
Deep convolutional neural networks in
application to kidney segmentation in the

DCE-MR images

Artur Klepaczko1, Eli Eikefjord2, and Arvid Lundervold2,3,4

1 Lodz University of Technology,  Lódź, Poland, aklepaczko@p.lodz.pl
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Abstract. This paper evaluates three convolutional neural network ar-
chitectures – U-Net, SegNet, and Fully Convolutional (FC) DenseNets –
in application to kidney segmentation in the dynamic contrast-enhanced
magnetic resonance images (DCE-MRI). We found U-Net to outperform
the alternative solutions with the Jaccard coefficient equal to 94% against
93% and 91% for SegNet and FCDenseNets, respectively. As a next step,
we propose to classify renal mask voxels into cortex, medulla, and pelvis
based on temporal characteristics of signal intensity time courses. We
evaluate our computational framework on a set of 20 DCE-MRI se-
ries by calculating image-derived glomerular filtration rates (GFR) –
an indicator of renal tissue state. Then we compare our calculated GFR
with the available ground-truth values measured in the iohexol clearance
tests. The mean bias between the two measurements amounts to -7.4
ml/min/1.73m2 which proves the reliability of the designed segmenta-
tion pipeline.

Keywords: Semantic segmentation · Convolutional neural networks ·
Dynamic Contrast-Enhanced MRI · Kidney perfusion modeling.

1 Introduction

1.1 Diagnostics of the kidney

Contrast-enhanced magnetic resonance imaging (CE-MRI) is one of the methods
routinely used in clinics for the diagnosis of renal impairments. It allows visu-
alization of the kidney lesions such as tumor, cysts or focal segmental glomeru-
losclerosis. Moreover, if image acquisition is performed in a dynamic sequence,
resulting in a temporal series of CE-MRI volumes, it is possible to determine
the glomerular filtration rate (GFR) based on image data. GFR can be affected
by various renal diseases which lead to the loss of kidney filtration performance.
Thus, quantification of renal perfusion provides an objective way for assessment
of the potential of the kidney to restore its functional characteristics. In con-
trast to gold standard serum creatinine clearance test, image-derived GFR can

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_50

https://dx.doi.org/10.1007/978-3-030-77967-2_50


2 A. Klepaczko et al.

be calculated for a single kidney, thus allowing lateral differentiation of kidney
diseases, while providing spatially-resolved information on tissue demage.

In principle, the dynamic contrast-enhanced (DCE) MRI examination pro-
duces a series of T1-weighted volumes acquired at multiple time steps in the time
interval covering the passage of a contrast agent (CA) through the abdominal
arterial system. While the CA bolus enters the capillary bed and then tubular
network of the kidneys, it effectively increases the T1 relaxation time of the pen-
etrated tissues and modifies the contrast in the image. The temporal dynamics
of this image signal intensity reflects physiological conditions of kidney function
and constitutes the basis for pharmacokinetic (PK) modeling.

There have been numerous PK models proposed in the literature. Among
those specifically dedicated to the kidney, one should mention the 2-compartment
separable and filtration models proposed in [17] and [19], respectively. In this
paper, the latter model will be used to estimate GFR for the experimental data
available in our study. There were also more complex models proposed, such as
e.g. the six-compartment formulation in [12]. However, these approaches became
less popular due to unstable behavior of optimization procedure while fitting
models parameters to image data.

In any case, application of the PK models require prior segmentation of
the kidney parenchyma into cortex and medulla. Moreover, the pelvis needs
to be separated as it does not contribute to the renal filtration process. Only
voxels which contain renal nephrons have to be take into account. Thus, precise
segmentation of the kidney regions is a crucial step in automated analysis of the
dynamic contrast-enhanced MRI.

1.2 Related work

The problem of kidney segmentation has been tackled by many authors. Fre-
quently, voxels are classified based on their intensity time courses. For example
in [23], voxels are clustered by the k-means algorithm. This approach was further
developed in [13], where signal intensity time courses were preprocessed by the
discrete wavelet transform. Image volumes were first manually cropped to cubic
regions of interest (ROI) covering single kidneys. Then, the extracted wavelet
coefficients of the ROI voxel time curves were submitted to the k-means clus-
terer. A problem which appears here is that there arises a need for the clustering
algorithm to extract not only the three renal classes but also to separate them
from the surrounding tissues. It is a frequent source of error since other tissues
(liver, spleen and pancreas) exhibit signal dynamics similar to the kidney.

Therefore, a common strategy consists in firstly separating a whole kidney
from other parts of an image. The delineated regions of interest should precisely
fit kidney borders in order to get rid of all neighboring voxels. An example of
such a solution are the area-under-the-curve maps (AUC) [3]. Those voxels in
the DCE-MRI sequence which are penetrated by the tracer agent appear bright
on AUC maps due to the largest area under their signal intensity time courses.

The coarse-to-fine segmentation strategy was also applied in [21], where the
concept of Maximally Stable Temporal Volumes (MSTV) was introduced. The
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MSTV features allow to recognize kidneys by detecting spatially homogeneous
and temporally stable structures. Spatial homogeneity is defined in terms of
image binarization performed with a large span of thresholds. Independently
from a threshold value renal voxels remain bright and possess bright neighbors in
all 3 directions of the 3D space. Temporal stability, in turn, is reflected in the fact
that spatial homogeneity of kidney voxels is observed in adjacent time frames of
the imaging sequence. Fine-grained segmentation is obtained by reducing voxels
time courses to vectors of principal components, which are next partitioned by
k-means to multiple clusters.

Similarly, in [22], the first stage of the segmentation procedure employs Grub-
Cut algorithm to create renal masks. Fine-tuning is achieved by classifying voxels
with a pre-trained random forest classifier. Voxels are characterized by their re-
spective image intensities in selected time frames of the dynamic sequence as well
as their location within the ROIs constructed in the first stage. Although both
MSTV- and GrubCut-based contributions seem to produce satisfactory results,
they are rather conceptually complex algorithms, unavailable in open-source
software. As such, they cannot be easily adopted by the clinical community.

On the other hand, with the advent of deep learning (DL) methods, semantic
segmentation networks offer an attractive computational methodology for the
problem of automatic kidney delineation in MR images. For example, in [10]
various network architectures, i.e. fully convolutional network [16], SegNet [1],
U-Net [15], and DeepLabV3+ [2], have been tested for segmentation of prostate
cancer in T2-weighted MRI. Anatomical MR images of polycystic kidneys were
segmented by a custom convolutional neural network (CNN) in [11]. Another
approach has been presented in [20], where deep learning was employed for direct
inference of brain perfusion maps from a DCE-MRI sequence without explicitly
fitting a PK model to measured signals. However, there has been only a moderate
number of DL-based approaches targeting DCE-MRI of the kidney. As one of few
exceptions, the study described in [5] presents a cascade of two CNN networks.
The first network roughly localizes the left and right kidney in a 4D DCE-MR
image, whereas the second one performs fine delineation of renal borders.

1.3 Current contribution

This paper presents a novel computational framework for automated segmenta-
tion of the kidney and its internal structures in the DCE-MR images using:

1. a convolutional neural network for delineation of the kidney parenchyma;
2. a classifier trained in supervised manner to partition parenchymal voxels

into cortex, medulla and pelvis.

With regard to task 1, in order to find an optimal solution we have test three
encoder-decoder CNN architectures: U-Net [15], SegNet [1] and 100-layers Fully
Convolution DenseNets [9], referred to as Tiramisu. For the task 2, we have se-
lected the support vector machine (SVM) classifier with the radial basis function
kernel as it proved in our experiments to outperform other tested algorithms.
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Fig. 1. Overview of the designed segmentation pipeline.

The proposed segmentation pipeline is visualized in Fig. 1. The initial coarse
segmentation is accomplished by a neural network. This step is performed on
subsequent two-dimensional cross-sections of a single volumetric image from the
DCE-MRI sequence. This image corresponds to the frame of the highest signal
enhancement in the cortex region, when the partitioning of the renal parenchyma
into cortex and medulla is clearly visible.

Each cross-section is divided into left and right sides of 96-pixel width. On
a given side, a centrally located image patch of 96-pixels height is selected. In
this way, we ensure that left and right kidneys are processed separately. Prior
to segmentation, we perform DCE image series matching in the time domain
using B-splines deformable registration [8] to suppress motion artifacts. Thanks
to image registration, kidney masks generated in one frame can be applied to
all other frames of the dynamic series. Thus, renal voxels are prescribed feature
vectors composed of MRI signal intensity values measured in subsequent time
points. In order to obtain more general and compact characteristics of the sig-
nal dynamics, we extract feature aggregates using PCA transform. Eventually,
a classifier trained to discriminate between temporal characteristics of cortex,
medulla and pelvis regions assigns a voxel to an appropriate category.

In order to prove scalability of the designed framework, the proposed method-
ology was verified in the leave-one-subject-out manner based on the cohort of 10
healthy volunteers, each scanned twice with the DCE-MRI method. Hence, CNN
network and classifier training was repeated 10 times, each time with one patient
put apart. It was then possible, to objectively verify, how the system behaves
in case of a subject not seen during the training phase. Between the scanning
sessions, renal performance of each subject was evaluated using iohexol clearance
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procedure to establish the ground-truth value of the glomerular filtration rate
and enable validation of the image-derived GFR measurements.

2 Semantic segmentation of the kidney

2.1 U-Net

The U-Net convolutional neural network was originally developed for segmenta-
tion of neuronal structures in electron microscopic stacks and proved effective in
numerous other biomedical applications. As said, the input to our model is a 2D
grey-level image – a 96× 96-pixel patch of a DCE-MRI volume cross-section.

The U-Net network contains two symmetric paths – a contractive and an
expansion one. The goal of the contractive path is to encode image pixel intensity
patterns. It is accomplished by convolution with a series of 3×3 filters of trainable
weights. Filters outputs activate the main processing components of the network
– the neurons called rectified linear units (ReLU). They allow for modeling non-
linear relationship between image features and the output segmentation map. It
is followed by the 2× 2 max-pooling operation which down-samples the feature
maps.

Contraction is repeated four times to extract image descriptors on various
scale levels. Each level is formed by two convolutional layers followed by a batch
normalization layer. The convolution and normalization layer pairs are separated
by the dropout layer, which randomly sets 20% of the input nodes to 0. This
mechanism, active only during the training phase, prevents the network from
overfitting [18].

The output of the last down-sampling block is passed on to the expansion
path. It is built up from the same number of up-sampling levels as the contrac-
tive part and its main task is to recover original spatial resolution. In this study,
up-sampling is realized by transposed convolution. Decoding blocks are also com-
posed of two pairs of convolutional and batch normalization layers. However, no
dropout mechanism is inserted in-between. Moreover, the high-resolution feature
maps extracted in the down-sampling path not only feed the subsequent encod-
ing layers but they are also concatenated to the inputs of the decoding layers at
the respective levels of the up-sampling path. These additional connections help
the decoding blocks to restore kidney segments localization more precisely.

The output of the last up-sampling block is connected to a convolutional layer
with a 1×1-size filters. It performs pixel-wise convolution of the filter kernel with
a 64-element feature vector and then submits the result to an output activation
function. In our design, a sigmoid activation is used since the final decision is
binary – a pixel belongs to renal parenchyma or background.

2.2 SegNet

SegNet is another encoder-decoder architecture [1], whose main characteristic is
the application of the VGG16 [14] topology as the encoder backbone. Specifi-
cally it uses its first 13 convolulational layers to extract image features. Also, the
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method introduced in the decoder path to up-sample feature maps was differ-
ent than the strategies used in fully convolutional networks. In this alternative
approach, SegNet keeps record of the pixel indices selected by the max-pool op-
eration and uses them in the corresponding decoder levels to perform non-linear
up-sampling. Up-sampled maps are, in principle, zero-padded in positions not
indicated by the memorized indices. Eventually, dense feature maps are created
by convolution of up-sampled maps with trainable filter banks. Originally, Seg-
Net, as majority of semantic segmentation neural networks, were developed for
outdoor and indoor scene understanding, usually represented by the RGB image
files. It conforms with the input of the VGG16 architecture pretrained for the
color-coded images. Thus, its use for greyscale DCE-MR data requires duplica-
tion of the single image intensity channel to two other color channels, which is
obviously a computational overhead.

2.3 Fully convolutional DenseNets

The Tiramisu network builds on the concept of Densely Connected Convolutional
Networks, which occurred effective in multiple classification tasks [7]. In this
approach, both the encoding and decoding paths contain the so-called dense
blocks. Each block is composed of batch normalization layer, ReLU activation,
3× 3 convolution and dropout (with proability = 0.2). The input to each layer
is concatenated with its output to feed the next layer. Also, each layer output
is concatenated to the final output of the dense block. In between of the dense
blocks there are transition down and transition up units which perform either
max-pooling or up-sampling. The latter operation is conducted by transposed
convolution, similarily to the U-Net architecture. The number of layers within
each dense block can be adjusted to the needs of a given application. In our
experiements we used the same configuration as it was proposed in the original
paper. Therefore, we used 4, 5, 7, 10 and 12 layers in the contractive path, and
the same number of layers in the reverse order in the expansion part of the
network. Together with the transition down and up layers, there were 103 layers
in total.

2.4 Network training

In case of each network, trainable weights were initiated to random state by the
method of He et al. [6]. The training process was conducted on image patches
cropped from the DCE-MRI volumes, each containing a single, left or right
kidney cross-section. As described above, 96 × 96-pixel image patches were ex-
tracted from volumes of the DCE sequence corresponding to the perfusion phase,
i.e. time frames of the maximum signal contrast between cortex and medulla.
In order to increase the number of training images, for each study we actually
selected 3 such time frames – the one with maximum signal enhancement in the
cortex region plus one preceding and one succeeding time frame. In each image
volume, a single kidney is visible on 12 slices on average. It gives approximately
1440 training patches.
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Additionally, we enlarged the training set through data augmentation. This
was accomplished by picking 10 different vertical positions of the image patch
and by randomly mirroring it in the horizontal direction. While selecting patch
positions, we made sure that it embraced sufficiently large portion of the im-
age center containing significant fragment of the renal parenchyma (see Fig. 2).
Overall, the number of images available for training reached the value of 13964.
One-third of the training images were separated for the validation purposes.

As said above, we have trained 10 different CNN models, one for every pa-
tient. While building a model dedicated to a given subject, its corresponding
image patches (irrespectively of the examination session) were removed from the
training and validation sets and used only for testing. Weights of the network
were updated using the stochastic gradient descent algorithm with the constant
learning rate = 0.01 and momentum = 0.99. The loss function chosen to optimize
was the binary cross-entropy criterion, defined as

H = − 1

N

N∑
i=1

yi log (p(yi)) + (1− yi) log (1− p(yi)) (1)

where N is the number of voxels, yi is the true voxel label, and p(yi) denotes the
probability that an i-th voxel belongs to yi category. Additionally, in order to

Left Right Left Right

Frame #14 Frame #16

Fig. 2. Examples of training image patches extracted from left and right kidneys from
two time frames of Subject 1. Data augmentation was realized by image flipping in
horizontal direction and vertical shifting of patch location relative to image center.
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monitor the quality of kidney segmentation over training epochs, we calculated
the Jaccard coefficient, hereafter designated as IoU (intersection-over-union)

IoU =

∑K
i=1 yi ∧ y

pred
i∑N

i=1 yi ∨ y
pred
i

, (2)

where K designates the number of pixels in a processed slice and ypredi is the pre-
dicted pixel category. Here, categories are Boolean-valued and a pixel is labeled
True if it belongs to the kidney, False otherwise. In the case of each subject, the
optimization algorithm was run for 50 epochs. The stored model corresponded
to the epoch with the minimum score on the loss function obtained for the
validation data set.

3 Renal voxels classification

3.1 Feature extraction

Differentiation of voxels representing particular renal compartments could be
based on raw signal intensity time courses. We propose, however, to transform
signal waveforms into the space of reduced dimensionality using principal com-
ponent analysis (PCA). The purpose of this transform is not only to decrease
the complexity of the resulting classification model but also to extract a more
general characteristics of the kidney tissue, representative for various subjects.
We presumed that the extracted PCA components should explain at least 90%
of the original data set variance. Therefore, in the case of our experimental data
(see Sect. 5.1), where each dynamic sequence consisted of 74 time frames, vectors
of 74 temporal features (i.e. image signal intensities in subsequent time steps)
were transformed into the space of 20 PCA feature aggregates.

3.2 Feature vectors classification

Assignment of renal voxels to cortex, medulla or pelvis is performed by a classi-
fier trained in the supervised manner. In our approach, historical data serve as
patterns for building appropriate decision rules, later applied to new studies. The
training vectors were acquired from regions of interest manually annotated in
the respective parenchymal locations. The annotations were made only in voxels
whose membership was unambiguous (see Fig. 3a-b), thus letting a trained clas-
sifier to decide about the dominating tissue category in case of voxels partially
filled with various compartments. The number of training vectors collected from
the 20 available examinations exceeded the value of 60,000. This data set was
partitioned into 10 folds, each containing data vectors from all but one subject,
left apart for testing purposes. In a given fold, the class distribution was approx-
imately as follows: cortex – 58%, medulla – 31%, pelvis – 11%. In order to give
classifiers a chance to learn to discriminate categories with equal accuracy, in
each training fold the subsets representing cortex and medulla were resampled
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(a) (b)

(c)

Fig. 3. Preparation of training data for supervised learning of classifiers: a) ROI place-
ment in a DCE-MRI frame; b) signal time courses assigned to corresponding ROI vox-
els; c) 3-dimensional visualization of PCA feature vectors representing cortex (blue),
medulla (red) and pelvis (magenta) ROIs. The visualization was obtained by trans-
forming 20 PCA features using t-SNE method.

to match the size of the pelvis category. On average, the training set after resam-
pling embraced over 16,000 vectors per fold. In a given training fold, data from
both examination sessions were included. On the other hand, the testing folds
contained from 600 to 4,800 vectors depending on the patient and examination
session. Classifiers were evaluated using the balanced accuracy score calculated
on the test sets. As previously noted, we used support vector machines with the
radial basis function as the kernel to accomplish the classification task.

4 Pharmacokinetic modeling

The 2-compartment filtration (2CFM) model assumes that signal measured in a
given tissue voxel is a sum of contributions originating from intravascular (IV)
and extracellular extravascular (EEV) spaces [19]. Furthermore, as in each PK
model, the delivery of the gadolinium contrast agent through a feeding artery to
the kidney, is encapsulated by the so-called arterial input function (AIF). Prac-
tically, AIF in case of the kidney studies, is the time-course of the contrast agent
concentration in the abdominal aorta [4]. By convolving the AIF with a shifting
and dispersion kernel one obtains tracer concentration in the IV compartment.
Eventually, the time curve of the concentration in the EEV space is proportional
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to the integral of the concentration in the IV compartment. The proportionality
coefficient, denoted as Ktrans, controls the rate of CA transfer from IV to EEV
compartment. Ktrans multiplied by volume of the organ leads to calculation of
GFR.

Formally, the CA concentration in the tissue is given by

Ctissue (t) = Ktrans

∫ t

0

Ckid
p (τ) + vpC

kid
p (t) , (3)

with

Ckid
p = Cart

p ⊗ g (t) =

∫ t

0

Cart
p (t− τ) g (τ) dτ, (4)

where Cart
p denotes the arterial input function, vp – plasma volume fraction, and

Ckid
p – CA concentration in the blood plasma. The first term in (3) represents

the CA concentration in the EEV space, whereas the second term covers the
concentration in the IV space obtained by convolving arterial input function
with the vascular impulse response function (VIRF), defined as

g(t) =

{
0 t < ∆
1
Tg
e
− t−∆

Tg t ≥ ∆ . (5)

Variables Tg – the dispersion time constant, and ∆ – the delay interval, together
with the volume fraction vp and transfer constant Ktrans form the complete set
of the 2CFM model parameters, which we find using the Levenberg-Marquardt
non-linear least squares curve-fitting procedure.

5 Experiments

5.1 MRI data

Twenty DCE-MRI examinations were available for experiments. The datasets
were collected for 10 healthy volunteers. Each subject was imaged twice, seven
days apart (further, these examinations will be referred to as Session 1 and 2).
The acquisition sequence used standard 3D FLASH spoiled gradient recalled
echo technique with the following parameters: TR = 2.36 ms, TE = 0.8 ms,
FA = 20◦, in-plane resolution = 2.2× 2.2 mm2, slice thickness = 3 mm, acqui-
sition matrix = 192 × 192, number of slices = 30. Prior to image acquisition,
patients were administered 0.025 mmol/kg of GdDOTA at 3 mL/s flow rate. The
contrast agent was injected intravenously. Then, 74 volumetric scans were gath-
ered at 2.3 seconds time intervals. In order to validate the obtained estimates
against ground truth values, volunteers underwent iohexol clearance tests. The
measurement was carried out by administrating a dose of 5 mL of iohexol (300
mg I/mL; Omnipaque 300, GE Healthcare) and then by acquiring a venous blood
sample after 4 hours. All volunteers gave their written informed consent for par-
ticipation in the examinations. The study protocol, including its ethical aspects,
was approved by the Institutional Review Board at the Haukeland University
Hospital Bergen, Norway.
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Ground truth U-Net SegNet FCDenseNets

Fig. 4. Example outputs of the tested segmentation networks.

5.2 Results

Figure 4 shows example outputs of the tested semantic segmentation networks
for one of the participating subjects along with the ground-truth annotation
masks. In the selected image samples, it can be observed that SegNet in many
cases produces false positive regions around actual renal tissue. Apparently, how-
ever, as also shown in Table 1, across all participating subjects, it was Tiramisu
network which failed to precisely delineate parenchymal borders.

In the next stage, parenchymal voxels were classified into separate renal com-
partments. The results of classification for the test sets are presented in Table 2.
All presented scores are mean values over 10 subjects. The SVM exhibits the bal-
anced accuracy equal to 96% and also gains high rate of true positive detections,
as well as it seems to be relatively robust against false predictions. Using our
algorithm, we achieved the mean Jaccard coefficient for the cortex class in the
left kidney equal to 93.2%. In case of the other regions the IoU equated approx-
imately 91%, except for the pelvis class in the left kidney where it dropped to

Table 1. Mean Jaccard coefficients over all subjects and MR sessions.

IoU

CNN architecture Left Right

U-Net 0.941 0.940

SegNet 0.932 0.927

FCDenseNets 0.912 0.908
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Table 2. Classification metrics averaged over the testing sets – subjects 1-10, both
examination sessions.

Balanced
accuracy

Cortex Medulla Pelvis

Recall Precision Recall Precision Recall Precision

0.956 0.951 0.970 0.954 0.941 0.962 0.919

90.1%. The quality of fine segmentation can be visually confirmed by analyzing
examples of the kidney decomposition into regions shown in Fig. 5.

Validity of the results was further verified by using the obtained segmenta-
tion masks in the process of GFR assessment. The mean signals in the cortex
regions were fitted to the 2CFM pharmacokinetic model. Then, reproducibility
of image-based GFR estimates were compared against iohexol-derived measure-
ments using the Bland-Altman method. The mean difference µd for the MR
examination Session 1 was equal to -7.4 ml/min/1.73 m2. In the case of Session
2, the agreement with the reference method was found weaker (-12.9 versus -14.1
ml/min/1.73 m2).

6 Conclusions

To conclude, in this paper we presented a computational framework for support-
ing quantitative assessment of kidney perfusion by providing an automated way
of kidney parenchyma segmentation. We compared three CNN architectures for
semantic segmentation. The obtained results demonstrated superior performance
of the classic U-Net network over SegNet and FCDenseNets structures. Morever,
we showed that classification of voxels belonging to the kidney masks automat-
ically found by our designed U-Net network leads to reliable quantification of

Slices 13–16

Fig. 5. Comparison of segmentation results obtained by the proposed method (bottom
row) with ground truth annotations (top).
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renal perfusion. These findings bring closer the clinical application of DCE-MR
imaging as a routine method in kidney diagnostics. The designed segmentation
method allows for increased objectivism of the image-derived perfusion param-
eters and also potentially faster diagnosis of renal impairments.
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