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Abstract. Device localization provides additional information and con-
text to IoT systems, including Agriculture 4.0 and Smart Farming. How-
ever, enabling localization incurs additional requirements and trade-offs
that often do not fit into application constraints – use of specific ra-
dio technologies, increased communication, computational, and energy
costs. This paper presents a localization method that was designed for
Smart Farming and applies to a wide range of radio technologies and IoT
systems. The method was verified in a real-life IoT system dedicated to
monitor cow health and behavior. In a large multi-path environment,
with a large number of obstacles, using only 10 anchors, the system
achieves an average localization error equal to 6.3 m. This allows to use
the proposed approach for animal tracking and activity monitoring which
is beneficial for well-being assessment.

Keywords: Smart Farming · indoor localization · signal strength · Blue-
tooth Low Energy

1 Introduction

The number of IoT systems and devices rapidly increases, and IoT applications
become more and more popular. For a large number of such applications, the
ability to localize the devices is of additional value as it gives context to the appli-
cation and increases usability and functionality. Since the deployment of global
navigation satellite systems (GNSSs) the task of determining the device location
becomes straightforward. However, its use requires to include GNSS receivers
that increase device energy consumption, demand larger batteries, and incur ad-
ditional costs. Additionally, the GNSS does not work well in indoor environments
and is practically unavailable underground and in multi-story buildings. Conse-
quently, the IoT devices and communication technologies use other localization
approaches including methods based on the angle of arrival, time of flight, or
time difference of arrival. These methods may not require additional hardware
however, incur increased costs in terms of energy, communication bandwidth, or
processing time. As a result, enabling localization in an IoT system is a trade-off
between constraints, desired parameters, and functionalities of the system. This
includes the aforementioned costs and the resulting localization accuracy.
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Animal localization is a challenging topic for Smart Farming and precision
agriculture. First of all, it allows to localize individual animal in the grazing
fields or sheds, thus simplifying the everyday work of farmers and veterinary
doctors. Additionally, location information over time provides information about
animal activity, which is an indicator of health status. As presented in [1, 8, 9],
changes in the activity may signal diseases or estrus and can be often detected
before emergence of clinical symptoms. Contemporary radio technologies used
in IoT systems enable localization through either radio signal strength (e.g. [4,
11]) or time of flight measurements (e.g. [5, 15]). While the former group gives
less accurate localization, the latter is more energy demanding and requires
more complex deployments. Additionally, the use of signal strength localization
ensures applicability to a wide range of various radio technologies and can be
adjusted to use other radio signal quality indicators (e.g. [6]).

This paper presents an animal localization algorithm based on signal strength
measurements and dedicated for indoor environments. The algorithm provides
accurate localization using small number of reference points (anchors) and requir-
ing limited measurements during setup. The accuracy of the proposed algorithm
was verified in a dairy cow farm located in Zagrodno, Poland, where a dedicated
cow health monitoring system is deployed [13]. Using 10 anchors, in a 1 400 m2

shed the average localization accuracy equals 6.3 m.

2 Related work

Signal strength localization has gained much attention in the last years [3, 7, 10].
This was the result of the fact that recently the number of low power IoT devices
increased significantly, and this method does not incur additional complexity and
cost.

Indoor localization using signal strength is often focused on office buildings
where the number of anchors (reference devices with known localization) is large
and they are deployed densely. The article by Wang et al. [14] is an example of
such applications. The authors analyze localization in the office space of 44 by
22 meters. The results achieved are quite accurate with an average error equal
to 1.8 m and maximum error slightly exceeding 10 m. However, this is achieved
with up to 34 anchors deployed with an average distance between the neighboring
anchors of 5 m. Additionally, the localization method proposed in [14] is based
on fingerprinting and requires mapping the whole area before the localization
can be used.

Signal strength-based localization is also interesting for industrial and agri-
culture applications, including Smart Farming A good example of such system
is a localization in an industrial workshop [3] or the dairy farm [2, 4, 11]. In the
latter example, the goal of localization is to monitor the activity of the animals
and shorten the time required to locate an individual cow on a large farm or
field. For these applications accuracy of a few meters is acceptable. Article by
Trogh et al. [12] presents an indoor localization solution for dairy cows. The
proposed approach uses Bluetooth Low Energy (BLE) and is based on path loss
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model. The model is derived from the floor plan of the localization area and
does not require any measurements before the localization system can be used.
During the evaluation, 11 anchors were deployed in 30 by 13 m area, allowing to
estimate cow location with an average error of 4.2 m (median 3.3 m). The results
are good but the area is relatively small and is located in the center of the barn,
far away from large obstacles (e.g. walls) thus minimizing the adverse effects of
propagation phenomena.

Bloch et al. [2] investigate a localization system for dairy cows. The system
estimates location based on RSSI measurements and two different approaches:
log-distance path loss model, and fingerprinting of the localization area. The
results of experiments conducted in 420 m2 barn show slightly better results for
the method based on fingerprinting. The resulting average localization error was
equal to 3.3 meters while the maximal error was slightly above 10 m. Although
the accuracy is considered good, it was achieved with dense deployment of the
anchors – the total amount of 10 anchors were deployed in the area, with an
average distance between neighboring anchors of 10 m.

Takahiro et al. [11] analyzed localization of animals in an open field of ap-
proximately 11 400 m2. Each animal wore four BLE transmitters and a GNSS
receiver attached to its collar. Transmitted BLE signals were received by 20
receivers deployed in the area perimeter and used for estimating the animal
location, using a neural network. The average localization error achieved was
slightly above 6 m. This is considered a good result taking into account the size
of the area and a relatively small number of anchors. However, this was achieved
with redundancy and in preferable radio propagation conditions, as the exper-
iments were conducted in an open field and as many as four BLE devices per
animal were used.

Signal strength-based localization was also analyzed by Cardoso et al. [4] who
attempted to determine a position in an open square area of 440 m2. Using only
four anchors the average localization error of the proposed algorithm was equal
to 2.48 m, and the maximum error to 6.5 m. However, the proposed algorithm
was evaluated only in a a few locations along the diagonal of the area with some
of the locations close to the anchors. Because test locations were not spread
across the localization area, the results are not considered reliable.

Hindermann et al. [5] investigated the use of ultra-wideband (UWB) radios
and time-of-flight measurements for localization in a 12 by 25 m barn. They have
used only four anchors and achieved a localization error that was 0.5 m in most
scenarios and test locations. The results are impressively good and allow not
only to track activity but also to analyze the interactions between the animals.
However, the approach uses radio technology that has relatively high energy
demands and requires additional hardware, cabling, and costs. Time-of-flight
based localization is also available in a commercial solution from Smartbow [15].
In the experiments conducted in approx. 2 100 m2 area using 17 anchors the
resulting accuracy was below 2.93 m during 95% of time. Similar to the previous
approach, this technology also requires additional hardware, cabling, and costs.
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Fig. 1. The map of the area used for the evaluation of the proposed localization al-
gorithm. Gray areas mark sections where animals reside and can walk freely. Green
circles mark the locations of the anchors numbered 1 to 10.

The aforementioned localization approaches have limited applicability to
large-scale smart farming applications. This is either due to the use of specific
radio technologies, the requirement to derive radio propagation models that are
inaccurate in indoor applications, or the use of complex and time-consuming
procedures to set up the localization system (build a radio map of the area for
fingerprint-based methods). This article proposes a different approach that uses
a limited measurement campaign to derive a geometrical model which translates
RSSI values to rings – a range of distances from the anchors. This is in contrast
to the propagation models where RSSI value determines a single distance which
is ”good on average”. The contribution of the paper is as follows:

– proposal of a geometrical approach to signal strength based localization, that
can be used with various radio technologies,

– evaluation of the proposed localization method in real-life system (animal
monitoring) deployed over a large indoor area.

3 System architecture and localization algorithm

The proposed localization algorithm is designed to be integrated with typical
IoT architecture. The end devices (tags) report measured data to neighboring
anchors. Anchors receive the transmitted data and take radio signal measure-
ments including RSSI and possibly other parameters (e.g. link quality indicator
- LQI). Anchors aggregate the data and the measurements over time and trans-
mit this information (together with the tag identifier and timestamp) to central
server located in the cloud. When measurements from anchors are collected, the
server runs a localization algorithm to determine tag location.

The experimental evaluation presented in this paper was run in the system
of the aforementioned structure deployed to monitor the behavior, activity and
well-being of dairy cows [13]. The test barn of 20 by 80 meters (Fig. 1) hosts
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Fig. 2. RSSI values measured in the experiment for different locations and distances
from the anchors. Black line marks log-distance path loss model approximating the
measured values.

approximately 80 mature cows all wearing the monitoring tags. The tags are
BLE devices mounted on collars, take periodic measurements of animal activity,
calculate aggregates, and transmit them inside advertisement packets broad-
casted periodically every 250 milliseconds. Ten anchors deployed in the barn
receive the aggregated measurements and record radio signal parameters – RSSI
and strength of the radio signal when receiving the radio message. The signal
parameters are then aggregated separately for each tag in non-overlapping, 30
seconds wide time windows. The aggregates include the average value and stan-
dard deviation of RSSI measurements, the number of messages received from a
tag, and total signal strength (TSS) which is an accumulated strength of all the
radio messages received from a tag. Aggregates are transmitted and stored on
the server which runs the localization procedure.

3.1 Localization based on radio propagation model

A typical localization approach based on RSSI attempts to determine distance
vs. RSSI dependency using a selected propagation model. Unfortunately, the
simple propagation models do not adhere to indoor environments where signal
propagation is complex, affected by obstacles, and various propagation phenom-
ena. For example, consider the RSSI measurements presented in Fig. 2. It can
be noticed that the same value of RSSI was measured for significantly different
distances. Due to high variance of the distances (for a given RSSI value) an ap-
proximation with a propagation model would result in a single relation that is
good on average but fails to accurately estimate the real distance. For the mea-
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surements presented in Fig. 2, using the least square method, the approximated
log-distance path loss model equals:

d̂ = 10
RSSI+67.9961

−12.5215 , (1)

where RSSI is the measurement and d̂ is the estimated distance to the anchor.
The position of the tag can be estimated from multilateration [5] given distances
to at least 3 anchors. Unfortunately, inaccuracies in distance estimation result
in large localization errors.

3.2 Proposed localization procedure

To avoid the limitations and achieve good accuracy this article proposes to use a
more general approach where a range of RSSI measurements determines a range
of possible distances. Considering the previous example (Fig. 2) it can be noted
that for RSSI values exceeding -75 dBm the distance is almost always smaller
than 20 m. Similar for RSSI between -80 dBm and -75 dBm the distance varies
from approx. 4 to 25-30 m. Similar dependencies can be observed for smaller RSSI
values. Simultaneously, a RSSI vs distance relationship can be divided into three
sections depending on the vicinity to the anchor: immediate, near, and far zone.
For BLE transmission the measured RSSI values in the immediate zone are above
approximately -80 dBm. In this zone, the signal strength drops quickly with the
distance. In the near zone the RSSI varies between approximately -80 dBm and
-90 dBm, and the RSSI vs distance relationship flattens. In the far zone the RSSI
drops below -90 dBm and there is almost no correlation between RSSI and the
distance.

Based on the aforementioned observations the proposed RSSI vs. distance
model defines ranges of distances (rings) that depend on RSSI value. The pos-
sible RSSI values are divided into disjoint ranges and for each range, the corre-
sponding distances are assigned. (Fig. 3). The distances are then approximated
with the probability distribution that is used to calculate the minimum and max-
imum value of the distance for this RSSI range. Because for each RSSI range
the distribution of the distances was close to normal distribution the minimum
and maximum distances were calculated based on the mean and the standard
deviation of the distances:

Di,min = mean(Di) − 1.5 · std(Di),
Di,max = mean(Di) + 1.5 · std(Di),

(2)

where Di denotes the distances for the i-th RSSI range, mean and std are an
average and a standard deviation respectively. It is worth to notice that the re-
sulting distance ranges (rings) overlap. This is because of the large variance of
RSSI measurements for each distance. The actual model for the evaluation sce-
nario was derived in a small measurement campaign and is presented in Table 1.
The model differs for various anchors because their location and impact of the
environment on the RSSI measurements is different. Additionally, for some of
the anchors (eg. 1, 5, 10) the minimal distance does not increase with lowering
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Fig. 3. The values of the distance for disjoint RSSI ranges. The RSSI measurements
were collected at different locations by 10 anchors.

RSSI. This is likely because the measured RSSI is sometimes attenuated by the
animal wearing the tag (as the tag is mounted on a side of a neck).

The localization procedure takes the RSSIi and TSSi measurements for ev-
ery anchor i = 1, 2, . . . , n. Based on the model the algorithm uses the RSSIi to
determine the Di,min and Di,max distances to the i-th anchor. Afterwards, for
each (x, y) coordinate of the localization area, the algorithm defines a discrete
function f(x, y). The function is a weighted sum of TSSi values if (x, y) coordi-
nates belong to the i-th ring (if the tag distance to the i-th anchor falls between
Di,min and Di,min):

f(x, y) =

n∑
i=1

w(x, y) · TSSi, (3)

where

w(x, y) =

{
1 iff Di,min ≤ di(x, y) ≤ Di,max,
0 otherwise,

(4)

and di(x, y) denotes the Euclidean distance from the i-th anchor to (x, y) point.
The resulting function f(x, y) defines the likelihood of the tag location – in

particular, it is unlikely that the tag is located in the region where the function
value is small. Therefore, in the next step, the algorithm finds a threshold T that
is used to distinguish (x, y) coordinates with the highest likelihood. Based on
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Table 1. The RSSI-ring model for the anchors. The measured value of RSSI determines
a range of possible distances to the anchor (Di,min–Di,max). The ranges define rings
around anchors pointing estimated location of the tag.

Anchor Distance ranges [m] for various RSSI measurements [dBm]
i ... ≥ −75 −75 > ... ≥ −80 −80 > ... ≥ −85 −85 > ... ≥ −90 −90 > ...

1 9–15 2–26 6–37 10–47 25–63
2 5–16 4–27 4–36 10–48 24–53
3 5–9 4–17 4–30 11–40 27–54
4 6–21 5–25 7–26 10–35 19–40
5 4–25 2–21 7–23 12–38 20–40
6 3–24 8–30 13–35 16–36 28–32
7 6–20 4–29 5–28 7–34 17–33
8 10–17 7–26 7–25 13–45 29–52
9 5–11 5–18 5–31 8–48 21–51
10 4–22 4–37 10–57 21–61 42–63

experimental evaluation the threshold is equal to the 85-th percentile of f(x, y)
values for all (x, y). Using the threshold T algorithm calculates:

f̂(x, y) =

{
f(x, y) iff f(x, y) > T,
0 otherwise.

(5)

The final location of the tag is determined as a center of mass of f̂(x, y), i.e:

x̂ =

∑
(x,y) x · f̂(x, y)∑
(x,y) f̂(x, y)

, ŷ =

∑
(x,y) y · f̂(x, y)∑
(x,y) f̂(x, y)

. (6)

4 Evaluation and analysis

The evaluation was conducted for 33 tags mounted on animals, during normal
operation of the farm, without affecting the natural behavior of the cows. Dur-
ing the experiment 67 animal locations were measured using a laser range finder,
with an estimated accuracy below 1m. In each test location, all anchors have re-
ported to the server several aggregated measurements containing the average
value of RSSI, total signal strength (TSS), and a number of raw RSSI measure-
ments. Overall the server received almost 5000 data points from all cows and all
locations, that were used for evaluation of the proposed localization method.

Figure 4 shows one of the test points. The blue and red marks in the figure
denote real and estimated location of the animal, respectively. The error in
location estimation equals 5.3 m. It can be seen that the highest value of the
f(x, y) function (white areas in the figure) span along the X axis (width of the
barn) causing the resulting (x̂, ŷ) to be biased towards the center of the barn.
A similar bias is observed for all the test points and is a consequence of the
proposed localization approach – first, the rings are wide and overlap largely;
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Fig. 4. Example of localization using single RSSI-ring model for each anchor. The colors
of the surface represent values of the f(x, y) function, red and blue marks denote real
and estimated location of the tag, respectively.

Table 2. The localization error of the proposed approach when using different number
and sets of anchors. The reported results were achieved for a single RSSI-ring model
for each anchor (cf. Tab. 1)

Anchors Euclidean error [m]
number list min average median max

10 1-10 0.6 8.3 7.8 24.7
8 2-9 0.6 8.5 7.5 37.7
6 1,4-7,10 0.9 9.2 8.6 23.5
6 1-3,8-10 0.7 9.4 9 23.1
4 2,3,8,9 1.8 9.8 9.4 25.2

second, because the anchors are located on the edges of the area, the center of
the ring’s mass tends to be located in the center of the barn.

Table 2 presents statistics on the accuracy of the proposed localization method
in terms of Euclidean error. The results are presented for a different number and
set of anchors used in the localization procedure. This simulates localization ac-
curacy for scenarios where fewer anchors are available in the system. The best
results are achieved when all 10 anchors are used. In this case, the mean error
is slightly above 8 m, and for over 50% of the test points (median) the error
does not exceed 7.8 m. The accuracy of the localization drops as the number of
anchors is reduced. While the mean error when using 8 anchors (except anchors
1 and 10) increases by approx. 2.5%, the error for 6 and 4 anchors is higher by
16% and 37%, respectively. Also the median and the maximal error increases as
the number of anchors drops.

The localization accuracy can be further improved if we take into account
that dairy cows on a farm are divided into groups. Due to the different feeding,
the groups reside in different sections of the barn and never mix. Consequently,
for each cow in the barn we know if she resides in the top or bottom section of
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Fig. 5. Example of localization with improved approach – using two RSSI-ring models
for each anchor

Table 3. Comparison of the localization error in the improved approach (two RSSI-ring
models per anchor) and the log-distance path loss model based localization

Method Euclidean error [m]
min average median max

Path loss based 0.43 10.3 9.9 33.18
Our (first approach) 0.6 8.3 7.8 24.7

Our (improved approach) 0.8 6.3 5.4 20.8

the barn (cf. Fig. 1). This allows building separate RSSI-ring models for cows
on the same and on the other side of the barn with respect to anchor location.
As a result, each anchor will have two RSSI-ring models: one for animals on
the same side of the barn and the other for the animals on the other side.
Figure 5 presents localization result for the same test location as in Fig. 4, but
using the improved approach. The maximal value of f(x, y) function is now
limited to a significantly smaller area and is almost entirely included with the
bottom section of the barn. For the test location presented in Fig. 5 the resulting
localization accuracy improves as the error drops from 5.3 to 3.6 meters (32%).
The improvement is also observed for all the test locations lowering the average,
median, and maximal errors to 6.3, 5.4, and 20.8 meters, respectively (Tab. 3).

The reported errors are also significantly better compared to the traditional
approach based on the log-distance path loss model (Tab. 3). For example, if one
uses the log-distance path loss model (1) and multilateration procedure from four
closest anchors (with the smallest values of RSSI), then the average and median
errors for the experimental scenario equal 10.3 and 9.9 m, respectively. This
means that the improved algorithm reduces the average and mean localization
error by approximately 39% and 45%, respectively.

The localization error is smaller for tags located closer to the center of the
barn and increases as they approach the edges. This is presented in Fig. 6 that
shows a localization error for the whole area. The surface is an extrapolation
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Fig. 6. Localization error in different locations of the area for the improved approach
(two RSSI-ring models for each anchor). The colors denote the Euclidean error.

Table 4. Comparison of the localization error for different methods based on signal
strength measurements

Approach Location Area size # Anchors Area per anchor Average error
[m2] [m2] [m]

[4] outdoor 440 4 110 2.48
[11] outdoor 11 400 20 570 6
[12] indoor 390 11 35 4.2
[2] indoor 420 10 42 3.3

Path loss model indoor 1 440 10 144 10.3
Our improved indoor 1 440 10 144 6.3

of the errors in all the measurement points. Locations are the least accurate
when tags are located close to anchor no 1 (left of the localization area). This
is possibly due to the fact that anchor number 1 was located 8 m away from the
edge of the localization area. Consequently, the ranges estimated for this anchor
were always large and could have affected the localization result.

Table 4 shows a comparison of the localization error of the proposed approach
and solutions presented in the literature, which are based on signal strength
measurements. Because the density of anchors significantly affects the accuracy
therefore apart from comparing average error we also compare the average area
covered by each anchor, which is calculated as a ratio of the area and the number
of anchors deployed. Compared to other RSSI-based systems for indoor localiza-
tion of farm animals [2, 12] the proposed approach yields slightly larger errors,
but operates in a significantly larger area, using a small number of anchors, and
does not require time-consuming fingerprinting. Lower average error is achieved
in outdoor deployments [4, 11] where radio propagation conditions are preferable
and all RSSI-based methods perform better. Additionally, the reported results
were achieved using complex system [11] and through evaluation in specific test
locations [4].
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5 Conclusions

Using BLE and RSSI for indoor localization is one of the most challenging ap-
proaches. This is because the averaged RSSI measurements are affected by the
radio channel used, attenuation due to obstacles, multi-path propagation, and
other phenomena. This makes it impossible to derive a radio propagation model
that will accurately relate the value of RSSI to the distance between the trans-
mitter and receiver. Large area, a large number of animals obstructing signal
propagation, and unfavorable location of the tags (on the side of animal neck)
harden typical approaches. Methods based on path loss models are highly inac-
curate and susceptible to variations of RSSI measurements. Methods based on
fingerprinting, on the other hand, require time-consuming measuring campaigns
that are troublesome and impractical for real-life, large scale applications. The
proposed approach overcomes the limitations of previous methods. The geomet-
ric localization is less susceptible to variations and inaccuracies in RSSI and it
requires a relatively small measurement campaign compared to fingerprinting.
Additionally, the proposed method uses small number of anchors and achieves
accuracy that is acceptable for a large range of applications, including animal
tracking and monitoring their activities.
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5. Hindermann, P., Nüesch, S., Frueh, D., Rüst, A., Gygax, L.: High precision real-
time location estimates in a real-life barn environment using a commercial ultra
wideband chip. Computers and Electronics in Agriculture 170, 105250 (03 2020).
https://doi.org/10.1016/j.compag.2020.105250
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