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Abstract. The observed growth in the complexity of modern antenna topologies fos-

tered a widespread employment of numerical optimization methods as the primary 

tools for final adjustment of the system parameters. This is mainly caused by insuffi-

ciency of traditional design closure approaches, largely based on parameter sweeping. 

Reliable evaluation of complex antenna structures requires full-wave electromagnetic 

(EM) analysis. Yet, EM-driven parametric optimization is, more often than not, ex-

tremely costly, especially when global search is involved, e.g., performed with popu-

lation-based metaheuristic algorithms. Over the years, numerous methods of lowering 

these expenditures have been proposed. Among these, the methods exploiting varia-

ble-fidelity simulations started gaining certain popularity. Still, such frameworks are 

predominantly restricted to two levels of fidelity, referred to as coarse and fine models. 

This paper introduces a reduced-cost trust-region gradient-based algorithm involving 

variable-resolution simulations, in which the fidelity of EM analysis is selected from 

a continuous spectrum of admissible levels. The algorithm is launched with the coars-

est discretization level of the antenna under design. As the optimization process con-

verges, for reliability reasons, the model fidelity is increased to reach the highest level 

at the final stage. The proposed algorithm allows for a significant reduction of the 

computational cost (up to sixty percent with respect to the reference trust-region algo-

rithm) without compromising the design quality, which is corroborated by thorough 

numerical experiments involving four broadband antenna structures. 

Keywords: Antenna design; EM-driven optimization; gradient search, variable-reso-

lution simulations; model management. 

1 Introduction 

The use of full-wave electromagnetic (EM) simulations have become a common-

place in the design of modern antenna structures. This is primarily because EM analysis 
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is the only tool capable of rendering reliable evaluation of increasingly complex de-

signs, as well as accounting for mutual coupling effects, or the presence of environ-

mental components (e.g., connectors) or nearby devices. In recent years, the emergence 

and rapid development of new application areas, e.g., the internet of things (IoT) [1], 

5G wireless communications [2], wearable [3] or implantable devices [4], increased the 

complexity of antenna topologies even further. Such intricate designs, described by 

large numbers of optimizable variables, can no longer be tuned by means of supervised 

parameter sweeping. This enforces the employment of numerical optimization algo-

rithms for antenna parameter refinement. Still, EM-driven optimization is unavoidably 

associated with high computational expenditures, which may turn unacceptable. Even 

the cost of the local gradient search [5], [6] may be sizeable. As far as global optimiza-

tion is concerned, the number of required EM simulations required by the optimizer to 

converge may exceed several thousand [7], which significantly hinders applicability of 

popular procedures such as differential evolution [8], [9] evolutionary algorithms [10], 

[11], or particle swarm optimizers [12], [13]. 

A considerable research effort has been directed towards mitigation of the forenamed 

issues. One distinguishable group of techniques are algorithmic enhancements, in 

which gradient-based procedures are sped up by dedicated mechanisms. These include 

sparse Jacobian updates based on design relocation monitoring [14], sensitivity varia-

tion tracking [15], the employment of updating formulas [16], or a combination thereof 

[17]. Another option is the incorporation of adjoint sensitivities [18]. An entirely dif-

ferent approach is offered by surrogate-assisted frameworks, where a fast representa-

tion of the system at hand (referred to as a surrogate or a metamodel) replaces expensive 

EM simulations when making predictions about possibly improved parameter sets. The 

surrogates may be data-driven (e.g., kriging [19], radial basis functions [20], Gausssian 

process regression [21], or neural networks [22], to name but a few), or physics-based 

[23]. Nevertheless, in antenna design, the practical usage of data-driven models is ham-

pered to a large extent by the curse of dimensionality, as well as significant nonlinearity 

of antenna characteristics. In consequence, the verification case studies reported in 

available literature typically feature two to just six adjustable parameters [24], [25]. 

Physics-based models may not be as popular as data-driven ones, still, they seem to 

be an attractive alternative in situations, where setting up the latter is hardly possible. 

Physics-based models incorporate the problem-specific knowledge in the form of low-

fidelity representations of the system at hand, e.g., equivalent circuits [26], or coarse-

mesh EM simulations [27]. To construct the surrogate, the low-fidelity model under-

goes a correction (or enhancement) using a relatively small number of high-fidelity data 

samples. Popular optimization methods incorporating physics-based surrogates include 

space mapping [28], adaptive response scaling [29], and feature-based technology [30]. 

Computational efficiency of the optimization procedures may be enhanced by the 

employment of variable-fidelity simulations. In practice, however, two levels of model 

discretization are typically used. This paper introduces a novel optimization framework 

involving variable-resolution EM simulations embedded into the trust-region gradient 

search algorithm. The discretization levels are selected from the predefined spectrum, 

ranging from the lowest fidelity (still of a practical utility) to that ensuring sufficiently 

accurate representation of the antenna characteristics. The specific fidelity level is de-

cided upon based on the optimization process convergence status, as well as the im-
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provement of the objective function value in the consecutive iterations. At the begin-

ning of the entire process, the coarsest discretization level is adopted, which enables a 

relatively cheap exploitation of the knowledge about the antenna under study, and ex-

pedited exploration of the parameter space. The reliability of the design process is en-

sured by gradually increasing the model fidelity, eventually reaching the finest assumed 

resolution.  Our methodology is demonstrated using a benchmark set of four broadband 

antennas, all optimized to improve their impedance matching. The efficacy of the ap-

proach is compared to the standard trust-region procedure, and several state-of-the art 

accelerated techniques. The computational savings are around sixty percent with re-

spect to the reference, without significantly deteriorating the design quality. 

2 Antenna Design by Variable-Resolution EM Simulations  

This section delineates the proposed optimization framework exploiting variable-res-

olution simulations, in which the model fidelity is adjusted based on the convergence 

status of the optimization process. In the initial stage of our procedure, the antenna dis-

cretization density is set to the lowest value from the predefined spectrum of admissible 

levels. Next, it is gradually increased as the optimization process converges. The section 

is organised as follows. The antenna optimization task is formulated in Section 2.1. Sec-

tion 2.2 provides a brief description of the conventional trust-region algorithm with nu-

merical derivatives. The description of variable-resolution simulation models (Section 

2.3), as well as the overall optimization framework (Section 2.4) concludes the section. 

 

2.1 Simulation-Driven Antenna Design  

Design closure refers to the stage of the antenna development process in which its 

topology has been already established, and the geometry parameters ensuring the best 

achievable performance are to be identified. This tuning requires a definition of a suit-

able metric quantifying the design quality. Toward this end, we employ a merit function 

U(x), where x refers to the vector of antenna designable parameters. The optimization 

task is formulated as 
* argmin ( )U

x
x x                                                       (1) 

subject to the inequality gk(x)  0, k = 1, …, ng, and equality constraints hk(x) = 0, k = 1, 

…, nh. The definition of the objective function U reflects the design goals so that its lower 

values correspond to better designs. Here, we are interested in minimizing the antenna in-

band reflection. Hence, the adopted merit function takes the following form U(x) = S(x) 

= max{f  F : |S11(x,f)|}, where f denotes a frequency from the intended antenna operating 

range, and S11 denotes the (complex) reflection coefficient. As evaluation of the con-

straints corresponding to antenna electrical and/or field properties involves full-wave sim-

ulation, handling them explicitly is not straightforward. A convenient way of dealing with 

them is offered by a penalty function approach [31], where the design closure task is re-

formulated as follows: 
* arg min ( )PU

x
x x , 

1
( ) ( ) ( )

g hn n

P k kk
U U c




 x x x                 (2) 

In (2), UP is a sum of the original merit function U and the penalty terms. The violation 

of each constraint is quantified by the factor ck(x), with k being the penalty coefficients.  
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2.2 Trust-Region Gradient-Based Search 

The core of our framework is a conventional trust-region (TR) algorithm [32], which 

is briefly recollected below. The optimization problem (1) (or (2), if the penalty func-

tion approach is applied) is solved in a local sense. During this process a series of ap-

proximations x(i), i = 0,1, …, to the optimum solution x* is yielded. Each consecutive 

approximation x(i) of x* is obtained by optimizing the linear expansion model UL
(i) of 

the relevant antenna characteristics at the current iteration point x(i). Here, we consider 

the antenna reflection response S11, therefore we have  
( ) ( ) ( ) ( )

11( , ) ( , ) ( , ) ( )i i i i

L SS f S f f   x x G x x x                          (3) 

In (3), the gradient of S11 at x(i) is denoted as GS(x(i),f). UL
(i) is defined similarly as UP 

(except for SL
(i)(x) replacing S11). Other types of responses (e.g., gain), are handled in a 

similar manner. The approximations to the optimum solution are rendered as: 

( ) ( ) ( )

( 1) ( )

;
arg min ( )

i i i

i i

LU

   


x d x x d

x x                                          (4) 

The gradient GS is typically estimated through finite differentiation (FD) at the cost 

of n additional EM analyses, where n stands for the antenna parameter number. The 

sub-problem (6) is solved within the interval [x(i) – d(i), x(i) + d(i)], referred to as the trust 

region. Here, the initial size vector d(0) is made proportional to the bounds on the design 

variables so as to avoid variable scaling, and to allow for similar treatment of variables 

of significantly different ranges. This is because the antenna geometry parameters may 

range from less than a millimeter in the case of gaps up to as much as tens of millime-

ters, when the dimensions of the ground plane are considered. The improvement in the 
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objective function value for the candidate design found by (6) leads to its acceptance. 

Otherwise, the iteration is repeated with a reduced TR vector size [32]. 

The basic version of the TR algorithm requires performing full FD update of the 

antenna sensitivities in each algorithm iteration. Recently, several expedited variations 

of TR algorithm have been reported that employ sparse sensitivity updating schemes 

[14]-[16]. Each of these methods exploits a different mechanism allowing for omitting 

FD in certain cases, including a relative design relocation control [14], gradient changes 

monitoring [15], or selective Broyden updates [16]. The proposed procedure has been 

benchmarked against two of these methods, i.e., [14] and [16], along with the original 

TR algorithm with full-FD sensitivity update (see Section 3). 

2.3 Variable-Resolution EM Simulations 

In this work, the optimization process is accelerated by employing variable-resolu-

tion EM simulations. Variable-fidelity methods have been widely used for expediting 

the design of antenna structures [25], [29], [33]. Yet, they are typically limited to two 

surrogate levels: low- and high-fidelity models (or, in other words, coarse and fine 

ones). In antenna design, coarse models are most often based on coarse-mesh EM sim-

ulations [34], whereas in microwave engineering, equivalent circuits are frequently em-

ployed [35]. The coarse model, upon applying a suitable correction, is capable of ren-

dering reliable predictions of the system output and can be used to find the approximate 

optimal solution of the fine model. Among the methods of this class, space mapping 

[25] and response correction techniques [36] may be listed as representative examples.  

Reliability and computational efficiency of the variable-fidelity optimization frame-

work strongly depend on the appropriate selection of underlying low-fidelity model 

[37]. Let us consider an example. The family of reflection characteristics simulated at 

several levels of antenna discretization for an ultra-wideband antenna is shown in 

Fig. 1. Here, the discretization level is parametrized with the use of the LPW (lines per 

wavelength), which is employed for mesh density control in CST Microwave Studio, 

the commercial software package used for antenna evaluation. Selecting too low LPW 

causes excessive discrepancies between the corresponding model response and that of 

the high-fidelity model, thereby, making the model unusable. Coarser discretization is 

advantageous from the point of view of computational savings, yet, it may lead to de-

terioration of the design quality. These factors have to be taken into consideration while 

adjusting suitable model discretization level. 

Analysis of the antenna response family, such as that presented in Fig. 1(b), allows 

us to establish an admissible LPW range for the device under study: from Lmin (corre-

sponding to the coarsest, yet still practically useful discretization) up to Lmax (ensuring 

accurate representation of the antenna output). We aim at expediting the optimization 

process by exploiting the simulation models from the said range Lmin ≤ L ≤ Lmax, thereby 

improving computational efficiency of the entire optimization process. The adopted 

model management scheme allowing for suitable adjustment of the discretization level 

has been described in Section 2.4. 

2.4 Model Management Scheme 

This section outlines the adopted model management scheme that governs the fidel-

ity of the EM model throughout the optimization run based on its convergence status. 
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The assumption is that the model resolution is set with the use of the sole parameter 

L  (Lmin,Lmax), where Lmin and Lmax refer to the lowest acceptable and the fine discreti-

zation level, respectively. In our approach, the decision making scheme has been de-

veloped to satisfy the following requirements. For computational efficiency reasons, 

the optimization process should be initialized with the lowest admissible discretization 

level, thereby allowing for inexpensive exploitation of the problem-specific knowledge 

when searching for a better design. Whereas for reliability reasons, the last stages of 

the optimization procedure should be carried out at the highest discretization level. The 

intermediate discretization levels should be adjusted based on the algorithm conver-

gence status: (i) ||x(i+1) – x(i)|| (convergence in argument), and (ii) UP(x(i+1)) – UP(x(i)) 

(objective function improvement). To improve the stability of the optimization process, 

the transition between consecutive discretization levels should be as smooth as possible 

regarding the assumptions mentioned above.  

In addition, the following algorithm termination conditions are applied (the algo-

rithm terminates if either of them is satisfied): (i) ||x(i+1) – x(i)|| < x; (ii) ||d(i)|| < x; and 

(iii) |UP(x(i+1)) – UP(x(i))| < U. In the numerical experiments of Section 3, the aforemen-

tioned thresholds are set to x = x = 10-3. We also define an auxiliary variable 

( )

( 1) ( ) ( 1) ( )
( , ) max ,

|| || | ( ) ( ) |

i x U

x U i i i i

P P

Q
U U

 
 

 

 
  

  x x x x
                     (5) 

The proposed convergence-based model management scheme works as follows: in 

the ith iteration, the discretization parameter L(i) is adjusted according to the following 

rule (which ensures discretization parameter monotonicity) 

 

( )

min

( 1) 1
( ) ( )

min max min

if ( , )

max , ( , )

i

x U

i

i i

x U

L Q M

L
L L L L Q M 

 

 



 


  
      

 

                      (6) 

In the numerical experiments of Section 3, we adopt M = 10–2 and  = 3. Therefore, 

the initial increase of parameter L is rather quick, and it is launched two decades before 

the algorithm convergence (in terms of the norm-wise distance between the consecutive 

iteration points). As the simulation time strongly depends on the parameter L, the for-

mer seems to be reasonable: it brings substantial computational savings at the beginning 

of the entire process without significant detriment to its accuracy.  

In order to ensure that at the end of the optimization run the EM model is evaluated 

at the highest discretization level, a safeguard mechanism is implemented enforcing 

that L(i+1) ultimately reaches Lmax. This is because the sole use of the formula (6) does 

not ensure eventual switching to Lmax, e.g., in the case of unsuccessful iterations causing 

the TR size vector to get smaller than the termination threshold and premature termina-

tion of the algorithm. Upon algorithm termination the following condition is applied 

( ) ( 1) ( 1) ( )

max max ( )
IF THEN AND

|| ||

i i i i x

d i
L L L L M

   d d
d

              (7) 

In our experiments, we adopt multiplication factor Md = 10. Thus, the termination con-

dition is bypassed by (9), and subsequent iterations are carried out with L(i+1) = Lmax. 

Clearly, if the value Lmax has been already reached, the above safeguard mechanism is 

not triggered. 
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Let us now discuss the selection of the control parameter . Several profiles of the 

discretization levels for various values of  are shown in Fig. 2, and the additional 

piece-wise linear profile from Lmin to Lmax described by the parameter-less equation 

 

( )

min

( 1) ( )

( )

min max min

if ( , )

log( ( , )
max , 1

log

i

x U

i i

i x U

L Q M

L Q
L L L L

M

 

 


 


     
    

   

                  (8) 

Observe that (10) is approximated most accurately by  = 3 (which also more flexible).  

In our approach, in order to speed-up the optimization process, the evaluation of the 

antenna response sensitivities is carried out at a lower fidelity level assessed as LFD = 

max {Lmin,λL(i)}, where 0 ≤  ≤ 1 is an algorithm control parameter (set to  = 2/3 in 

numerical experiments of Section 3). This additional acceleration mechanism capital-

izes on the fact that the models of different fidelities are typically well correlated even 

though they might be misaligned, and this correlation improves with an increase in L(i)). 

This allows for rendering antenna response gradients in a reliable manner. 

 
2.5 Optimization Framework with Variable-Resolution EM Simulations 

The proposed optimization algorithm utilizes, as the search engine, the trust-region 

routine recollected in Section 2.2 in conjunction with the convergence-based model 

management scheme outlined in Section 2.4. The algorithm control parameters include: 

(i) x, U – termination thresholds; (ii) M – the threshold for launching discretization 

level increase; (iii)  – control parameter governing discretization level profile; (iv)  

– control parameter for LFD adjustment (estimation of the antenna gradient); (v) Md –

multiplication factor serving to increase the TR size in (8), when closer to convergence. 

The following general rules for setting the values of the aforementioned parameters 

apply. The termination thresholds x and U are to be set by the user so as to reflect the 

assumed resolution level of the optimization procedure. The remaining parameters are 

set to their default values M = 10–2,  = 3,  = 2/3, and Md = 10 (as elaborated on in 

Section 2.4). The extreme values Lmin and Lmax of the admissible spectrum of discreti-

zation levels (see Section 2.3) are to be selected by the user based on visual inspection 
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of the family of antenna responses. Lmin should be the lowest yet still practically useful 

discretization level, i.e., such that is capable of properly yielding all important details 

of the antenna response (e.g., its resonances). Whereas Lmax should correspond to the 

high-fidelity model whose discretization level ensures sufficient accuracy.  

3 Demonstration Examples  

The benchmark set comprises four broadband antenna structures shown in Fig. 3. 

Table 1 provided the details concerning their parameter vectors (both designable and 

fixed ones), as well as the description of the substrate each structure is implemented on. 

All antennas are evaluated using the time-domain solver of CST Microwave Studio; all 

simulation models incorporate the SMA connectors. The intended operating frequency 

range is 3.1 GHz to 10.6 GHz. The design goal has been defined as minimization of the 

maximum in-band reflection within UWB band. The objective function is defined as 

U(x) = max{3.1 GHz ≤ f ≤ 10.6 GHz : |S11(x,f)|}. Table 1 also gathers the ranges of the 

admissible values of lines-per-wavelength (LPW) parameter (see Section 2.3) for all 

antennas, along with the corresponding simulation times. The ranges are defined by 

Lmin (the lowest practically usable discretrization), and Lmax (the value for high-fidelity 

model).  

The proposed optimization algorithm is benchmarked against the following three 

procedures: (i) the conventional TR algorithm [32] (Algorithm 1), (ii) the accelerated 

TR version [14] (Algorithm 2), in which sparse sensitivity updating scheme is based on 

relative design relocation, as well as (iii) the expedited version reported in [16] (Algo-

rithm 3), employing the Broyden formula instead of FD for the selected variables. All 

benchmark procedures utilize solely high-fidelity EM simulations, i.e., the discretiza-

tion level in each iteration equals L(i) = Lmax (for the respective antennas). 

In Algorithm 2, proposed in [14], some of FD-based sensitivity updates are omitted 

for the variables that exhibit small relative change with respect to the current TR region 

size. In addition, the optimization history is monitored so that to ensure that the relevant 

portion of the sensitivity matrix is updated through FD once in few iterations. The al-

gorithm control parameter N defines the maximum allowable number of update-free 

iterations. Here, the numerical results have been obtained for N = 3. For a more detailed 

account of Algorithm 2, see [14]. The acceleration mechanism of the Algorithm 3 con-

sists in replacing FD a rank-one Broyden formula (BF) for the selected variables whose 

directions are aligned well enough with the most recent design relocation. The align-

ment threshold is the algorithm control parameter: as it increases, BF is applied less 

frequently, thereby, enforcing more frequent FD updates and possibly leads to design 

quality enhancement. More details on Algorithm 3 can be found in [16]. 

All the considered algorithms are the local procedures and, in general, the presented 

optimization tasks are multimodal. Therefore, carrying out the search from different 

initial designs typically yields distinct local optima. Multimodality is mainly caused by 

a parameter redundancy occurring for the considered antenna structures, which, in turn, 

is a result of the modifications introduced to their geometries aiming at size reduction. 
The average performance of all the algorithms is assessed with the use of the follow-

ing factors: (i) computational efficiency expressed in terms of the number of equivalent 
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EM evaluations, (ii) design quality estimated as the average value of the objective func-
tion across the performed optimization runs, and (iii) result repeatability quantified by 
standard deviation of the objective function values across the entire set. As a conse-
quence of the problem multimodality, the standard deviation is non-zero even for the 
reference TR algorithm (Algorithm 1), being presumably the most reliable procedure 
of the entire benchmark set. Therefore, the observed deterioration of the design repeat-
ability should be compared with that of Algorithm 1. 
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The values of the control parameters of the proposed procedure have been set to (see 

also Section 2.4): M = 10–2 (discretization level increase threshold),  = 3 (control pa-

rameter for adjusting discretization level profile),  = 2/3 (FD discretization level LFD 

control parameter), Md = 10 (multiplication factor for increasing the TR size when 

closer to convergence). For all the algorithms, the following termination thresholds x 

= U = 10–3 have been adopted.  

The numerical results for Antennas I through IV have been obtained for ten inde-

pendent algorithm runs starting from random initial designs, and gathered in Tables 2 

and 3, respectively. The Tables include the optimization cost calculated as the equiva-

lent number of high-fidelity antenna evaluations, the cost savings w.r.t. the reference 

TR algorithm, as well as the objective function value, its deterioration w.r.t. Algorithm 

1 and the standard deviation. The comparison of the latter should take into account the 

value obtained for the conventional algorithm. The cost of the proposed algorithm em-

ploying variable-resolution EM simulations is computed based on the time evaluation 

ratios between the low- and the high-fidelity models. Figure 4 presents the selected 

reflection characteristics for the initial and optimized designs. 

The results indicate that the proposed optimization framework outperforms the 

benchmark routines in terms of the computational efficiency for all the considered an-

tenna structures. The average speedup exceeds 55 percent (from around 30 percent for 

Antenna IV up to almost 80 percent for Antenna II). The cost savings are comparable 

to that of the expedited versions [14] and [16] using solely high-fidelity simulations (in 

the case of Antennas I and IV), or are even considerably higher (in the case of Antennas 

II and III). This is a consequence of the evaluation ratios between the high- and lowest-

fidelity models, which are larger for Antennas I and IV (10.3 and 5.8, respectively), and 

smaller for Antennas II and III (3.6 and 2.6, respectively). This implies that the com-

putational efficiency of the proposed procedure will likely benefit from expanding the 

discretization level range. Actually, here, the maximum admissible discretization level 

Lmax does not coincide with the high-fidelity model. It has been merely treated as such 

for the sake of consistency with the results provided in [14] and [16]. Setting larger 

values of Lmax would likely result in reaching further computational speedup. 
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As far as the design quality degradation is concerned, the proposed algorithm per-

forms similarly or even better than the accelerated procedures [14] or [16] (except for 

Antenna III). In our approach, the average deterioration of the design quality is minor, 

not exceeding 1 dB. Additionally, the obtained standard deviation values (describing 

the solution repeatability) is similar to that of the reference TR procedure. 

4 Conclusion 

In the paper, a novel trust-region-based algorithm with variable-resolution EM sim-

ulation for expedited optimization of antenna structures has been proposed. Our ap-

proach exploits a decision making routine, in which model fidelity is continuously ad-

justed based on the optimization convergence status. The algorithm is initiated with 

lowest (least expensive) admissible level of model discretization. In the subsequent it-

erations, the model resolution is gradually increased. The model of the highest fidelity 

is utilized only as the algorithm gets closer to the optimum, in order to ensure reliability 

of the entire process. This allows for achieving a significant computational speedup of 

around eighty percent (in comparison to the conventional trust-region routine) owing 

to a low-cost exploitation of the problem-specific knowledge embedded in models of 

lower discretization levels at early stages of the optimization run. Our methodology has 

been comprehensively validated using the benchmark set comprising four broadband 

antennas. The proposed framework also outperforms the recently reported accelerated 

trust-region-based routines exploiting sparse sensitivity updates in terms of the design 
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quality. At the same time, the computational efficiency is comparable or even better. 

The future work will include introducing acceleration mechanisms similar to those em-

ployed in the benchmark techniques, which will possibly result in additional computa-

tional speedup.  
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