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Abstract. Design of contemporary antenna systems is a challenging endeavor, where 
conceptual developments and initial parametric studies, interleaved with topology 
evolution, are followed by a meticulous adjustment of the structure dimensions. The 
latter is necessary to boost the antenna performance as much as possible, and often 
requires handling several and often conflicting objectives, pertinent to both electrical 
and field properties of the structure. Unless the designer’s priorities are already estab-
lished, multi-objective optimization (MO) is the preferred way of yielding the most 
comprehensive information about the best available design trade-offs. Notwithstand-
ing, MO of antennas has to be carried out at the level of full-wave electromagnetic 
(EM) simulation models which poses serious difficulties due to high computational 
costs of the process. Popular mitigation methods include surrogate-assisted proce-
dures; however, rendering reliable metamodels is problematic at higher-dimensional 
parameter spaces. This paper proposes a simple yet efficient methodology for multi-
objective design of antenna structures, which is based on sequential identification of 
the Pareto-optimal points using inverse surrogates, and triangulation of the already 
acquired Pareto front representation. The two major benefits of the presented proce-
dure are low computational complexity, and uniformity of the produced Pareto set, as 
demonstrated using two microstrip structures, a wideband monopole and a planar 
quasi-Yagi. In both cases, ten-element Pareto sets are generated at the cost of only a 
few hundreds of EM analyses of the respective devices. At the same time, the savings 
over the state-of-the-art surrogate-based MO algorithm are as high as seventy percent. 

Keywords: Antenna systems, electromagnetic simulation, design optimization, 
multi-objective design, inverse modeling. 
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1 Introduction 

Design of modern antenna structures is a complex process involving several stages that 
include, among others, conceptual development, topology evolution (typically sup-
ported by parametric studies), as well as design closure, i.e., the final adjustment of 
antenna parameters. Nowadays, antenna geometries become more and more complex 
in order to meet the increasing performance requirements related to particular applica-
tion areas such as wireless communications [1], [2], internet of things (IoT) [2], or 
wearable [4], and implantable devices [5]. More often than not, design specifications 
include additional functionalities such as multi-band operation [6], tunability [7], or 
circular polarization [8]. Proper tuning of antenna dimensions is instrumental in achiev-
ing the best possible performance, yet it is challenging. For reliability reasons, it has to 
be carried out using full-wave electromagnetic (EM) simulation tools, which entails 
considerable computational expenses.  

The problem is exacerbated by the necessity of handling several objectives, which 
are typically conflicting so that the enhancement of one leads to degradation of others. 
A representative example are compact antennas where reduction of physical dimen-
sions has detrimental effects on both electrical and field properties of the structure (e.g., 
[9]). Consequently, practical design requires identification of the trade-off solutions. 
This can only be achieved using numerical optimization techniques. However, conven-
tional algorithms, both local (gradient-based [10], pattern search [11]), and population-
based metaheuristics (e.g., differential evolution [12], particle swarm optimizers [13]) 
are only capable of processing scalar objectives. To allow the employment of conven-
tional methods, multi-objective problems are often reformulated, using e.g., objective 
aggregation [14], or objective prioritization [15]. Rendering comprehensive infor-
mation about available design trade-offs requires genuine multi-objective optimization 
(MO) [16]. Undoubtedly, the most popular solution approaches are MO versions of 
population-based metaheuristic algorithms, e.g., evolutionary algorithms [17], differ-
ential evolution [18], particle swarm optimization [19], and many others [20]-[23]. The 
advantage of population-based methods is that the Pareto set can be generated within a 
single algorithm run. However, the computational cost of these algorithms is high. As 
a matter of fact, it is normally prohibitive when executed at the level of EM simulations. 

Nature-inspired procedures can be accelerated by incorporating surrogate modelling 
methods [24]. Unfortunately, due to high nonlinearity of antenna characteristics, the 
curse of dimensionality becomes the major obstacle so that construction of reliable sur-
rogates within the entire parameter space of interest is only possible for structures de-
scribed by few parameters [25]. This can be mitigated to a certain extent using machine 
learning approaches, where the initial surrogate is gradually refined using additional 
EM data acquired with the use of appropriate infill criteria [26]. Widely used modelling 
techniques include kriging [27], Gaussian process regression [28], and support vector 
regression [29]. Another possibility has been offered by constrained modelling proce-
dures that limit the surrogate model domain to a relevant regions of the space (e.g., 
those containing the Pareto front in the case of MO problems) [30], [31]. All the afore-
mentioned techniques are stochastic. Recently, deterministic surrogate-based MO 
frameworks have been developed as well, including point-by-point Pareto front explo-
ration [32], generalized bisection [33], as well as sequential domain patching (SDP) 
[34]. The most important advantage of deterministic algorithms is in eliminating the 
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need to construct globally accurate surrogates (most operations are executed using local 
metamodels [35]). 

This work discusses a novel deterministic surrogate-assisted framework for MO of 
antennas. The foundation of the presented approach is sequential generation of the Pa-
reto-optimal designs using inverse surrogates and triangulation of the already available 
representation of the Pareto front. The framework is capable of handling any number 
of objectives, and allows for a rendition of uniformly distributed Pareto sets. Further-
more, it is computationally efficient, which is demonstrated using two antenna exam-
ples: a broadband monopole, and a planar Yagi antenna. In both cases, ten element sets 
of trade-off designs are obtained at the cost of only a few hundreds of EM simulations 
of the respective structures. It is also shown that our approach is competitive to state-
of-the-art surrogate-assisted methods in terms of the CPU cost of the MO process, but 
also the uniformity of the obtained Pareto set. 

2 Multi-Objective Design of Antenna Structures Using Inverse 
Surrogates and Pareto Set Triangulation 

The purpose of this section is to formulate the MO procedure being the subject of this 
work. We discuss the basic components of the algorithm with the emphasis on the in-
verse surrogate modeling and Pareto set triangulation, as a way of generating the initial 
designs to obtain additional trade-off solutions, further tuned using the customized local 
refinement procedure. 

 
2.1 Antenna Design for Multiple Performance Figures. Problem Formulation 

It is assumed that the antenna structure of interest is to be designed with respect to Nobj 
figures of interest (objectives), Fk, k = 1, …, Nobj, all to be minimized. Here, the MO 
process is understood as identification of Pareto-optimal points [36] representing the 
best possible trade-offs between the considered objectives. The objective vector will be 
denoted as F = [F1  F2  …  FNobj]T. 

The antenna outputs (typically, frequency responses such as reflection coefficient, 
gain, etc.), are obtained by means of full-wave electromagnetic (EM) analysis. The ag-
gregated vector of antenna characteristics is denoted as R(x), where x stands for adjustable 
parameters (typically, antenna dimensions). As mentioned in Section 1, direct MO of an-
tenna structures at the level of EM analysis tends to be expensive in computational terms.  

 
2.2 Inverse Surrogate. Triangulation of Pareto-Optimal Solution Set 

We will denote by x(k), k = 1, …, p, the elements of the Pareto set identified by iteration 
k of the MO algorithm; F(k) = F(x(k)) = [F1

(k) … FNobj
(k)]T stand for the corresponding 

objective vectors. Among them, the first Nobj Pareto-optimal points are obtained by 
solving the single-objective tasks 

 ( ) arg min ( )k
kX

F



x

x R x                                               (1) 

These vectors determine the span of the Pareto front and are the basis to find the re-
maining solutions. The process is iterative, and involves triangulation of the existing 
set, as well as auxiliary inverse surrogate models. 
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Consider the inverse surrogate (metamodel) s(F) : F  X, where F and X are the 
objective and parameter spaces of the MO problem, respectively. The training data to 
render the surrogate is {F(k), x(k)}k = 1,…,p. Note that s is referred to as inverse because its 
set of values is the parameter space of the antenna at hand. In other words, the surrogate 
makes predictions concerning the Pareto-optimal designs corresponding to the specific 
objective vectors F. In contrast, typically considered forward models are used to predict 
antenna responses corresponding to specific parameter vectors x. Here, the surrogate is 
set up using kriging interpolation [37]. 

The second tool utilized in the proposed methodology is triangulation of the Pareto 
set {F(k)}k = 1,…,p, the result of which is a set of simplexes S(j), j = 1, ..., Kp. In this work, 
the simplexes are considered in the objective space, and represented by vertices S(j) = 
{F(j.1),…,F(j.Nobj)}, where F(j.r)  {F(k)}k = 1, …, p, for r = 1, …, Nobj. In order to avoid 
degenerate simplexes, Delaunay triangulation is employed [38].  

 
2.3 Infill Points and Refinement Procedure 

The set of simplexes S(j) constructed in Section 2.2 can be considered as a partitioning 
of the current Pareto set. Additional Pareto-optimal points are found using a sequential 
sampling process as described below. Let A(S(j)) stand for the volume of S(j), and  

( )
max

1
arg max { ( )}

obj

j

j N
j A

 
 S                                                (2) 

be the index of the largest volume simplex. Using (2), the new objective vector Ftmp is 
established as 

max( . )

1

1 objN j k
tmp k

objN 
 F F                                                 (3) 

More specifically, Ftmp = [Ftmp.1 … Ftmp.Nobj]T is the centre of the simplex featuring the 
largest volume among the set S(j), j = 1, …, Kp. 

At this point, the inverse surrogate s introduced in Section 2.2 is employed to find 
the representation xtmp of Ftmp in the parameter space as 

( )tmp tmpx s F                                                           (4) 

 An alternative initial design is also produced as the centre of S(jmax) in the parameter 
space, i.e.,  

max( . )
. 1

1 objN j k
tmp alt k

objN 
 x x                                               (5) 

The vectors x(jmax.k)  X, k = 1, …, Nobj, correspond to F(jmax. )  F. Analytically, xtmp.alt is 
identified similarly as in (4) but using the linear model established using the (parameter 
space) vertices of the simplex S(jmax). The ‘ultimate’ initial design is then selected as the 
better of the two, xtmp and xtmp.alt, in terms of the smaller value of the objective F1. The 
alternative vector (5) is considered because of possibly poor predictive power of the 
surrogate s at certain stages of the MO process, which is primarily the effect of low 
cardinality of the Pareto set. 

The next stage of the optimization process is design refinement. It is necessary be-
cause the initial design (whether xtmp or xtmp.alt) is only an approximation of the true 
Pareto optimal point, and it normally needs to be relocated towards the Pareto front. 
Here, it is realized by solving a local optimization task formulated as 
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2 .2
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( 1)
1

, ( )

( )

arg min ( )
tmp

N tmp Nobj obj

p

F F

F F

F








x x

x

x R x

                                        (6) 
According to (6), we aim at minimizing the first objective without degrading the re-
maining ones (as compared to their values Ftmp at the initial design). In this work, (6) 
is solved by means of trust-region gradient-based procedure. More specifically, a series 
x(p+1.i), i = 0, 1, …, of approximations to x(p+1) is generated as 

 
( 1. ) ( ) ( 1. ) ( )

2 .2

.

( 1. 1) ( )
1

,
( )

( )

arg min ( )
p i i p i i

tmp

N tmp Nobj obj

p i i

F F

F F

F
 

 

   








x x d x x d
x

x

x L x

                                (7) 
In (7), L(i) = R(x(p+1.i)) + JR(x(p+1.i))(x – x(p+1.i)) is the first-order Taylor model of R at 
x(p+1.i), established using the Jacobian matrix JR. The latter is estimated by means of 
finite differentiation (for i = 0). Subsequently, JR is updated using the rank-one Broyden 
formula [39], which is sufficient as x(p+1.0) = xtmp is normally close to x(p+1). Furthermore, 
the predictive power of the metamodel s will improve over time due to reduced dis-
tances between the Pareto-optimal vectors x(k). A conceptual illustration of the MO pro-
cess has been provided in Fig. 1.  
 Upon solving (6), the vector x(p+1) complements the Pareto set, which is then used to 
enhance the surrogate s with the updated training data set {F(k), x(k)}k = 1,…,p+1. This con-
cludes the pth iteration of the MO procedure. The algorithm is terminated upon yielding 
the required number of Pareto-optimal points. 
 
2.4 Optimization Framework 

The flow diagram of the overall MO procedure has been shown in Fig. 2. As mentioned 
before, the first step is to acquire the extreme Pareto-optimal points x(k), k = 1, …, Nobj, 
obtained by solving the single-objective task (1) (cf. Section 2.2). This data is used to 
construct the metamodel s. The surrogate is applied to generate the initial design xtmp. 
The latter is the image s(Ftmp) of the objective vector calculated as the centre of the 
largest simplex produced through triangulation of the Pareto set available so far in the 
MO process. The final stage of the algorithm iteration is design refinement (cf. (6), (7)), 
where the vector xtmp is ‘pushed’ towards the Pareto front through minimization of the 
first objective, while imposing constraints on the remaining ones. The CPU cost of the 
refinement step is low because of employing sparse Jacobian updates. The termination 
condition is based on identification of the required number of parameter vectors. 

One of the intrinsic advantages of the presented MO procedure is that it is fully de-
terministic. In particular, no randomized optimization techniques are involved, which 
also allows us to estimate the cost of the search process beforehand. The fact of utilizing 
the already existing knowledge about the Pareto set in the form of the inverse surrogate 
further improves the efficacy of the method. 

Another advantage of the proposed approach is that it permits a uniform coverage of 
the Pareto front. The underlying assumption here is connectivity of the Pareto front 
(i.e., that it does not contain several disjoint regions or subsets). While such an assump-
tion does not hold in general, it is normally the case for many practical antenna design 
tasks. The latter is mainly ensured by a continuous dependence between the antenna 
geometry parameters and the frequency characteristics of the structure.   
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3 Demonstration Examples 

This section demonstrates the MO procedure introduced in Section 2 using two exam-
ples of microstrip antennas: a broadband monopole and a planar Yagi. Both structures 
are optimized with respect to two objectives each: size reduction and matching im-
provement (monopole), as well as matching improvement and in-band gain enhance-
ment (Yagi). Benchmarking with respect to state-of-the-art surrogate-assisted MO al-
gorithm is also provided.  
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3.1 Case I: Broadband Monopole Antenna 

Consider an ultra-wideband (UWB) monopole antenna [40]. The structure, shown in 
Fig. 3, is implemented on FR4 substrate (r = 4.3, h = 1.55 mm) and described by eleven 
independent parameters x = [Lg L0 Ls Ws d dL ds dWs dW a b]T; W0 = 2.0 mm is fixed to 
ensure 50 ohm input impedance. All parameters are in millimetres. The computational 
model is evaluated in CST Microwave Studio (~600,000 mesh cells, simulation time 3 
minutes), and contains the SMA connector. 

The monopole antenna is optimized with respect to two objectives: minimization of 
the maximum in-band reflection (F1), and minimization of antenna footprint A(x) (F2). 
The frequency range of interest is 3.1 GHz to 10.6 GHz, whereas the size is defined as 
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the area of the substrate A(x) = (a + 2o)(l0 + l1 + w1). Furthermore, the only part of the 
Pareto front that is of interest consists of the designs for which F1 ≤ –10 dB, which is 
the standard acceptance level when considering antenna impedance matching. 

The MO process has been conducted as described in Section 2. In the first step, the 
two single-objective optima have been found using the gradient-based algorithm [41]: 
x(1) = [9.07 13.39 9.93 0.43 2.03 9.17 0.80 2.29 3.02 0.29 0.59]T mm, x(2) = [9.81 13.26 
7.82 0.23 4.36 0.00 0.97 1.20 0.00 0.80 0.62]T mm. Subsequently, eight more designs 
have been identified, leading to the Pareto set shown in Fig. 4 (see also Fig. 5 for an-
tenna reflection responses at the selected designs). The breakdown of the CPU cost of 
the MO process can be found in Table 1. The overall expenses amount to 575 full-wave 
antenna simulations, which includes 403 EM analyses to find the designs x(1) and x(2). 
The average cost is 20 analyses per design (excluding extreme Pareto-optimal point 
generation).  

Benchmarking was carried out using the surrogate-based procedure [40], which em-
ploys the kriging surrogate rendered in the interval [l* u*] with l* = min{x(1), x(2)} and 
u* = max{x(1), x(2)}; the initial Pareto set is obtained by optimizing the metamodel using 
a multi-objective evolutionary algorithm (MOEA) [42]. The final designs are produced 
using output space mapping [43].  
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According to the methodology of [24], restricting the domain of the surrogate to [l* 
u*] allows for mitigating the problem of dimensionality to some extent. Notwithstand-
ing, the computational cost of the benchmark algorithm is as high as 1433 EM simula-
tions, two thirds of which are related to training data acquisition (1000 samples). This 
was necessary to ensure sufficient accuracy of the metamodel (7.7 percent of the aver-
age RMS error). Based on this data, it can be observed that the proposed methodology 
allows for sixty percent computational savings. Additionally, our approach leads to a 
fairly uniform coverage of the Pareto front, as well as broader span of the Pareto set as 
compared to the benchmark. 

 
3.2 Case II: Planar Yagi Antenna 

Consider the planar Yagi antenna [44] shown in Fig. 6. The structure is implemented 
on RT6010 substrate (r = 10.2, h = 0.635 mm), and described by eight independent 
parameters x = [s1 s2 v1 v2 u1 u2 u3 u4]T. The fixed parameters are w1 = w3 = w4 = 0.6, w2 

= 1.2,  u5 = 1.5, s3 = 3.0, and v3 = 17.5 (dimensions in mm). Similarly as in the previous 
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example, the computational model is implemented in CST Microwave Studio and eval-
uated using its time domain solver (~600,000 mesh cells, simulation time 4 minutes). 

The intended operating frequency range of the antenna is 10 GHz to 11 GHz. The 
structure is optimized with respect to the following two objectives: minimization of the 
in-band reflection (F1), and maximization of the average end-fire gain (F2). The designs 
x(1) = [4.38 3.56 8.90 4.16 4.08 4.74 2.15 1.50]T, and x(2) = [5.19 6.90 7.10 5.08 3.54 
4.78 2.23 0.93]T have been found using the gradient-based search procedure [41]. 

The results have been shown in Figures 7 and 8, as well as Table 2. The overall cost 
of the MO process is 290 EM simulations of the antenna at hand, which includes 160 
analyses required for rendering the designs x(1) and x(2). The surrogate-assisted proce-
dure [24] has been used for the sake of comparison. The cost of the benchmark proce-
dure is 1190 EM simulations, 1000 of which were used to construct the kriging surro-
gate (the average RMS error of the metamodel is 3.8 and 3.6 percent for the antenna 
reflection and gain, respectively). Consequently, the proposed methodology yields al-
most seventy percent computational savings. It can be observed that the results are con-
sistent with those obtained in Section 3.1: our approach allows for generating a uniform 
coverage of the Pareto front, and with a larger span than for the benchmark. 
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4 Conclusions 

In the paper, a deterministic framework for multi-objective design of antenna struc-
tures has been proposed. The foundation of our technique is a sequential generation of the 
Pareto set elements using triangulation of already rendered points, as well as the inverse 
surrogates. A local gradient-based refinement is also involved to improve the design qual-
ity. The major benefits of the presented approach include no need to engage stochastic 
search procedures (in particular, population-based metaheuristics), low computational 
cost, and uniform coverage of the Pareto front. These features have been corroborated 
using two examples of microstrip antennas optimized for matching improvement, reduc-
tion of the footprint area, and maximization of the in-band gain. In both cases, ten-element 
Pareto sets have been obtained at the cost of a few hundreds of EM analysis of the respec-
tive structures, which yields about seventy percent savings as compared to the state-of-
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the-art surrogate-based technique. The proposed framework can be considered an alter-
native to available techniques for efficient and reliable MO of antennas, especially 
when handling miniaturized structures, where one of the objectives is a reduction of the 
physical dimensions of the radiator. 
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