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Abstract. There is a range of public health tools and interventions to
address the global pandemic of COVID-19. Although it is essential for
public health efforts to comprehensively identify which interventions have
the largest impact on preventing new cases, most of the modeling studies
that support such decision-making efforts have only considered a very
small set of interventions. In addition, previous studies predominantly
considered interventions as independent or examined a single scenario
in which every possible intervention was applied. Reality has been more
nuanced, as a subset of all possible interventions may be in effect for a
given time period, in a given place. In this paper, we use cloud-based
simulations and a previously published Agent-Based Model of COVID-
19 (Covasim) to measure the individual and interacting contribution of
interventions on reducing new infections in the US over 6 months. Sim-
ulated interventions include face masks, working remotely, stay-at-home
orders, testing, contact tracing, and quarantining. Through a factorial
design of experiments, we find that mask wearing together with tran-
sitioning to remote work/schooling has the largest impact. Having suf-
ficient capacity to immediately and effectively perform contact tracing
has a smaller contribution, primarily via interacting effects.

Keywords: Cloud-based simulations · Factorial Analysis · Large-scale
simulations · Synergistic Interventions

1 Introduction

Mathematical models of COVID-19 commonly use ‘compartmental models’, which
are systems of coupled differential equations that predict global quantities such
as the number of infections at any given time [6]. Agent-based models (ABMs)
were later used to capture heterogeneity in populations [17], representing how
different individuals (e.g., in age, gender, or socio-economic factors) have differ-
ent risks, or willingness and abilities to comply with preventative measures [5].
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In the absence of a widely used vaccine, our study and previous ABMs rely on
non-pharmaceutical interventions including individual-level preventative mea-
sures (e.g., stay at home, social distance, using face masks) and subsequent
interventions (e.g., contact tracing, quarantining). There are several limitations
to these studies. First, previous studies focused on the effects of a small subset of
interventions commonly adopted by national governments, and not all interven-
tions are applied in conjunction. In a sample of 10 studies [4], we noted that an
average of only 2.3 interventions are used simultaneously, which is significantly
less than the number of interventions that have been implemented or consid-
ered by governments [15]. Second, when several interventions are implemented,
there is limited analysis to assess whether synergistic effects are obtained or
whether most of the benefits can be attributed to only some of the policies.
Identifying the right set of synergistic interventions is an important information
for policy-making, particularly as compliance becomes an issue. Finally, we fre-
quently note reporting issues such as an insufficiently motivated number of runs
(since stochastic models need replicated runs to achieve a sufficient confidence
interval) or a coarse resolution when the target population is large.

To support policymakers in identifying the right set of interventions and
provide the necessary confidence in high-stake computations, our paper uses De-
sign of Experiment (DoE) techniques and large-scale cloud-based simulations
that measure the individual and interactive effects of interventions at a detailed
level. Specifically, our contributions are twofold: 1 We measure the impact of
six interventions on disease prevalence and mortality by accounting for interac-
tive effects. Our interventions include face masks, social distancing, stay-at-home
orders, testing, contact tracing, and quarantining. We simulates these interven-
tions at various levels of adherence, thus accounting for possible variations in
behavioral responses. 2 We provide all results at a very accurate population
scale of 1 : 500 for the USA and within a confidence interval of at least 95%.
This requires a massive number of computationally intensive experiments, which
are performed through the cloud via the Microsoft Azure platform.

The remainder of the paper is structured as follows. In section 2, we describe
the procedures of our experiments, including the principles of factorial designs of
experiments. Our results are discussed in section 3. For an overview on modeling
the biology and policies for COVID-19, or potential methodological limitations
to this study, we refer the reader to our supplementary online materials [4].

2 Methods

Our simulations are performed using the Covasim platform. We ensure the
accuracy of the simulations within our application context by using (i) a res-
olution1 of 1 : 500 and (ii) a 95% Confidence Interval2 [16, pp. 184–186]. Our

1 Each simulated agent represents 500 real-world people. Given the US population of
328 million people, we have a simulated agent population of over 650, 000.

2 We identify and perform a sufficient number of replications in each scenario such
that the average results are within a 95% Confidence Interval (95% CI).
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simulation scenarios correspond to combinations of interventions at various levels
(detailed in subsection 2.2). To quantify the effects of stipulated interventions,
we report the total infections after 180 days. It is important to note that our
simulated time period starts in September 2020 rather than at the beginning
of the pandemic, when most of the population was susceptible and almost none
had recovered. By choosing a more current starting time, our simulated dynam-
ics take into account the presence of recovered agents as well as individuals who
are already at various stages of the infection. We made two modifications to
Covasim accordingly: randomly selected agents are set to recovered based on the
amount estimated by the CDC and scaled to our population resolution; and a
separate random subset of agents are set to infected, with their date of infection
chosen among the 14 days preceding the start of the simulation (based on CDC
data) such that agents are realistically set to different stages of infection.

As Covasim already contains a large number of population parameters cal-
ibrated for the US, we used the same default values in our work. There were
three exceptions, as the knowledge base upon which Covasim was built has
since evolved and needed to reflect our current understanding of real-life dis-
ease dynamics. As detailed in our supplementary online materials [4], we up-
dated the model regarding the distribution of incubation period, proportion of
symptomatic cases, and testing delays.

We focused on four categories of interventions: mask wearing (realized
as direct reductions of the susceptibility of simulated agents), lockdowns, testing,
and contact tracing. Several parameters are required for each category in order to
precisely characterize how the intervention will unfold. For instance, testing is a
matter of how many tests are available on a daily basis, when to test individuals
who’re entering quarantine as they were exposed to the virus, and the extent
to which tests are reliable (i.e. test sensitivity). We list the parameters for each
category of intervention in Table 1 together with the range of values that could
be used and the specific subset that we do use. Our choice is motivated by
the references provided in the table and is often limited to a binary due to
the experimental set-up explained in the next subsection. Every intervention is
applied for the entire duration of the simulation. Each intervention takes place
in certain networks, thus we account for the possibility that agents may wear
masks in one network but not in another.

Our goal is to measure the impact of interventions on disease prevalence. We
use a 2k factorial design Design of Experiments (DoE) in which each parameter
is set to two values, designated as ‘low’ and ‘high’ [12, pp. 233–303]. Our four
categories of interventions result in 9 parameters (Figure 1), which are listed as
X1, . . . , X9 in Table 1 together with their low and high values. A factorial design
serves to investigate the synergistic effects of these parameters, by measuring
the response y (average number of infections at the end of the simulation) for
each simulated combination. As mentioned in section 3.1, y is obtained over a
number of replications necessary to fit the 95% confidence interval to within 5%
of the average. To determine the contribution of each parameters (individually
as well as in groups), we compute the variances in response contributed by each
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Table 1. Covasim interventions used here, with the following shorthands: w → work
network, s→ school network, h→ home network, and c→ community network.

Intervention Parameters Possible Values Values Chosen Var. Ref.

Mask
Wearing

Fractional reduction in
transmissibility

[0, 1] 80% [1]

Applied networks P({w, s, h, c}) {{w, s, h, c}, {w, s},
{c}} X1

Lockdowns

Fractional reduction in
contacts for {w, s}

[0, 1] {5%, 30%} X2 [7]

Fractional reduction in
contacts for c

[0, 1] {10%, 30%} X3 [7]

Applied networks P({w, s, h, c}) X1 \ h

Testing
Number of tests per
day

Any integer {6, 11.1} × 105 X4 [8]

When to test quaran-
tined individuals

{start, end,
both, daily}

{start, end, both} X5

Test sensitivity [0, 1] {55%, 100%} X6 [10]

Contact
Tracing

% of contacts of a tes-
ted person that can be
traced

[0, 1] {0.2, 1} X7 [9]

Delay in contact trac-
ing

Any integer {0, 7} X8 [9]

Start contract tracing
without waiting for
results

{True, False} {True, False} X9

combination and perform an F -test. In other words, the variance is decomposed
over individual parameters (X1, . . . , X9) as well as interactions of parameters. We
speak of 2nd order interaction when examining the joint effect of two parameters
(X1X2, X1X3, . . . , X8X9), 3rd order interaction for three parameters, and so on.
We include up to 3rd order interactions to scan for possible effects that would
only happen when three interventions are applied jointly.

There are two special cases when applying the 2k factorial design to COVID-
19 interventions. First, we cannot assume which values of X1 (networks for mask
wearing) and X5 (whether to test at the start, end, or both times in a quaran-
tine) have the highest or lowest impact on disease incidence. Consequently, we
performed simulations for each of the three possible values of X1 and X5. We
identified the maximum and minimum number of infected individuals across
these simulations, and thus set the high and low values accordingly (Table 2).
For example, consider that we have 10 sick individuals when testing at the start
of quarantine, 100 when testing at the end, and 1000 when testing at both times.
In this case, ‘start’ is the intervention with highest impact (Xhigh

5 = start) while
‘both’ does the least to control the spread of the virus (X low

5 = both). Second,
not all 29 = 512 combinations of the high and low levels are valid because of the
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Fig. 1. Process flowchart from the identification of interventions (top) and their op-
erationalization in the simulation to the factorial Design of Experiments (DoE) and
repeated runs of a stochastic model targeting a 95% Confidence Interval.

interdependency between the networks for mask wearing and lockdown. If an in-
tervention applies to work and school (e.g., working and learning remotely) then
the fractional reduction of contact in the community should be 0 rather than
X low

3 = 0.1, since the community network is not concerned by the intervention.
To resolve this issue, we first note that the highest impact intervention is the

one that targets all networks, hence Xhigh
1 = {w, s, h, c} as seen in Table 2. The

core question is thus the low value, which is either {w, s} or c. This choices sets
either X2 or X3 (resp. the fractional reduction in contacts for c and {w, s}) to
0%. Consequently, 27 = 128 combinations are invalid and 384 = 3× 27 remain.
To avoid the complications of an incomplete parameter space, we combine two
parameters into a new variable M with 3 levels (Table 3) and keep the rest
unchanged. We can interpret this variable to be the level of “social distancing”
in the broadest sense that is enforced. Moreover, the problem reduces to an
ordinary factorial design analysis with one 3-level factor, which is analyzed using
established methods [12, pp. 412–414].

3 Results and Discussion

Mask wearing together with transitioning to remote work/schooling has the
largest impact (Table 4). It interacts with the constructs having the next largest
impacts: ability to perform contact tracing and whether to start contact trac-
ing without waiting for test results. Our finding about the importance of masks
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Table 2. Maximum responses caused by
each choice of variables X1 and X5.

Variable Value Max Response Level

X1

{w, s, c, h} 678.93 High
{w, s} 278571.55 —

c 359937.49 Low

X5

start 359862.78 —
end 359606.72 High
both 359937.49 Low

Table 3. Correspondence between lev-
els of M and combinations of levels of
X1 and X2, given c as the low level for
X1.

M X1 X2

High {w, s, c, h} 30%
Med {w, s, c, h} 5%
Low c 0%

and remote work/school differs from early works (in the first half of 2020) re-
garding COVID-19. Early systematic reviews released as preprints considered
that “the evidence is not sufficiently strong to support widespread use of face-
masks as a protective measure against COVID19” and that “masks alone have
no significant effect in interrupting spread of [influenza-like illnesses ...] or in-
fluenza” (cited in [11]). More recently, a systematic review from December 2020
concluded that only four out of seventeen studies ‘supported use of face masks
[and] a meta-analysis of all 17 studies found no association between face mask
intervention and respiratory infections” [13]. However, once results are adjusted
for factors such as age and sex, the meta-analysis “suggests protective effect of
the face mask intervention” [13]. Similarly, the most recent analyses and com-
mentaries agree that reducing social network interactions in settings such as
universities [3] is needed to avoid large outbreaks. Consequently, our result re-
garding the large effect of masks and remote work/schooling contributes to the
more recent evidence base on interventions regarding COVID-19.

Although the preventative approach of using masks and shifting into remote
work/school plays the largest role in reducing the likelihood of transmission (by
lowering both the number of contacts and the virus transmissibility per contact),
we do observe interacting effects with other intervention parameters. In particu-
lar, contact tracing is important to mitigate the pandemic, as demonstrated by
the case of South Korea [14]. Our study contributes to understanding the spe-
cific parameters underlying contact tracing, as results stress the merits of having
sufficient capacity to immediately and effectively perform contact tracing.

Limitations such as model validation are detailed in our supplementary online
materials [4]. Our simulations used a factorial analysis in the artificial environ-
ment afforded by a model: these results could be contrasted to real data, as
different US states and countries have implemented different combinations of in-
terventions at various points in time. In addition, our results are reported using
the confidence interval method to handle the stochastic nature of the simula-
tions, but parameters may have different levels of uncertainty [2]. Finally, the
scale of 1 : 500 (resulting in over 650, 000 agents) was the maximum simulation
size that we could perform given the number of repeats and hardware memory
limitations. Accuracy may thus be improved by simulating a full population.
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Table 4. Factors responsible for ≥ 1% of variance in the number of new infection cases

Variable(s) Meaning Contribution (%)

M Masks + remote work/school 66.638
M and X7 Masks + remote work/school, and ability to trace con-

tacts of tested individuals
13.759

X7 Ability to trace contacts of tested individuals 8.953
M and X9 Masks + remote work/school, and starting contact

tracing without waiting for test results
2.804

X9 Contact tracing starts without waiting for test results 2.033
M and X8 Masks + remote work/school + contact tracing delay 1.077
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