggregation using shared data). The estimators are the deterministic
estimator, which uses the full dataset, and the three stochastic estimators, which
use random subsets of data. The implementations are available online[24].

The experiments are run on a machine with an Intel Xeon E5-1650 CPU and
a NVIDIA Quadro GV100 GPU (generation Volta), with a peak performance
of 7.4 TFLOPS (double precision). The level of compiler-optimization is set to
default (-O3).

The following metrics are used. Runtime is measured after initialization of all
CPU datastructures but before initialization of the GPU datastructures. Speedup
is defined as the mean runtime of a baseline implementation divided by the
runtime of an optimized implementation. Efficiency or throughput is is measured
in double precision FLOPS 4. The total number of floating-point operations for

3 A sum of N random vectors can be represented by a two-dimensional random walk
of N steps. The corresponding distribution is derived by (and named after) Rayleigh
and is given by p(`) = 2`

N
exp

(
−`2/N

)
, where ` is the length or absolute value of

the phasor-sum[20]. The expected value of this distribution is proportional to
√
N .

This distribution requires the input phasors to have unit length, but more refined
solutions that allow for arbitrary amplitude and phase distributions exist as well[4].

4 The exact number of floating point operations is difficult to determine because com-
pilers can restructure code and certain implementations are hardware-dependent.
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the superpositions of N source datapoints and M target datapoints is defined
as 29NM .

The validation of the model and implementations is done using a prototype of
a holographic projector. These experiments are important but are not discussed
here.

4.1 Accuracy

The accuracy of the stochastic estimators depends on the input values and pa-
rameters such as convergence threshold and batch size. A single typical input
distribution is used to show the qualitative differences that can be caused by
the different estimators. The irradiance of the resulting projections is shown in
Figure 7. The projection generated by the deterministic estimator projection is
considered to be the ground truth. Overall, the stochastic estimators produce

For example fused multiply-add operations and hardware-units for special arith-
metic such as the square root[7].

(a) Deterministic Estimator (b) True MC Estimator

(c) Batched MC
Estimator

(d) Conditional Batched MC
Estimator

Fig. 7: Projections generated by four different estimators, shown with a
logarithmic color-scale. The projection plane is parallel to a projector with

512× 512 pixels (at a distance of 35 cm) and limited to the top-right quadrant
w.r.t the center of the projector screen. The projection is sampled using
1024× 1024 sample points and the convergence threshold is ε = 10−4,
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accurate results in high amplitude regions, but start to diverge in low-amplitude
regions. The True MC projection contains uniform-like noise. The unconditional
Batched MC projection shows intra-batch correlations that are not present in
the ground truth. The Conditional Batched MC projection is the most accurate,
but still contains differences with the ground truth.

4.2 Kernel Performance

Figure 8 shows the performance of the three kernels as function of the number
of source datapoints. A linear least-squares regression model is fitted and was
significant with a p-value of 0.001. Kernels #2 and #3 clearly outperform kernel
#1. The difference between kernels #2 and #3 is small, but kernel #2 does have
a lower slope.

Performance as Function of Input Size

Fig. 8: The performance of the Naive Kernel (#1), the Reduced Kernel (#2) and
the Shared Kernel (#3). The slope of linear fit is denoted by ∠. The parameters
are: M = 2562, gridDim = blockDim = 〈8, 8〉, thread size = 〈64, 8〉.

Performance as Function of Output Size

Fig. 9: Performance as function of output size for the Reduced Kernel (#2). The
slope of linear fit using the data after the red vertical line is denoted by ∠. The
parameters are: gridDim = blockDim = 〈8, 8〉, thread size = 〈256, 16〉.
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Figure 9 shows the performance of kernel #2 as function of the number of
target datapoints. In contrast to the previous results, the performance is no
longer linear. The runtime increases monotonically, but becomes slightly convex
after 1.5 ·106 target datapoints. However, the independence of the target dataset
allows the computations to be split up into independent chunks with a size that
maximizes the efficiency per chunk. Using this technique would still result in
linear computational growth.

An existing implementation, written in Matlab, is used as a baseline. It runs
on the same hardware but uses single-precision data, which gives it an per-
formance advantage. Figure 10 shows the efficiency and speedup of the three
algorithms in comparison with the Matlab implementation. The Reduced ker-
nel has the best performance, with a speedup of 43.9, followed by the Shared
kernel with a speedup of 41.1. The efficiency of the Reduced is 15.3 TFLOPS,
which is 20.7% of the theoretical peak performance of this GPU. The rest of the
experiments will use the kernel #2.

Kernel Speedup

Fig. 10: The performance of the three CUDA kernels in comparison with the
Matlab implementation (labelled as #0). The right graph does not contain error
bars. The shared parameters are M = 1024× 1024 and gridDim = 〈16, 16〉. For
algorithm #1 the remaining parameters are thread size = 〈32, 32〉, blockDim =
〈8, 8〉 and for algorithm #2 and #3 the parameters are thread size = 〈512, 256〉,
blockDim = 〈16, 16〉.

4.3 Stochastic Estimator Performance

Figure 11 shows the performance of the unconditional estimators for different
convergence thresholds. Batched MC is roughly an order of magnitude faster
than True MC. The lowest threshold (10−16) is used to prevent convergence and
thus represent the worst-case scenario. The speedups for a convergence threshold
of 0.01 w.r.t a non-converging result is 15.3 for True MC and 10.6 for Batched
MC. For larger input sizes the relative speedups should be even higher.
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Estimator Performance

Fig. 11: Comparison of unconditional MC estimators for different input sizes
and convergence thresholds. The parameters are: M = 2562, gridDim = 〈8, 8〉,
blockDim = 〈16, 16〉,

5 Conclusion

This research proposes two optimizations of simulations of holographic projec-
tors. Because the underlying model does not rely on complex assumptions it can
be used to model arbitrary projectors. The proposed (double-precision) imple-
mentation reaches a speedup of a factor 43.9 compared to a previous (single-
precision) implementation, using the same hardware. Moreover, it reached over
20% of the theoretical peak performance, which compares favorably to state-of-
the-art GPU implementations in other domains. This also shows that additional
speedups that are larger than a factor five cannot be reached with the same
hardware (and the same mathematical model).

A second implementation circumvents this hardware-related upper bound by
reducing the number of operations per estimation. This is achieved using Monte
Carlo integration. Although this comes with a decrease in accuracy, it can be
used to give rough estimates. The results can subsequently be verified using the
first implementation.
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