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Abstract. Optimization of water consumption in agriculture is neces-
sary to preserve freshwater reserves and reduce the environment’s bur-
den. Finding optimal irrigation and water resources for crops is neces-
sary to increase the efficiency of water usage. Many optimization ap-
proaches maximize crop yield or profit but do not consider the impact
on the environment. We propose a machine learning approach based on
the crop simulation model WOFOST to assess the crop yield and wa-
ter use efficiency. In our research, we use weather history to evaluate
various weather scenarios. The application of multi-criteria optimization
based on the non-dominated sorting genetic algorithm-II (NSGA-II) al-
lows users to find the dates and volume of water for irrigation, maxi-
mizing the yield and reducing the total water consumption. In the study
case, we compared the effectiveness of NSGA-II with Monte Carlo search
and a real farmer’s strategy. We showed a decrease in water consumption
simultaneously with increased sugar-beet yield using the NSGA-II algo-
rithm. Our approach yielded a higher potato crop than a farmer with a
similar level of water consumption. The NSGA-II algorithm received an
increase in yield for potato crops, but water use efficiency remained at the
farmer’s level. NSGA-II used water resources more efficiently than the
Monte Carlo search and reduced water losses to the lower soil horizons.

Keywords: Water use efficiency · Machine learning · Multi-objective
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1 Introduction

Global population growth leads to urbanization and intensification of food pro-
duction. This intensification of food production causes an rise in water con-
sumption, which yields a negative impact on the environment and may result in
a reduction of freshwater quality [19]. The lack of availability of water resources
is one of the main limiting factors in regions with low yields [16]. Efficient water
resources for agricultural purposes is necessary to ensure food security and to
reduce this environmental impact.

One can describe water resource efficiency as the amount of water spent to
produce a certain amount of crop yield [18]. There are several factors that affect
the efficiency of water resources usage [17], [22]. A part of the water is involved
in plant growth, development, and transpiration, so this part is considered to
be used efficiently. Another part of the water is not accessible to plant roots
due to evaporation, migration with surface runoff, and deep percolation. So we
can define water loss (part of irrigation water that cannot be transformed into
economic gain) and efficiently used water (water that is transformed into yield).
For irrigation agriculture, water use efficiency may vary from 13 to 18% of the
water supplied [27]. Gleick estimates that approximately 63% of all water for
irrigation is lost due to deep percolation and runoff [9]. Thus, it is necessary to
reduce water loss for sustainable agriculture and for the conservation of water
resources [11]. It is worth noting that the high level of water migration from the
root zone can cause mineral fertilizers to percolate into the groundwater, which
causes eutrophication and additional stress on the nearest water systems and
their inhabitants [31]. It can also affect the migration of pesticides to groundwa-
ter [14], increasing environmental risks. Therefore, there is a need to minimize
the amount of inaccessible water for the plant and deep percolation to reduce
the impact of inefficient crop irrigation on the environment.

Conducting field experiments to find the best agricultural management prac-
tices is time-consuming, as it requires evaluating all possible combinations of
agricultural practices. Crop simulation models are widely used to plan agricul-
tural practices, such as planting and harvesting crops, fertilizing, and watering.
Crop simulation models allow users to evaluate various agricultural activities
and predict crop yields [7]. The most widespread used crop simulation mod-
els are the following: DNDC [8], APSIM [10], AGROTOOL [2], DSSAT [12],
MONICA [20], AquaCrop [25], WOFOST [26], and others. These models have
many differences in their ideology, utilized equations, choice of programming lan-
guages for the software implementations, the minimum set of input parameters,
and spatial/temporal resolution.

Rapid computations allows users to supply optimization algorithms with a
simulation model as an objective function and to improve agricultural prac-
tices automatically. A previous study’s multi-objective differential evolution al-
gorithm (MDEA) was applied to minimize water use and to maximize South
African regions’ income [1]. Yousefi et al. suggested that Multi-Objective Par-
ticle Swarm Optimization reduces the negative impacts of using treated water
and it maximizes crop benefits [32]. In paper [21], the authors use multi-criteria
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optimization to maximize crop profit and reduce irrigation volume based on the
CROPWAT model which showed the possibility of reducing irrigation volume
by a quarter. Garćıa-Vila and Fereres used weather history and the AquaCrop
model to optimize irrigation strategy on the farm-scale level in conditions of
water scarcity [6]. Recently, research tested using DSSAT crop simulation sys-
tem and the U-NSGA-III optimization algorithm to maximize crop yield and to
minimize nitrogen leaching by selecting optimal irrigation water amounts and
nitrogen fertilizers [15].

However, most papers consider a single crop and optimize agricultural prac-
tice for a single year based on weather data, which may not be very useful given
the lack of opportunity to predict the weather for the whole vegetation season in
the future [23]. In most papers, the researchers also consider the optimization of
continuous irrigation and fertilization parameters, such as water volume or fertil-
izer amount, but they do not consider the dates of the agricultural practices. We
analyze how to combine crop simulation model WOFOST and multi-objective
optimization to maximize crop yield and minimize water loss to address this gap.

We use the NASA POWER weather history and compute mean crop yield
and mean water loss for the last 20 years to evaluate different weather scenar-
ios [24]. We compare the performance of our approach based on the NSGA-II
optimization algorithm [4] against the Monte Carlo search with the farmer’s
agriculture practice to assess the proposed solution.

2 Materials and methods

In this section, we describe the materials and methods that we use in our re-
search.

2.1 Crop simulation model WOFOST

Crop simulation models (CSM) describe the dynamics of the atmosphere-soil-
plants system’s main processes that affect crop productivity. They can evaluate
crop system productivity depending on weather, irrigation, and fertilizer appli-
cation. Such models allow a user to avoid conducting long-term field experiments
experiments and to select optimal agricultural practice. The rapid calculations
of such models, about 0.5-2 seconds on a personal computer, allows a researcher
to use such models in optimization problems as a function of the agricultural
field productivity.

We utilize the WOrld FOod Studies (WOFOST) crop simulation model de-
veloped in Wageningen University to identify crops’ productivity and irrigation
water loss [30]. The WOFOST crop model describes dynamic growth processes,
photosynthesis, transpiration, respiration, and biomass partitioning. We chose
the WOFOST model because it is adapted and calibrated for European crops
and environmental conditions. Figure 1 shows the experiment’s scheme and the
WOFSOT model application to optimize irrigation.
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Fig. 1: Based on user data, we receive the weather history from NASA POWER.
The optimizer generates dates and water amount for irrigation. Then we simulate
the crop growth selected by a user for each of the weather history and get
the yield and water loss for each year. The average yield values are passed to
the optimizer and affect choosing the following combinations in the population.
Finally, we select specific dates and water amount for irrigation from the Pareto
front with the weighted sum method (see section 2.3)

The WOFOST crop model requires weather data for each day of the grow-
ing season to perform simulations. We received data from the NASA POWER
database for the crop simulations [24]. The NASA Energy System provides
weather data from 1983 to the present with a delay of three months. NASA
POWER allows users to collect weather history data with daily time resolution
and grid resolution of half a degree of arc of longitude by half a degree of arc
of latitude. The WOFOST model requires several meteorological observations
for each day, such as incoming global radiation (W/m2), daily minimum tem-
perature (◦C), daily maximum temperature (◦C), daily average vapor pressure
(hPa), daily total precipitation (cm/day), daily average wind speed at an al-
titude of 2 m (m/sec). NASA’s POWER data contains weather omissions for
some dates that average 1-2% of all dates. We use the pandas’ package fillforward
method in python to fill data gaps.

The WOFOST model accepts input data in a YAML file format contain-
ing necessary information about crop parameters, cultivar, soil conditions, and
weather data in a CSV format. To assess the crop’s productivity, we used the
variable - total weight of storage organs (TWSO, t/ha). To estimate the volume
of deep percolation water, we used the total amount of water lost to deeper
soil (LOSST, cm). The WOFOST model has been used for more than 25 years
and has various implementations in Fortran, python, and R. We used a python
implementation of PCSE/WOFSOT model 4.

4 https://github.com/ajwdewit/pcse
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2.2 Multi-objective optimization

Notations and terms. In optimization problems, variables are changed to
maximize or minimize the objective function. In agriculture, many tasks require
finding the optimal solution, such as choosing irrigation dates and the amount of
water to be watered, the amount of fertilizer application, and the date of appli-
cation. Typically, the farmer tries to minimize their losses by avoiding inefficient
use of fertilizers and water resources, fuel consumption, and to maximize their
yield and crop quality.

However, in the real-world, minimizing one cost could immediately lead to
maximization of another cost, which depends on the same set of variables. For
example, one can use a massive amount of water or fertilizer to increase yield,
but this can sometimes be barely profitable because of their water or fertilizer
expenses. One way to deal with multiple objectives that could conflict with each
other is through multi-objective optimization.

Suppose, we have T loss functions Li(θ),∀i = 1, T :

min
θ
L (θ) = min

θ

(
L1 (θ) , . . . ,LT (θ)

)>
(1)

In such a setting, we need to specify a way to compare a vector of objectives.
The typical way to do this is by introducing the concept of Pareto dominance
and Pareto optimality.

Definition 1 (Pareto optimality).

1. A point θ1 dominates θ2 for a multi-objective optimization problem (1), if
Li (θ1) ≤ Li (θ2)∀i = 1, T and at least one inequality is strict.

2. A point θ∗ is called Pareto-optimal solution, if there is no other point θ that
dominates it.

This article exploits multi-objective optimization to determine optimal ir-
rigation dates and optimal water volume for irrigation to maximize crop yield
and minimize water loss (water inaccessible to plants). In this setting we have
T = 2 functions to minimize concurrently: L1(θ) - mean water loss for different
weather scenarios, and L2(θ) - mean crop yield for different weather scenarios
(taken with negative sign). The vector of parameters θ contains irrigation dates
and amounts of water, which is needed to be spent in the corresponding day. In
our experiments we use 7 irrigation dates, therefore θ is 14-dimensional vector.

Multi-objective optimization algorithms A lot of effective multi-objective
optimization algorithms were developed [5], [13], [33]. However, due to the spe-
cific structure of the loss functions, which are the outputs of a WOFOST model,
a function’s value is the only information we have. Since no gradients or any other
higher-order details are available, we are restricted to use zero-order algorithms.
In this work, we compare the following approaches:

– Monte Carlo optimizer. We randomly generate θ vectors and choose the
best (in terms of Pareto optimization) point for our problems.
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– NSGA-II optimizer. We use non-dominated sorting genetic algorithm
(also known as NSGA-II) [4] method from PyMoo [3] package for Multi-
objective optimization in python.

The experimental setup and optimization parameters are described in the
section 2.6.

2.3 Choice of point from Pareto front

As a solution of problem (1) we typically have a set of Pareto optimal points,
which is called Pareto front. The points cannot be compared directly between
each other, since they all are optimal in some sense. At this stage, the best
θ needs to be chosen according to some prior information. There are several
approaches that can be made for this choice [28,29].

Figures 3b and 4b show the Pareto front with all of the points being Pareto-
optimal. One could consider the full spectrum of proposed solutions, but it may
be convenient to select only a particular one. A farmer might want to know how
to save money with a proposed approach or how to deal with strictly limited
water resources.

We propose an inclusive way to address this problem. After the optimization
procedure we have a set of m possible solutions {θj}mj=1 with corresponding loss
functions values

{
L1(θj)

}m
j=1

and
{
L2(θj)

}m
j=1

. We normalize the values of each

objective function to zero mean and unit variance, denoting it as
{
L̂1(θj)

}m

j=1

and
{
L̂2(θj)

}m

j=1
. This step allows users to deal with the objectives of differ-

ent scales. After standardization, we select a point with minimal sum of the
normalized loss value functions.

min
j∈(1,...,m)

L̂1(θj) + L̂2(θj) (2)

In this approach, we treat each objective equally. The results from this choice
are presented on the Figures 3b and 4b. However, the approach could be easily
transformed to a weighted choice when you multiply objectives in the problem
(2) to some coefficients, which could be interpreted as important. Note that it
would be better to use some a-priori information to determine a specific choice of
the irrigation dates and amounts of water among the Pareto set in each particular
case.

For clarity we mean this specific method of choosing point from Pareto front,
while we compare methods between each other. In all figures by "Ours" we mean
a single point from Pareto front, produced by NSGA-II method, selected using
the routine described above, just as well as for the Monte Carlo method. Since,
the way of comparison is not unique, we also present the entire set of intermediate
points for each method.
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2.4 Weather averaging

The irrigation schedule is affected by uncertain weather factors. For example,
precipitation affects the choice of irrigation dates. Since we cannot predict the
weather for an entire growing season ahead, we cannot know the irrigation sched-
ule’s optimal dates in advance. However, we can consider weather history over
the past few decades as various possible weather scenarios. We can assume that
the weather next year may be similar to the past decades’ weather scenarios. We
can also assume that we can find the irrigation dates and irrigation volume for
a particular location that will increase crop yield on average for various weather
scenarios and minimize average water loss. For example, we can take the last
20-30 years and consider the weather as different climate scenarios for a given
geographical region.

The general plan of the experiment is presented in Figure 1. The user spec-
ifies geographic coordinates of crop and planning of agricultural management
practices, such as planting and harvesting crop dates, dates and amounts of ir-
rigation, dates of fertilizer application, and fertilizer amounts. We use NASA’s
POWER data to receive weather data for recent years based on based on their
geographical coordinates. At the next step, we initialize the NSGA-II optimizer
to search for optimal irrigation dates and water volumes. For calculations, we use
irrigation dates as discrete integer values ranging from the planting date (day
0) to the harvesting date, usually in the range of 120-150 days. We use water
volume values between 0 and 150 mm of water per hectare. The optimizer offers
solutions in the form of a combination of irrigation dates and water volumes,
which we add to the input data for the WOFOST model. After using these in-
puts, we run simulations for each year for the last 20 years of available weather.
For each year, we compute the crop yield value and the volume of lost water.
Then the obtained values for 20 years are averaged and returned to the opti-
mizer. Based on these two target values, the optimizer offers new combinations
of irrigation dates and water volume. As the number of iterations increases, the
values progress towards to optimal solutions. As a result, we receive a Pareto-
set of optimal combinations of irrigation dates and water volumes. The specific
choiсe of the solution is described in section 2.3.

2.5 Case study

To assess the method’s performance, we have chosen agricultural fields in the
Moscow region, Russia (Figure 2). The fields are located on the Oka River banks
in the floodplain. The soil was characterized as Sandy loam with the following
characteristics: bulk density - 1.4 g/cm3̂, clay content - 13.9%, silt content -
13.1%, sand content - 73%, surface hardness - 0,87MPa and subsurface hardness
- 3.81MPa. In these fields, farmers grow vegetable crops such as beets, potatoes,
onions, and carrots. For the experiment, we chose sugar-beet (Beta vulgaris)
and potato (Solánum tuberósum). We received information from farmers about
sowing and harvesting operations and the proposed irrigation operations for
sugar-beet and potatoes fields for the 2019 year. Irrigation was done seven times
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Fig. 2: Map of the investigated region. We marked the experimental fields with
potato and sugar-beet near the Oka river with color.

per season (June 10 and 20, July 1, 10, 20 and 29, August 15) for both crops
with a water amount of 2 cm/ha. Sometimes farmers have to shift the dates by
1-2 days due to weather and other conditions. We took this into account and
conducted ten simulations randomly changing the dates of watering, planting
and harvesting for part of the experiment with farmer data. During the season,
farmers, on average, contribute 190 kg/ha of nitrogen fertilizers for both crops.

2.6 Numerical experiments setup

We performed all of our numerical simulations on the Google Cloud platform
(4 vCPUs, 4 GB memory). The average time of a WOFOST model run takes
10 s for 20 different weather scenarios. For the NSGA-II algorithm, we used 300
generations and a population size of 30 for each generation, so the algorithm
performs 9000 estimations of computing crop yield and water loss. To maintain
equality, we ran the Monte Carlo search with the number of iterations of 9000.
The whole optimization procedure took around 25 hours for the single run. We
conducted 10 runs with different random initializations and calculated mean and
standard deviations for the reported metrics.

3 Results and discussion

In this section, we describe the results and compare the performance of our ap-
proach against Monte Carlo search. We ran the NSGA-II and the Monte Carlo
search algorithms ten times with random initialization to evaluate their perfor-
mance. As it was discussed above in section 2.3, we compare the performance of
the methods with respect to the specific choice of the point from Pareto front.
Thus, we received ten values of yield and water loss for potato and sugar beet
and calculated the mean and standard deviation of loss functions. We ran the
calculation ten times with a random date deviation of 1-2 days for the farmer’s
irrigation scheme to calculate the mean and standard deviation. The tables 1,
2 below contains mean values as well as standard deviations for the selected
parameters.
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Yield (t/ha) Water loss (cm)

Farmer 12.74± 0.03 23.99± 0.21
Monte Carlo 13.95± 0.18 35.54± 2.26

Ours 14.11± 0.09 26.84± 1.40

Table 1: Potato

Yield (t/ha) Water loss (cm)

Farmer 11.97± 0.1 31.73± 0.17
Monte Carlo 12.17± 0.03 42.38± 2.97

Ours 12.16± 0.03 28.22± 0.98

Table 2: Sugar-beet

The results presented in table 1 with potatoes experiments show that the
NSGA-II algorithm consistently achieves higher yields than Monte Carlo. Results
of experiments with sugar beet presented in the table 2 show that the Monte
Carlo and NSGA-II produced approximately the same crop yield level. However,
the NSGA-II algorithm chose strategies with significantly lower water loss.

3.1 Potato crop

Figure 3 compare our approach based on NSGA-II to the Monte Carlo search for
the potato crop. Scatter-plot 3a demonstrates the objective values received by
NSGA-II, Monte Carlo search, and values achieved by a farmer’s strategy for the
single run. Scatter-plot 3b shows Pareto front achieved by NSGA-II and optimal
solution selected by a weighted-sum method. We considered the importance of
crop yield and water loss equally to select the optimal solution. Using the same
approach, we selected the optimal solution from the objective values generated
by the Monte Carlo search. Additionally, we plotted objective values based on
farmer strategy.

These numerical experiments on optimizing potato irrigation based on weather
history are shown in Figure 3. Points from both NSGA-II and the Monte Carlo
search algorithms are approaching a limit of the yield of approximately 14.5 t/ha.
We can assume that this is the maximum yield under the given conditions of
soil, weather, and agricultural practices. In the seasonal water loss minimization
problem, the NSGA-II algorithm is superior to the Monte Carlo search. Most
of the water loss values are lower than the values obtained by the Monte Carlo
search on the graph. It is interesting to mention that there are points from the
NSGA-II Pareto front, which dominate a farmer’s choice, while this property is
not valid for the Monte Carlo Pareto front.

In the experiment to optimize potato irrigation, our approach achieved a
mean potato yield of 14.11 t/ha, which is 9.7% higher than the farmer’s solution
with 12.74 t/ha. The Monte Carlo search achieved a yield of 13.95 t/ha, which
is 8.6% percent higher than the farmer’s.

On the other hand, farmer irrigated the field more efficiently (23.99 cm) than
our approach (26.84 cm) and the Monte Carlo search (35.54 cm). However, our
method only increased the mean water loss by 10%, whereas the Monte Carlo
search by as much as 33%.
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(a) All solutions (b) Pareto front

Fig. 3: NSGA-II performs better at searching for strategies with low water loss.
Objective values selected by weighted-sum methods denoted by the larger icons
show our method’s advantage over the Monte Carlo search and the farmer’s
strategy for crop yield objective. The inflection on the line of objectives values
achieved by NSGA-II shows that the increase in irrigation associated with water
loss does not increase productivity.

The plot also shows the Pareto front, where we can identify the inflection
when the yield values of the order of 14.5 t/ha and water loss of 30 cm are
reached. Therefore, we can conclude that a further increase in irrigation does
not increase potato yield.

3.2 Sugar-beet crop

The values of the algorithm solutions for optimizing sugar-beet irrigation are
shown in Figure 4. Figure 4a represents all the objective function values obtained
by our algorithm, Monte Carlo’s search and the farmer strategy for the single
run. Figure 4b represents the Pareto front of our solution and the values selected
based on our method’s weighted sum method, Monte Carlo, and the farmer’s
value. The maximal yield obtained for both algorithms was about 12.15 t/ha.
For the sugar-beet, the inflection on the Pareto front is more pronounced.

NSGA-II and the Monte Carlo achieved approximately the same yield values
for sugar-beet. The mean crop yield value was 12.17 t/ha for both algorithms that
1.6% higher than the result of the farmer’s strategy with 12.00 t/ha. However,
our method (28.22 cm) reduced water loss by 11%, while the Monte Carlo search
(42.38) strategy increased water loss by 33.5%.
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(a) All solutions (b) Pareto front

Fig. 4: NSGA-II performs better at searching for strategies with low water loss.
Objective values selected by weighted-sum methods denoted with the larger icons
show our method’s superiority over the Monte Carlo search and the farmer’s
strategy for crop yield and water loss. The inflection on the line of objectives
values achieved by NSGA-II shows that the increase in irrigation, associated
with water loss, does not increase productivity.

One of the multi-criteria optimization tasks is to reduce seasonal water losses.
We compared the distribution of mean values of total irrigated water and the
distribution of deep percolation water losses over 20 years of weather scenarios
for all solutions produced by NSGA-II and Monte Carlo search for the single run.
Results were obtained based on our approach and on the Monte Carlo search for
sugar-beet and potato. The scatter-plots in Figure 5 illustrate the mean water
loss dependence over 20 years of weather scenarios based on the total seasonal
irrigation. Figure 5b demonstrates a scatter-plot for the Monte Carlo search.
The scatter-plots in Figure 5 show the mean water loss dependence over 20
years of weather scenarios on the mean of total seasonal irrigation over 20 years
of weather scenarios. Because of the random selection of irrigation water values,
total seasonal irrigation and water loss have a normal distribution.

Figures 5a and 5c illustrate the result of the optimizer’s performance, which
shifts the seasonal water loss values’ distribution to smaller values as water loss
minimization undergoes. For both crops, seasonal water irrigation distribution
and decreases the seasonal water loss values are similar. Because of the opti-
mizer, these distributions are shifted towards smaller values. However, we can
note differences in the distributions for potato and sugar-beet. The distribution
of sugar-beet irrigation water has not moved as much to the lower values as for
potatoes. However, the distribution of sugar-beet water losses has shifted sig-
nificantly to the lower values. Such differences may be related to different plant
physiology and root system features defined in the crop model.
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(a) NSGA-II Potato (b) Monte Carlo search (c) NSGA-II sugar-beet

Fig. 5: Scatter-plots and distributions of values for water loss (cm) and total irri-
gation amount (cm) for our method and Monte Carlo search. NSGA-II attempts
to minimize water loss and water volume for irrigation and generates agricul-
tural practices that decrease water loss in front of the Monte Carlo search. The
distributions of objective values for NSGA-II are shifted to low values, which is
positive for agricultural purposes.

4 Conclusions

Multi-objective irrigation optimization based on crop model WOFOST and evo-
lutionary algorithm NSGA-II has demonstrated its efficiency in finding the opti-
mal irrigation strategy. We have shown the effectiveness of using the approach on
the case study example with sugar-beet and potato crops. The results with pota-
toes experiments show that the NSGA-II algorithm consistently achieves higher
yields. In experiments with sugar-beet, the Monte Carlo and NSGA-II produced
approximately the same level of yield. However, the NSGA-II algorithm chose
strategies with significantly lower water loss. Based on our numerical experi-
ments, we see the advantage of using evolutionary multi-objective optimization
over the Monte Carlo search. The use of the algorithm reduces seasonal water
loss and increases crop yield based on long-term weather data. The source code
and the results are available in our GitHub repository1.
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