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Abstract. Generative adversarial networks have already found widespread use 

for the formation of artificial, but realistic images of a wide variety of content, 

including medical imaging. Mostly they are considered to be used for expand-

ing and augmenting datasets in order to improve accuracy of neural networks 

classification. In this paper we discuss the problem of evaluating the quality of 

computer tomography images of lung cancer, which is characterized by small 

size of nodules, synthesized using two different generative adversarial network, 

architectures – for 2D and 3D dimensions. We select the set of metrics for esti-

mating the quality of the generated images, including Visual Turing Test, FID 

and MRR metrics; then we carry out a problem-oriented modification of the Tu-

ring test in order to adapt it both to the actually obtained images and to resource 

constraints. We compare the constructed GANs using the selected metrics; and 

we show that such a parameter as the size of the generated image is very im-

portant in the development of the GAN architecture. We consider that with this 

work we have for the first time shown that for small neo-plasms, direct scaling 

of the corresponding solutions used to generate large neo-plasms (for example, 

gliomas) is ineffective. Developed assessment methods have shown that addi-

tional techniques like MIP and special combinations of metrics are required to 

generate small neoplasms. In addition, an important conclusion can be consid-

ered that it is very important to use GAN networks not only, as is usually the 

case, for augmentation and expansion of the datasets, but for direct use in clini-

cal practice by radiologists. 

Keywords: generative adversarial networks, 2D 3D GAN, CT image synthesis, 

evaluation metrics, lung cancer. 

1 Introduction 

Generative adversarial networks (GANs), first proposed in [1], have already found 

widespread use for the formation of artificial, but realistic images of a wide variety of 

content, including in medicine [2, 3]. Initially, GANs in the field of medicine were 

used as an aid for augmentation of datasets for processing medical images based on 

machine learning, primarily deep neural networks. But over the past two or three 
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years, the range of scenarios for the use of GANs in medicine has dramatically ex-

panded. With the help of GANs, it is possible to form medical images of various na-

tures, which can be used as reference images when setting up automated classifiers of 

corresponding diseases, as well as for training less experienced pathologists and radi-

ologists. For example, the paper [4] reports on Amyloid Brain PET Image Synthesis, 

which simulates changes in brain tissue in Alzheimer's disease. In the work [5], using 

GAN, images of plaques in coronary arteries, which are the main cause of atheroscle-

rosis, are simulated. The authors [6], using GAN to simulate histological sections of 

liver tissue, experimentally confirmed the possibility of not storing natural tissue sec-

tions in glass and completely switching to digital histopathology, which is important 

for definitive diagnosis of non-fatty liver damage. 

Accordingly, the requirements for assessing the effectiveness of the use of GAN in 

medicine have expanded. Of the wide variety of metrics proposed for the GAN Evalua-

tion [7], only a few of them are used in medical applications. Initially, this role was 

played only by indicators of the effectiveness of training deep neural networks on da-

tasets augmented with the help of GAN - such as ROC, FROC, AUC ROC etc. But 

now, great importance is attached to the visual qualities of the generated images and the 

degree of their similarity to the simulated prototype. Therefore, assessments of visual 

similarity entered the everyday life of the medical GAN developers. For this, both mod-

el-based methods, such as the visual Turing test and t-SNE, and model-agnoctic metrics, 

such as MMD, LOO, FID, DFD etc, are used. (A more detailed description of the listed 

methods and metrics is given in the next section of the article). 

As practice shows and as literature reviews [2, 3, 8, 9] confirm, in recent years 

there has been an active and rapid development of GAN models, both in terms of 

improving architectural solutions and in terms of taking into account the specifics of 

the target area of medicine 

Adequate selection and problem-oriented adaptation of methods for assessing the 

quality of medical images generated with the help of GAN will allow not only as-

sessing the prospects of a particular development at a fairly early stage, but also iden-

tifying key influence parameters that need to be highlighted during its further devel-

opment. In oncological practice as a whole, the objects of interest are the neoplasms 

themselves and their structure, as well as the border zones between them and the sur-

rounding tissues.  

This article discusses the problem of evaluating the quality of CT images of lung 

cancer synthesized using GAN. The GAN methods are needed due to the fact that some 

specific cancer nodules are not presented well in the datasets like really small lung can-

cer nodules and etc. We describe our development of two problem-oriented GANs, 

which solve the problem of imitating malignant pulmonary nodes in 2D and 3D dimen-

sions, respectively. We justify the selection of metrics for estimating the quality of the 

generated images, аnd of the parameters needed for their adaptation for lung tissue. For 

qualitative estimating we use Visual Turing test as well as d t-distributed Stochastic 

Neighbor Embedding (t-SNE). As quantitative metrics we use inception distance (FID). 

To evaluate the performance of the classifier trained on the basis of the augmented da-

taset, we use ROC-metrics. We present the results of a comparative evaluating of the 
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constructed GAN using the selected metrics and show that from this point of view the 

development of the 2D approach seems to be more effective.  

2 Background and Related Works 

2.1 GAN’s Specifics for Lung Tissue Imitation 

Initially [1], the GAN scheme was a generator of random objects and a discriminator 

that distinguishes these objects from real ones, and a feedback loop was organized 

between both blocks through a back propagation mechanism. Modern GANs used in 

medical imaging, are far more sophisticated and more diverse in architecture [2], 

however, a problem-oriented analysis of the literature of recent years allows us to 

single out a number of main dominants. 

Although the literature presents scenarios for generating medical images using 

GANs "from scratch", i.e. from random noise without any other conditional infor-

mation [5, 10], however, in the last years the use of GANs for lung tissue imitation 

prevails in domain transformation scenarios, i.e. in image-to-image translation 

frameworks [11–16].  

In general, in order to generate high-quality medical images, 3D GANs are applied, 

i.e. 3D fragments containing nodules and surrounding tissues are used for training [6, 

13–15, 17]. This approach, of course, makes rather high demands on the complexity 

of the architecture and the level of computing resources. Meanwhile, the specifics of 

pulmonary nodes on CT scans  is their rather small dimensions, i.e. a few (up to 2–3) 

slices of the CT image are enough to display an particular node. Therefore, in recent 

studies, there is also a 2D approach to generating images of pulmonary nodes [18]. 

The Maximum Intensity Projection (MIP) approach [19, 20] looks promising here. 

MIP is a method that projects 3-D voxels with maximum intensity to the plane of 

projection, thereby providing a transition to a 2D task.  

As for up-to-date architecture for simulating pulmonary nodes, a plethora of vari-

ants are proposed here. Compared to the vanilla GAN [1], they apply various modifi-

cations of the loss function and approaches to normalization, as well as their combina-

tions. For example, [11] employs WGAN, where the loss function is defined using the 

Wasserstein distance instead of the Jensen–Shannon divergence, [16] uses WGAN-

GP, i.e. Wasserstein GAN with gradient penalty. The work of [15] is based on Condi-

tional GAN (CGAN), where a discriminator is conditioned on an additional input. In 

[13] 3D-Multiconditional GAN is proposed containing two discriminators with differ-

ent loss functions tailored for nodules and for context (surrounding tissues). In [17] a 

specialized CT-GAN based on a Conditional GAN is proposed. 

[10] proposed to use Deep Convolutional Generative Adversarial Networks (DC-

GANs), augmenting the standard GAN by using convolutional  layers along with 

batch normalization. A wide spread solution for the generation of lung tissue is Pro-

gressive GAN, where the GAN is sequentially trained to create images of increasing 

dimension. For example, [12] implemented a Progressive Growing WGAN 

(PGGAN), with sliced Wasserstein distance loss, progressive growing, and pixel-wise 

normalization. [18] proposes a combined solution named Conditional Progressive 
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Growing of GANs (CPGGANs), incorporating highly-rough bounding box conditions 

incrementally into PGGANs. Based on Progressive GAN and adding the Adaptive 

Image Normalization (AdaIN), [21] developed StyleGAN architecture, which has 

been successfully used to generate medical  images of different kind [6, 22], including 

pulmonary nodes [14]. 

 

2.2 Metrics for Evaluating the Quality of Synthesized Images 

A short list of metrics fetched in the current literature for evaluating the quality of 

medical images, was presented earlier in the Introduction section. Now we present 

their consideration in more detail with an emphasis on their applicability to lung tis-

sue imaging assessment. 

Measures for integral effectiveness of CNN-based classifier. There are well-known 

indicators of the effectiveness of training deep neural networks on datasets augmented 

with the help of GAN - such as F-measure and its components, ROC, FROC, AUC ROC 

etc. Typically, they answer slightly different research questions. For example, the ROC 

method only involves stating the presence of an anomaly in the image, while the FROC 

method additionally requires the observer to detect anomalies [23]. However, as the analy-

sis shows, in relation to the classification of lung cancer, these metrics are spread almost 

evenly in the literature. For example, as concerning to F-measure components, [10] uses 

False Recognition Rate (FRR) and True Recognition Rate (TRR), [11] applies accuracy, 

[24] and [15] estimate F-measure as a whole, [18] uses sensitivity in diagnosis with clini-

cally acceptable additional False Positives (FPs), [16] ajustes False Positive per Scan vs 

Sensitinity. Such a diversity undoubtedly complicates a comparative assessment of the 

proposed solutions. At the same time, most researchers of the GUN-assisted lung cancer 

classification use ROC-curve [11, 12, 24] or FROC-curve as its variation [13]. 

Model-based methods. For an expert assessment of the synthetic images' realism, 

the Visual Turing Test is proposed in [25]. The full Visual Turing Test involves pre-

senting real and virtual (generated) images to experienced radiologists, comparing 

them with the ground truth, and constructing a contingency table. However, the full 

procedure assumes a large amount of available statistical material for comparison [6], 

which is obviously lacking in pilot studies. Therefore, in most studies related to gen-

erative imaging of lung tissue, the Turing test is performed with different truncations 

without special justification [10, 12, 13, 15, 18] or not performed at all [11, 16]. 

One more model-based method is visualizing the data distribution via t-Distributed 

Stochastic Neighbor Embedding (t-SNE) [26]. The t-SNE method allows you to visu-

ally compare the distributions of real and generated images by translating high-

dimensional data into a lower-dimensional space. Despite the rather low requirements 

for experimental and computational resources, as well as high information content 

[27, 28], the method is still used relatively rarely to assess the quality of lung imaging 

[12, 18].  

Model-agnoctic metrics. According to [7, 29], in principle, the following model-

independent metrics can be used to assess the quality of medical images generated by 

GANs.  
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The 1-NN classifier [30] assesses the similarity of the real image (labeled as 0) and 

the generated images (labeled as 1) by Leave-one-out cross-validation (LOOCV). How-

ever, this technique involves preliminary labeling of the images synthesized, for which, 

as the authors [30] themselves note, one must employ a “naturalness discriminator”. For 

the time being, only a human expert can play this role for medical images, i.e. the tech-

nique becomes very resource-intensive and of little use for pilot projects. 

The Maximum Mean Discrepancy (MMD) [31] is a distance-measure between two 

distributions which is defined as the squared distance between their embeddings in the 

a reproducing kernel Hilbert space F, i.e. is the distance between feature means P 

and Q of compared image data X and Y having probability measures P and Q respec-

tively: 

                                          2 2
( , ) .P PMMD P Q

F
                                        (1) 

 The lower the result the more evidence that distributions are the same. Note that in 

CNN practice, when fulfilling the empirical estimation of MMD one usually limits to 

simple kernel functions [32]. 

The Fréchet inception distance (FID) [33] calculates the distance between the fea-

ture vectors of real images N(, C) and of images generated by the GAN N(w, Cw). 

FID is based on the assumption of multidimensional Gaussian distributions of real 

and generated images, i.e. the mean and standard deviation is compared, so the formu-

la is as follows: 

                  1/22 2
( , , , ) 2 ,

2
w w w w wd m C m C m m Tr C C CC                    (2) 

where  Tr(.) is the trace of  the covariance matrices of the feature vectors C and Cw. 

Note that the comparison both in (1) and in (2) is not performed on the image it-

self, but on one of the deeper layers of CNN, which allows us to get away from the 

human perception of similarity in images. On the other hand, when using the Gaussi-

an kernel function, expression (1) coincides with the first term of expression (2) up to 

notation, that is, FID and MMD metrics seem to some extent interchangeable. How-

ever, in the case of a strong discrepancy in the distributions, the use of the FID metric 

is criticized [5, 22], but for the assessment of lung imaging by the GANs, it is still 

used [12 ] as opposed to MMD. 

Summarizing the review of the use of GAN for generating images of lung tissue, 

we see a motley picture of various architectures and approaches of GAN implement-

ing, as well as of assessing the quality of the images obtained. This complicates the 

comparability of different projects and the possibility of assessing the prospects of the 

newly conducted research even at the pilot stage. In this regard, the authors of the 

article set themselves the following tasks: 

 to carry out a pilot development of two GANs with different architectures and 

dimension approach, designed to generate images of lung tissue with cancerous 

nodes, under resource constraints; 

 to select the set of metrics for estimating the quality of the generated images, 

аnd of the parameters needed for their adaptation for lung tissue;  
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 to compare the constructed GANs using the selected metrics and  to identify key 

influence parameters that need to be highlighted during its further development.  

3 Methods and Materials 

3.1 Developing and Training GAN’s Models 

For comparison, we have developed two variants of GANs, which differ both in 

architecture and in approach of image forming (in 3D or 2D projection).  

For 3D-GAN we chose CT-GAN from [17] as the baseline, but made some chang-

es to it, which involved generator and discriminator weight updates frequency ratioing 

and combining Wasserstein Loss (WL) with a baseline Mean Square Error (MSE) 

loss. Besides, we used AdaIN instead of Batch Normalization after each convolutional 

block, the normalization parameters being 

                                           
 

( )
, ,

x x
AdaIN x y y

y


 


                                      (3) 

where x is the previous layer output, y is the affine transformation. The modified 

blocks of 3D-GAN are depicted on Figure 1a. As a detection model we used the solu-

tion of [34]. 

 

Fig. 1. The blocks of 3D-GAN modified in comparison of [Mirsky]: (A) Convolutional block, 

(B) Deconvolutional block. 

For 2D-GAN we chose Syle-GAN [21] as the baseline fulfilling the  MIP ap-

proach within. Since implementation of [21] is designed to work with 3-channel im-

ages, we converted the number of channels in the input and output layers to work with 

single-channel images. We also changed the Loss function type to BinaryCrossEntro-

py. We used the VGG11 model [35] being undemanding in terms of computing re-

sources as a classifier. 

To train both GAN models, we used the open Lung Image Database Consortium 

and Image Database Resource Initiative (LIDC-IDRI) dataset [36]. For 3D-GAN we 

employed its subset, namely LUNA-16 having the following properties compared to 

the base LIDC dataset: all the nodules are calibrated more precisely (the average size 
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of nodules in LUNA16 is 8.3 mm with a standard deviation of 4.8 mm) compared to 

LIDC-IDRI (12.8 mm and 10.6 mm, respectively); each nodule is already labeled 

with a bounding box.  

For 2D-GAN training we used LIDC-IDRI in general, but selecting the DICOM 

series only with tumor nodules. In order to extract the nodule we formed a circum-

scribing cube containing the nodule itself and the surrounding (context) tissues. The 

absolute dimensions of the cube were chosen in accordance with the size of the ex-

tracted nodule (from 1 mm to 40 mm), but were resampled to a single size of 1283 

pixels and to pixel values according to Hounsfield scale [37]: 

                                      

 

  
min

max min

2
  ,

1

inx in
x

in in

 


 
                           

(4) 

with boundary values of inmax=800, inmin = –1000. In order to pass from 3D to 2D 

nodule image we performed a MIP lookup operation using the numpy package.  

 

3.2 Evaluating the Quality of Synthesized Images of Lung Tissues 

Measures for integral effectiveness. Although both GANs form images of nod-

ules in the lungs, 3D-GAN is more focused on augmentation of datasets used in train-

ing DNN-based neoplasm detectors, while 2D-GAN is more focused on augmentation 

of datasets used in training DNN-based classifiers of neoplasm types. In this regard, 

in order to evaluate the classification model in both cases, we use ROC AUC (Area 

Under ROC Curve) metrics as measures for integral effectiveness of training DNN on 

datasets augmented with the help of GAN. In addition, for evaluation of 2D-GAN-

based classifier we additionally use PR AUC (Precison-Recall Area Under Curve), 

and for 3D-GAN-based detection we use FROC in a modified form: instead of per-

scan FROC calculations [34] we calculated sensitivity over average false positives per 

a scan crop of size 1283. In this analysis sensitivity is defined as a percentage of crops 

on which the intersection over union of predicted and labeled bounding boxes is 

greater than 0.5. 

Model-based methods. We used the Visual Turing Test, but made its problem-

oriented modification. As with the traditional Visual Turing Test (see above), real and 

virtual (generated by GAN) images are demonstrated to N experienced radiologists. 

Each radiologist is presented with S sets containing 20 randomly selected images 

generated by a specific GAN, and we inform the radiologist that the exposed set can 

contain any mixture of real and generated images. Examples of the presented sets are 

shown in Fig. 2. The radiologist is asked to answer the following questions: 

 If the presented set contains nodules, then which ones are real? 

 If the presented set contains nodules, then which of them are solid (single), and 

which are subsolid (parietal)? 

Based on the test results, the False Recognition Rate (FRR) is calculated as the 

proportion of nodules correctly identified by radiologists as generated among all gen-

erated nodes. 

We calculated the t-SNE metric using the scikit package with default parameters1.  

                                                           
1 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html 
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We selected FID and MMD as model-agnoctic metrics. For implementation the 

FID metric, we used the code2 with default parameters. The implementation of MMD 

is made according to the work3; as kernel functions we used radial basis function 

(instead of Gaussian kernel function, which is a standard practice for empirical esti-

mates for CNN) and multiscale function.  

  

Fig. 2. a - An example of presentation for the evaluation of 2D-GAN. Images 1-10 contain 

nodules generated by 2D-GAN, images 11-20 are completely real. b - An example of 

presentation for the evaluation of 3D-GAN. All images contain generated nodules. 

4 Experimental Results  

Figure 3 shows the ROС-curves for the best learning epochs for 2D-GAN (a) and for 

3D-GAN (b) respectively. For 3В-GAN we also give the FROC metric (Table 1). 

 
                        a                                                    b                                               c 

Fig. 3. ROC- curves for for 2D-GAN (a, b) and 3D-GAN (c) 

Using the proposed approach of 2D-GAN for dataset augmentation we obtained the 

best values of ROCAUC=0.9604 and PRAUC=0.9625. This is better than the result of 

[11] on a comparable dataset and is only slightly inferior to the result of the same au-

thors, obtained on much more powerful computing resources [38]. For 3D-GAN, the 

best value of ROCAUC=0.95. So (see also Table 1), the proposed 3D-GAN also sur-

passes the most modern of similar GAN implementations [13], chosen as a baseline. 

                                                           
2 https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-

from-scratch/ 
3 https://www.kaggle.com/onurtunali/maximum-mean-discrepancy 
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Table 1. FROC metrics obtained for 3D-GAN from augmented and baseline model evaluation. 

Metrics mean and standard deviation are computed across 5-fold cross-validation experiments. 

Average FP 

/ crop 

0,25 0,5 1 2 4 8 Average 

Sensitivity 

(augmented) 

0.330 

±0.049 

0.433 

±0.056  

0.555 

±0.060 

0.684 

±0.058 

0.794 

±0.048 

0.854 

±0.037 

0.608 

±0.043 

Sensitivity 

(baseline) 

0.302 

±0.042 

0.414± 

0.040 

0.542± 

0.041 

0.647± 

0.030 

0.743 

±0.020 

0.822 

±0.036 

0.578 

±0.028 

 

When performing the Visual Turing Test, we recruited N = 6 radiologists, each of 

whom were presented with S = 20 test sets of 20 images each. Tables 2, 3 show ex-

amples of experimental data obtained from two radiologists. Table 4 contains the 

results of calculating the FRR metric, carried out by averaging over 6 radiologists, 

over 2 radiologists, and also for each of the two selected radiologists separately. Table 

5 contains the analogous results concerning identifying of solid and subsolid nodules.  

Table 2. Examples of the results of the Visual Turing Test. 

2D-GAN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Radiologist 1 30 15 20 20 15 10 10 20 20 20 40 25 20 10 10 20 40 15 30 20 

Radiologist 2 20 15 10 20 20 20 15 20 15 10 20 10 20 40 30 20 30 25 30 25 

Real / generated 

nodules in the set 

10/ 

10 

0/ 

20 

10/ 

10 

10/ 

10 

0/ 

20 

10/ 

10 

0/ 

20 

10/ 

10 

0/ 

20 

10/ 

10 

10/ 

10 

0/ 

20 

0/ 

20 

10/ 

10 

10/ 

10 

10/ 

10 

10/ 

10 

0/ 

20 

10/ 

10 

0/ 

20 

3D-GAN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Radiologist 1 25 20 40 30 25 20 20 30 50 40 15 20 25 10 20 15 20 30 40 30 

Radiologist 2 30 25 70 80 70 80 20 30 50 40 55 30 35 20 40 25 50 60 40 60 

Real / generated 

nodules in the set 

0/ 

20 

0/ 

20 

10/ 

10 

10/ 

10 

0/ 

20 

10/ 

10 

0/ 

20 

10/ 

10 

10/ 

10 

10/ 

10 

0/ 

20 

10/ 

10 

0/ 

20 

0/ 

20 

10/ 

10 

0/ 

20 

10/ 

10 

10/ 

10 

10/ 

10 

0/ 

20 

Table 3. FRR metrics calculated for different groups of radiologists. 

 Radiologist 1 Radiologist 2 Average for 2 

radiologists 

Average for 6 

radiologists 

2D-GAN, S=20 20,58,6 20,77,4% 20,68% 19,45,4% 

2D-GAN, S=5 205,4% 174% 18,54,7% 17,97,2% 

3D-GAN, S=20 45,518,9% 26,259% 35,814% 41 11% 

3D-GAN, S=5 286,7% 5522% 41,514,3% 4715,3% 

Table 4. FRR metrics calculated for identifying of solid and subsolid nodules 

 Radiologist 1 Radiologist 2 Average for 2 

radiologists 

Average for 6 

radiologists 

2D-GAN 92,57% 94,65% 93,66% 94,53,5% 

3D-GAN 27,519,5% 30,317.4% 28,918.5% 25.419.6% 

Figure 4 shows the visualized t-SNE metrics  for different combinations of pulmonary 

nodes (benign and malignant; real and virtual), as well as their summary, for 2D and 

3D GANs. Table 6 summarizes the experimental data for the FID metrics, as well as 

for the MMD-metrics plotted for various kernel functions. The following designations 

are adopted in the Table 6: r-v is the value of the metric between real and synthesized 
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data as a whole; rb-vb is the value of the metric between real and synthesized images 

of benign nodules; rm-vm is the value of the metric between real and synthesized 

images of malignant nodules. The advantages of using FID and MRR metrics is that 

we can make a comprehensive assessment of the generated nodules. By using Visual 

Turing Test we can carry out an integral assessment according to the context, taking 

into account the opinion of the doctor. 

Table 5. FID and MMD metrics calculated for different groups of images  

(designations decoding - in the text) 

 2D-GAN 3D-GAN 

 r-v rb-vb rm-vm r-v rb-vb rm-vm 
FID 51.61 74.98 37.35 171.10 130.93 670.66 

MMD, radial basis kernel 0.0169 0.0214 0.0287 0.0193 0.0252 0.0375 

MMD, multiscale kernel 0.0118 0.0208 0.0271 0.0123 0.0212 0.0280 

 

    
a                                                               b 

    
c                                                               d 

    
e                                                               f 

Fig. 4. Visualized t-SNE metrics  for various combinations of embeddings of images 

with pulmonary nodes: a – benign vs malignant nodules, generated by 2D-GAN; b - 

benign vs malignant nodules, generated by 3D-GAN;  c- benign vs malignant nod-

ules,  real images; d- benign vs malignant nodules,  real images;  e - all the nodules of 

dataset augmented by 2D-GAN;  f - all the nodules of dataset augmented by 3D-

GAN; 
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5 Discussion 

The experimental data (see Fig. 4 and Table 1), as well as a comparison of these 

data with baselines show that from the point of view of augmentation of datasets used 

for CNN training, the developed GANs are at a completely conventional level, i.e. the 

chosen architectural and parametric solutions are quite successful. Note that 3DGAN 

was trained in obviously better conditions, since the nodule detection on LUNA16 is 

considered less challenging than on LIDC-IDRI due to the greater reliability of the 

data and smaller scatter in the size of nodules [17].  

Let's move on to the analysis of the visual quality of the generated images (Fig. 2, 

3 and Tables 2-5). The number of radiologists performing a Visual Turing Test and 

their professional experience will obviously affect test results. Despite this, in most 

works related to the visual assessment of the quality of images generated by the GAN, 

the authors limit themselves, at best, to a statement of the number of experts involved, 

and, as a rule, there are only two [12, 13] or one [22] of them, and in [28], even an 

expert radiologist and a non-specialist are used. The results of our experiments, pre-

sented in Table 4, show that when passing from averaging the FRR values over 6 

experts to averaging over 2 experts, the mathematical expectation, although it 

changed, remained within the standard deviation, and for some experts it was the 

significant change. This allows us to say that in pilot studies of the prospect of the 

GAN architecture, one can limit ourselves to two experts-radiologists, and the use of 

only one radiologist and, moreover, a non-specialist does not guarantee against the 

presence of emissions in the assessment and cannot be justified. At the same time, for 

large-scale studies, it is necessary to use stronger statistical measures of similarity, for 

example, the Fleiss kappa [39]. 

Analyzing the model-agnoctic metrics of image quality (Table 6 in comparison 

with Fig. 4), we can state that the MMD and PID metrics demonstrate different rank-

ings of the quality of the resulting images. In this case, a change in the kernel func-

tion, although it affects the absolute values of the MMD metric, does not change its 

ratio for different groups of images. The gradation of the metrics is different - the FID 

metric, unlike MMD, takes into account not only average values, but also data vari-

ance. For example, on the t-SNE visualization (Figure 4, Figure c), it can be seen that 

the real data has several outliers. Because of them, the average of real and generated 

data is different, but this practically does not affect the variance. And therefore, in this 

case, the FID metric can be considered fairer than MMD metric. In addition, it is nec-

essary to emphasize the independent role of the t-SNE metric in assessing the quality 

of the generated images of pulmonary nodules, since it allows you to visually assess 

the degree of interpenetration of the generated objects of different classes (compare 

Fig. 4, a and b). 

Comparing the developed GANs using the selected metrics, we can draw the fol-

lowing conclusions. Although, as noted above, both GANs have a fairly high efficien-

cy in terms of augmentation of datasets for CNN training, nevertheless, as can be seen 

from Table 3 and 4, as well as from Fig. 1 and 2, the visual quality of the images gen-

erated by 3D-GAN differ significantly. We can associate this with the fact that most 

of the existing GAN are focused on the generation of relatively large neoplasms, and 
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the problem of their inserting into existing images is reduced to eliminating defects at 

the boundaries between the formed image and the substrate (native tissue) (see, for 

example, [6].  

In the case of small nodules, as shown in Fig. 1 and 2, this effect is not observed, 

i.e. it is not possible to clearly identify the zones of the generated image that are most 

critical for visual assessment. Thus, direct scaling of solutions for large neoplasms to 

small sizes is hardly effective, and imitation of small neoplasms should be considered 

as a separate task when building a GAN. In our case, this was done using the MIR 

approach, but, of course, other options are also possible here. So, we consider the 

relative size of the simulated medical neoplasm to be one of the important influence 

parameters that need to be highlighted and estimated during the development of GUN 

architecture for medical purposes.  

6 Conclusion 

The specificity of lung cancer is that neoplasms are malignant nodules, which have 

small size (10-30 mm) and high morphological similarity with benign nodules nor-

mally present in the lungs. In this regard, according to the Lung Image Database Con-

sortium, LIDC) [36], even experienced radiologists correctly classify only 75.1% of 

the nodes when compared with the results of biopsy. Therefore, there is a great need 

for an early assessment of the prospects for the development of one or another tech-

nology for the implementation of GAN for this area of medicine. This article is a 

contribution to solving this problem. 

All the tasks set in the article have been solved, namely: 

 we carried out a pilot development of two GANs of up-to-date level with differ-

ent architectures and dimension approach, designed to generate images of lung 

tissue with cancerous nodes, under resource constraints; 

 we selected the set of metrics for estimating the quality of the generated images, 

including Visual Turing Test, FID аnd MRR metrics; we carried out a problem-

oriented modification of the Turing test in order to adapt it both to the actually 

obtained images and to resource constraints;  

 we compared the constructed GANs using the selected metrics; we showed that 

such a parameter as the size of the generated image was very important in the 

development of the GAN architecture.  

The proposed work may be useful for providing a baseline for future studies and 

implementing GANs for medical purposes, as well as for determining the direction of 

next future experiments in practical studies. 

The work was supported by Russian Science Foundation, Grant 19-19-006-96 
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