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Abstract. Apart from various other neural and hormonal changes caused by 
stress, frequent and long-term activation of the hypothalamus–pituitary–adrenal 
(HPA) axis in response to stress leads in an adaptive manner to the inadequacy 
of the stress response system. This leads to a cognitive dysfunction where the 
subject is no more able to downregulate his or her stress due to the atrophy in the 
hippocampus and hypertrophy in the amygdala. These atrophies can be dealt with 
by antidepressant treatment or psychological treatments like cognitive and be-
havioural therapies. In this paper, an adaptive neuroscience-based computational 
network model is introduced which demonstrates such a cognitive dysfunction 
due to a long-term stressor and regaining of the cognitive abilities through a cog-
nitive-behavioural therapy: Mindfulness-Based Cognitive Therapy (MBCT). 
Simulation results are reported for the model which demonstrates the adaptivity 
as well as the dynamic interaction of the involved brain areas in the phenomenon. 

Keywords: Stress Induced Neural Anatomy, Negative Metaplasticity, Mindful-
ness, Adaptive Causal Modeling, Cognition, Positive Metaplasticity, Therapy. 

1 Introduction 

Alteration in cognitive abilities can, potentially, be caused by the various ups and 
downs in humans’ life and body. For instance, although termed to vary person to per-
son, decline in cognitive abilities with increasing age and long-term stress have been 
confirmed by [1, 2]. Similarly, another discrepancy in the cognitive abilities is the lack 
of flexibility with age [3] which is considered very essential by many, specifically in 
changing situations. Taking the potentially negative consequences of long-term stress 
into account, various studies have reported similar findings regarding its effects in the 
long run [2, 4, 5], i.e., cognitive decline. At the cellular level, according to [6, 7], the 
cell loss and, therefore, changes in the synaptic plasticity take place because of the 
decrease in the brain-derived neurotrophic factor (BDNF) caused by the increase in the 
glucocorticoids. 

To handle this severe problem in cognition, various studies, for instance [2], suggest 
antidepressant treatment but on the other hand, [8, 9] come up with Mindfulness-Based 
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Cognitive Therapy (MBCT) [10] as an effective treatment for similar problems in gen-
eral and cognitive impairments caused by long-term stress. In MBCT, the subject is 
trained to focus on the present moment, gain awareness of himself and accept reality. 
Cognitive Behaviour Therapy (CBT) is another, almost similar therapy but according 
to [11] MBCT was found more effective when compared to CBT and that’s also the 
reason why the study presented here considers MBCT. The reason may lie in the fact 
that the later combines techniques from the former with a mindfulness training program 
which provides added value.  

Moreover, to combine these concepts into a single model, this study considers an 
adaptive network modeling approach [12] because of its efficacy and suitability for the 
adaptive and cyclic processes, as demonstrated in [13, 14].  In rest of the paper, Sect. 2 
gives brief account of the literature on the subject, Sect. 3 presents the adaptive network 
model, which is explained by simulation results in detail in Sect. 4. Finally, the paper 
is concluded in Sect. 5. 

2 Related Work  

The alteration in cognitive abilities caused by long-term stress are attributed to the neu-
ronal losses at the cellular level caused by stress. These changes are considered similar 
to those caused by depression [2]. For instance [6] links such cellular changes in the 
hippocampus to the increased level of glucocorticoid hormones, i.e., cortisol. Similarly, 
at the molecular level too, these cellular paucities were found in the hippocampus which 
are, most of the time, caused by the decrease expression of BDNF and resultant in-
creased level of glucocorticoid/cortisol [6, 7, 15]. The down-regulating role of the in-
creased level of glucocorticoids in the hippocampal expression has also been reported 
by [16]. BDNF is considered essential for neuronal survival, but [17] attributes reduc-
tion of BDNF to the potential mediating action of glucocorticoid on the hippocampus. 

The effect of the boost of glucocorticoids is referred to as negative metaplasticity as 
it downregulates adaptivity of the hippocampal synaptic connectivity. In contrast, the 
boost in the expression of BDNF is referred to as positive metaplasticity as it strength-
ens connectivity in the hippocampus. These changes in the background, at the neural 
level, cause lack of control at the forefront or what we know as cognitive loss whereby 
the subject lacks the ability to regulate his or her emotions in an adaptive manner. Hav-
ing said this, it is also possible that the same process is reversed by adequate means 
(antidepressant treatment for instance [2]), increasing the expression of BDNF. Synap-
ses process and transmit neural information with some efficacy. Alteration in the syn-
apsis is called synaptic plasticity or (first-order) synaptic adaptation. As mentioned 
above, synaptic plasticity itself can also change which is referred to as second-order 
adaptation or metaplasticity. According to [2], if metaplasticity improves the adaptive 
cognitive function, it’s considered positive metaplasticity but on the contrary, if it 
brings impairment to the aforementioned adaptive cognitive function then it’s called 
negative metaplasticity. This kind of cognitive impairment has been observed in both 
humans [18] and animals [19] as a result of long-term stress [20, 21]. 
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MBCT, that is modeled here as a treatment for the above cognitive deficit, is con-
sidered a very effective approach [8, 9]. This therapy improves psychological health by 
increasing mindfulness. It combines Kabat-Zinn’s [10] mindfulness-based stress reduc-
tion program with the techniques used in CBT. MBCT, therefore, promotes acceptance 
of feelings without judgement, focusing on the present moment and awareness of self 
[22]. Acceptance enables the person to disintegrate him or herself from the negative 
thoughts and consider emotions as a non-permanent event [23]. After this disengage-
ment from negative thoughts, the mindfulness training helps the person in positive re-
appraisal [24]. Similarly, the focus on the present moment helps the person get insight 
of his or her own feelings and sensations for successful reappraisal of his thoughts. 
Generally, there are various brain areas involved in all these processes of MBCT but 
the most responsible parts that are considered essential for successful MBCT are the 
anterior cingulate cortex (ACC), insula, temporo-parietal junction, posterior cingulate 
cortex and prefrontal cortex (PFC) [15]. Activation of ACC helps enhance attention 
regulation by sustaining attention on a chosen object. Insula and temporo-parietal junc-
tion enhance body awareness by focusing on the internal experience like emotions, 
breathing and body sensation. PFC is responsible for the control of emotion regulation. 
Moreover, PFC together with posterior cingulate cortex, insula, temporo-parietal junc-
tion also helps the person change his perspective on himself [15].  

Currently, there are various modeling techniques used in the field of artificial intel-
ligence, specifically for modeling and simulating brain processes as summarized in [25, 
26] but this study uses [12] because of its suitability for the model presented in this 
paper. This modeling approach comes under the umbrella of causal modeling which 
has a long history in Artificial Intelligence, e.g., [27, 28]. The dynamic and adaptive 
perspective on causal relations makes this technique unique among other similar ap-
proaches. Here, causal effects are exerted over time. Interestingly, the causal relations 
themselves are adaptive and can change over time too. Moreover, this type of adapta-
tion can itself be adaptive too, leading to second-order adaptivity as occurs in metaplas-
ticity; e.g., [2]. The network model introduced here is a second-order adaptive tem-
poral-causal network model whereby adding dynamics and adaptation makes the model 
capable of application that would otherwise be out of scope of the causal modeling. 
This provides us with a useful opportunity to transform qualitative processes as de-
scribed in empirical literature into adaptive causal network models. Simulations then 
can show that the underlying neural mechanisms that according to the assumptions 
made in this empirical literature explain certain observed emerging phenomena are in-
deed able to generate the phenomena computationally. 

3 Multilevel Adaptive Cognitive Modeling  

The multilevel adaptive causal network modeling approach [12, 29] has been used as a 
tool for the development and simulation of the adaptive causal model. The conceptual 
and numerical representation of the network characteristics used are summarized below 
in Table 1. Currently, this technique provides a dedicated software environment with a 
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library of over 40 combination functions, publically available at https://www.re-
searchgate.net/publication/336681331, for combining the incoming causal impacts to a 
network state. The library also includes facilities to compose the existing functions into 
new functions by mathematical function composition. Moreover, self-defined functions 
can also be added to the library easily as per need of the model and phenomenon which 
makes this technique very feasible and flexible. The combination functions used in the 
current paper are shown in Table 2. 

Table 1. Conceptual and numerical representations of the network characteristics used 

Concept Conceptual Representation Explanation 

Connectivity characteristics  

States and  
connections 

X, Y, X®Y Describes the nodes (representing state varia-
bles, shortly called states) and links (represent-
ing causal connections between states) of the 
network  

Connection 
weight 

wX,Y A connection weight wX,Y (usually in [-1, 1]) 
represents the strength of the causal impact of 
state X on state Y through connection X®Y 

Aggregation characteristics  

Aggregating 
multiple im-

pacts on a state 

cY(..) For each state Y (a reference to) a combination 
function cY(..) is chosen to combine the causal 
impacts of other states on state Y 

Timing characteristics  

Timing of the 
effect of causal 

impact 

hY For each state Y a speed factor hY ³ 0 is used 
to represent how fast a state is changing upon 
causal impact 

Concept Numerical representation Explanation 
State values 
over time t 

Y(t) At each time point t each state Y in the model 
has a real number value, usually in [0, 1] 

Single causal 
impact 

impactX,Y(t) 
= wX,Y X(t) 

At t state X with a connection to state Y has an 
impact on Y, using connection weight wX,Y 

Aggregating 
multiple causal 

impacts 

aggimpactY(t) 
= cY(impactX1,Y(t),…, impactXk,Y(t)) 
= cY(wX1,YX1(t), …, wXk,YXk(t)) 

The aggregated causal impact of multiple 
states Xi on Y at t, is determined using combi-
nation function cY(..)  

Timing of the 
causal effect 

Y(t+Dt) = Y(t) +  
hY [aggimpactY(t) - Y(t)] Dt 
= Y(t) + hY [cY(wX1,YX1(t), …, wXk,YXk(t)) - 
Y(t)] Dt 

The causal impact on Y is exerted over time 
gradually, using speed factor hY; here the Xi are 
all states with outgoing connections to state Y 

Table 2. Basic combination functions from the library used in the presented model  

 Notation  Formula Parameters 
Advanced  
logistic sum alogistics,t(V1, …,Vk) [ "

"#$%𝛔(()#⋯#(+%𝛕)
		− 		 "

"#$𝛔𝛕)
](1+e-στ) Steepness s>0 

Excitability threshold t 
Hebbian 
learning hebbµ(V1, V2, W) 𝑉"𝑉2(1 −𝑊) + µ𝑊 Persistence  

factor µ>0 
Identity  id(V) id(V) = V  

 
Using this technique, we propose an adaptive causal network model with connectiv-

ity as given in Fig. 1. A description of the various states of the model is provided in 
Table 3 where the background colors differentiate between the different levels of the 
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model. The base level refers to the basic functioning of the model, involving the regu-
lation of the negative emotions.  

The first-order adaptation levels of the model explicitly represent weights wX,Y of 
some of the connections in the base model by first-order self-model states WX,Y (also 
called reification states). For instance, 𝑿"7 and 𝑿"8 are first-order self-model states 
representing the adaptive connection weights wadrenalcortex,hippocampus and wadrenalcortex,PFC  , 

i.e., the connections represented by the two outgoing light-blue colored arrows from 
𝑿9, in the base model, respectively. The persistence µ and speed factors h of these 
connections’ adaptation states 𝑿"7 and 𝑿"8 are represented by second-order self-model 
states 𝑿": (𝐌<=>?@A=B%CDDEFG<H), 𝑿"9 (𝐇<=>?@A=B%CDDEFG<H) and 𝑿"J (𝐌<=>?@A=B), 
𝑿"K(𝐇<=>?@A=B), respectively. The impact of these self-modeling states on their respec-
tive states in the lower order is represented by the red downward connections from the 
upper levels to the lower levels. 

Table 3. States and their explanation 

States Role in the model Level 
X1 stimulus Anything causing stress in the real world  

 
 
 
 
 
 
 

Base Level 

X2 thalamus Processing of sensory information 
X3 amygdala Detects negative emotions and informs HPA to respond [15] 
X4 hypothalamus 

A
ls

o 
ca

lle
d 

H
PA

 a
xi

s  Part of autonomic stress response system which re-
leases cortisol in the body to handle the situation [30].  X5 anterior-pituitary 

X6 adrenal-cortex 
X7 hippocampus Memory formation [15] 
X8 PFC Regulator of the emotions [15] 
X9 ACC Activated by MBCT where:  

- ACC regulates attention, 
- Insula together with temporo-parietal-junction gives body 

awareness, 
- PFC, posterior cingulate cortex, insula and temporo-parietal 

junction helps in changing one’s perspective on the self [15]. 

X10 insula 

X11 
temporo-parietal-
junction 

X12 
posterior-cingu-
late-cortex 

X13 𝐖MNOPQRNS%T$$UVWMX First-order self-model states for hebbian learning representing 
connection weights wadrenalcortex,hippocampus 
and wadrenalcortex,PFC  

First-Order 
Self-Model 

Level X14 𝐖MNOPQRNS 

X15 𝐌MNOPQRNS%T$$UVWMX These states represent the adaptive control of plasticity, also 
called metaplasticity as described for instance in [2, 4, 5]. The 
hormones released by HPA which can cause negative as well as 
positive metaplasticity in different brain parts  [30] 

 
Second-Order 

Self-Model 
Level 

X16 𝐇MNOPQRNS%T$$UVWMX 
X17 𝐌MNOPQRNS 
X18 𝐇MNOPQRNS 

Generally, there are various adaptive connections in the brain, the plasticity and met-
aplasticity of which are subject to various factors, for instance reward is one of those 
factors to be mentioned [31].  This model is however motivated by the psychological 
computational model presented in [32] but the network in this model is modeled based 
on anatomical knowledge in the light of the findings from neurosciences as presented 
in Section 2. This model, therefore, only considers the aforementioned two adaptive 
connections out of the many adaptive connections in the brain. It demonstrates the phe-
nomenon of negative and positive metaplasticity at a neural level where long-term 
stress causes cognitive loss through negative metaplasticity whereby the person loses 
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control on regulation capabilities. As a treatment, MBCT has been used in the model 
which enables the person to regain his or her cognitive control through positive meta-
plasticity. The base model is a network of main parts of human brain and body involved 
in the stress experiences and the MBCT. The first-order adaptation represents the hor-
monal changes taking place as a result of stress and its treatment i.e. MBCT. The first-
order adaptation uses a Hebbian learning principle [33]. The second-order adaptation 
represents the adaptation of the first-order adaptation to control the adaptation.  

 
Fig. 1. Adaptive Causal Network Model for Therapeutic Intervention for Long-Term Stress  

In the base model when the person faces some negative stressing stimulus, it’s de-
tected by the amygdala through the thalamus. Detection of stress by the amygdala au-
tomatically activates the Stress Response System which means activation of the Hypo-
thalamic-pituitary-adrenal (HPA) axis as a result [30, 34]. The HPA releases cortisol to 
handle the situation. This works fine if this is not very frequent but repeated and pro-
longed activation of the HPA axis and hence prolonged release of cortisol blunts the 
stress response system; this is where the problem begins. In the model, the connections 
to PFC and hippocampus from the HPA model the hormonal effect of HPA on the two, 
which impairs the function of the PFC and hippocampus leading to the lack of cognitive 
control called negative metaplasticity, as mentioned.  

The MBCT practice, on the other hand, activates the ACC, insula, temporo-parietal 
junction and posterior cingulate cortex which helps the person decrease activation of 
the HPA and hence less release of cortisol over time [15]. At the neural level these 
changes are considered as positive metaplasticity as the person regains control over his 
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cognitive abilities. The M- and H- states represent the persistence and speed factor of 
the learning taking place at the respective base level connections. 

In Box 1 and Box 2, the full specification of the network characteristics needed for 
reproduction of the model results are given. These specifications are not only essential 
for the reproduction of the results demonstrated in Fig. 2-5 but also qualitatively vali-
dates the model against the relevant literature in the sense that they show that personal 
characteristics exist by which indeed the assumed neural mechanisms lead to the overall 
patterns reported in the literature. Box 1 contains the connectivity role matrices called 
mb and mcw. Here mb gives all those incoming connection to a state which are either 
at the same level or from a lower level. The downward connections are indicated in role 
matrix mcw wherein they are used as indicator of their respective adaptive connection. 
For instance, in the model in Fig. 1, state 𝑋"7 (i.e., a 𝐖-state) represents the adaptive 
base level connection from 𝑋9 to 𝑋J, the causal effect of which is modeled by the down-
ward connection from 𝑋"7 to 𝑋J. Similarly, the adaptive connection from 𝑋9 to  𝑋K is 
represented by  𝑋"8 showing the cortisol level, the frequent and increased expression 
of which causes cognitive loss.  
 

 
 
 
 
 
 
 
 
 

 

 

 

 
Box 1 Role matrices for connectivity characteristics 

Similarly, role matrices mcfw, mcfp for the aggregation characteristics and ms for 
the timing characteristics are given in Box 2.  Matrix mcfw contains selection of the 
combination functions used for aggregation of the incoming causal impact at a state 𝑋@. 
For instance, state 𝑋K uses alogistic(..) and state  𝑋"8 uses hebb(..) combination func-
tion as given in Table 2. Moreover, the first-order adaptation state X18 uses the Hebbian 
learning combination function hebb(..) from the same table. Role matrix mcfp specifies 
the parameter values for each of the combination function as indicated in mcfw. Note 
here that the red cells with numbered state names 𝑋@ in it, indicate the downward con-
nections from these states in all the matrices except mb. Role matrix ms carries all the 

mb connectivity: 

base connectivity  

1  2  3  4  5 6 7  mcw connectivity: 

connection weights 

1 2 3 4 5 6 7 

X1 stimulus X1 
   

    X1 stimulus 1       
X2 thalamus X1 

   
    X2 thalamus 1       

X3 amygdala X2 X7 X8 X10     X3 amygdala .7 .1 -.8 .1    
X4 hypothalamus X3 

   
    X4 hypothalamus 1       

X5 anterior-pitui-
tary 

X4 
   

    X5 anterior-pitui-
tary 

1       

X6 adrenal-cortex X5 
   

    X6 adrenal-cortex 1       
X7 hippocampus X3 X6 X8 X10     X7 hippocampus .15 X13 .4 .22    
X8 PFC X3 X6 X7 X9 X10 X11 X12  X8 PFC .15 X14 .22 .2 .2 .2 .2 
X9 ACC X3 X8 X12 

 
    X9 ACC .74 .01 1     

X10 insula X3 X9 
  

    X10 insula .45 1      
X11 temporo-parie-

tal-junction 
X10 

   
    X11 temporo-parie-

tal-junction 
1       

X12 posterior-cingu-
late-cortex 

X8 X9 
  

    X12 posterior-cin-
gulate-cortex 

.15 1      

X13 𝐖MNOPQRNS%T$$UVWMX X6 X7 X13 
 

    X13 𝐖MNOPQRNS%T$$UVWMX 1 1 1     
X14 𝐖MNOPQRNS X6 X8 X14 

 
    X14 𝐖MNOPQRNS 1 1 1     

X15 𝐌MNOPQRNS%T$$UVWMX X6 X7 X13 X15     X15 𝐌MNOPQRNS%T$$UVWMX -1 1 1 1    
X16 𝐇MNOPQRNS%T$$UVWMX X6 X7 X13 X16     X16 𝐇MNOPQRNS%T$$UVWMX -1 1 1 1    
X17 𝐌MNOPQRNS X6 X8 X14 X17     X17 𝐌MNOPQRNS -1 1 1 1    
X18 𝐇MNOPQRNS X9 X8 X14 X18     X18 𝐇MNOPQRNS -1 1 1 1    
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speed factor values of the states. In role matrix ms, the rows with red cells represent the 
state with adaptive speed factors i.e. 𝑋"7 and 𝑋"8. 

 

 

 

 

 

 

 

     

 

 

 
 
 
Box 2 Role matrices for aggregation and timing characteristics 

4 Simulation Results 
Simulation results for an example scenario are provided here with and without MBCT, 
which shows how a person can go into a complete loss of cognitive abilities (caused by 
long-term stress) contrary to recovery from the cognitive loss. The results can be ob-
tained by providing the values given in Box 1 and Box 2 to the dedicated software as 
mentioned above with the initial values of the states as shown in Table 4.  

Table 4. Initial values of the states  

State stimulus 
All other 

base 
states 

Cortisol-
feedback 

(W) 

Cortisol 
(W) 

𝐌ZNOPQRNS%T$$UVWMX 𝐇ZNOPQRNS%T$$UVWMX 𝐌ZNOPQRNS  𝐇ZNOPQRNS 

Value 1 0 0.3 0.3 0.5 0.9 0.5 0.9 

Fig. 2 demonstrates the effect of long-term stress at the neural level where frequent 
and long-term expression of the cortisol by HPA blunts the autonomic stress response 
system. It can be seen that initially when the amygdala gets activated by some kind of 
stressful event, the hippocampus and PFC also gets activated which helps in activating 

mcfw 
aggrega-

tion: 1 2 3 

 

mcfp 
aggrega-

tion 1 2 3 

 

ms timing: 

Combination 
function weights 

alo-
gisti

c 

heb
b 

Id 
Combination function 
parameters 

Alogistic 
Hebb 
µ 

id 
1 

Speed factors s t 

X1 stimulus   1 X1 stimulus    1 X1 stimulus 0 
X2 thalamus   1 X2 thalamus    1 X2 thalamus 1 
X3 amygdala 1   X3 amygdala 8 .4   X3 amygdala .2 

X4 
hypothala-

mus   1 X4 hypothalamus    1 X4 
hypothala-

mus .3 

X5 anterior-pitu-
itary   1 X5 anterior-pitui-

tary    1 X5 anterior-pi-
tuitary .3 

X6 
adrenal-cor-

tex   1 X6 adrenal-cortex    1 X6 
adrenal-
cortex .3 

X7 hippocampus 1   X7 hippocampus 8 .52   X7 hippocam-
pus .3 

X8 PFC 1   X8 PFC 8 .56   X8 PFC .2 
X9 ACC 1   X9 ACC 18 .69   X9 ACC .01 
X10 insula 1   X10 insula 18 .64   X10 insula .015 

X11 
temporo-pa-
rietal-junc-

tion 
1   X11 

temporo-parie-
tal-junction 18 .6   X11 

temporo-
parietal-
junction 

.01 

X12 
posterior-
cingulate-

cortex 
1   X12 posterior-cin-

gulate-cortex 18 .4   X12 
posterior-
cingulate-

cortex 
.015 

X13 𝐖MNOPQRNS%T$$UVWMX  1  X13 𝐖MNOPQRNS%T$$UVWMX   X15  X13 𝐖MNOPQRNS%T$$UVWMX X16 

X14 𝐖MNOPQRNS  1  X14 𝐖MNOPQRNS   X17  X14 𝐖MNOPQRNS X18 

X15 𝐌MNOPQRNS%T$$UVWMX 1   X15 𝐌MNOPQRNS%T$$UVWMX 10 .91   X15 𝐌MNOPQRNS%T$$UVWMX 0.01 
X16 𝐇MNOPQRNS%T$$UVWMX 1   X16 𝐇MNOPQRNS%T$$UVWMX 10 1.05   X16 𝐇MNOPQRNS%T$$UVWMX 0.01 
X17 𝐌MNOPQRNS 1   X17 𝐌MNOPQRNS 10 .75   X17 𝐌MNOPQRNS 0.01 
X18 𝐇MNOPQRNS 1   X18 𝐇MNOPQRNS 10 .75   X18 𝐇MNOPQRNS 0.01 
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the associated memory and handling of the stress respectively. But as this goes longer, 
the person’s hippocampus and PFC are no longer activated despite the fact that the 
amygdala and the HPA are still very high. 

 

 

Fig. 2. Base model without therapy 

  
Fig. 3. Base model with therapy 

Contrary to Fig. 2, in Fig. 3 it can be seen that although the person’s cognitive abilities 
go down for some period, this doesn’t remain like this for longer. It’s because the per-
son undergoes the proposed therapy which helps the person slowly regain his cognitive 
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abilities. The therapy, on one hand makes the person not get stressed so easily and on 
the other hand it decreases the activation of HPA and hence expression of cortisol which 
has positive plastic and metaplastic effects on the Hippocampus and PFC. Therefore, 
both of these important parts of the brain start functioning as normal and regulate the 
negative stress the person is facing. At the neural level, this happens because in the 
MBCT, the person activates his or her other brain parts like ACC, insula, temporo-
parietal-junction and posterior-cingulate-cortex which helps the person regulate his at-
tention, get awareness of himself and change his perspective about himself, respec-
tively.  

In connection to Fig. 2 above, Fig. 4 shows the first- and second-order adaptation. 
Cortisol-feedback shows the Hebbian learning taking place at the connection in the base 
level between the HPA and hippocampus wherein impairment takes place at the hippo-
campus due to the increase level of cortisol. These states in the first-order adaptation 
level are the W-states. Similarly, the cortisol represents the second W-state which rep-
resent the learning taking place at the connection in base level between HPA and PFC.  
Moreover, the two M- and H- states represent the persistence and speed factor of the 
negative plasticity here, for metaplasticity. As this figure only shows the negative plas-
ticity, therefore these connections only decrease, representing cognitive loss. 
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Fig. 4. First and second-order self-model states indicating negative plasticity and metaplasticity 

  
Fig. 5. First and second-order self-model states indicating negative and positive plasticity and 
metaplasticity 

Fig. 5 in connection to Fig. 3 shows negative as well as positive metaplasticity. As 
already explained above, initially negative plasticity is taking place because of the ex-
cessive expression of the cortisol but when the person starts MBCT training, the situa-
tion starts getting reversed. Initially the person reverses the learning as can be seen that 
the cortisol-feedback and cortisol (the learning taking place at the HPA to hippocampus 
and PFC connections respectively) starts getting increasing. While the M- and H- states 
increasing slowly representing the persistence and speed factor of the learning taking 
place called positive metaplasticity. These changes show it effect in the form of normal 
activation of the hippocampus and PFC in response to stress as discussed in Fig. 3 
above.  

5 Conclusion 

The introduced adaptive network model is based on the neural correlates of stress re-
sponse system and MBCT. It was designed using a multilevel adaptive network-ori-
ented causal modeling approach in such a way that the anatomy of stress and MBCT 
induced brain parts were incorporated. The concepts of plasticity and metaplasticity 
have a long history in neuroscience. The model demonstrates the processes through 
simulations, showing how negative and positive metaplasticity occur with their effects 
on health. These results can be made as close to available empirical data as possible. 
This can also prove as a base for virtual training agent for therapies. The implementa-
tion of these techniques in the way done in this paper through the multilevel adaptive 
causal network model makes these processes easily understandable but also makes it 

0 200 400 600 800 1000 1200

-Time-
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-V
alu

es
-

1st & 2nd Reification Levels

cortisol-feedback
cortisol
M-cortisol-feedback
H-cortisol-feedback
M-cortisol
H-cortisol

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_46

https://dx.doi.org/10.1007/978-3-030-77967-2_46


12 

an easy choice for implementation in the form of a complex artificially intelligent sys-
tems to work in a human-like manner.  

During this study, it was learnt that, although quite a lot of work has been done in 
these areas of neuroscience, the anatomy of these processes, specifically in case of the 
aforementioned therapy are still not fully clear. Therefore, a temporal anatomy of the 
brain parts activated by such therapies would be a valuable contribution. This will not 
only make it easier to understand the flow of these complex processes going on in the 
brain but also make its implementation feasible in a more realistic way. 

Apart from the added values of the model to neuroscience research, this paper also 
acknowledges the scope of causal modeling e.g., [27, 28] which has gotten even wider 
with the dynamicity brought by the multi-order adaptation [12, 29] as it has enabled 
this modeling approach to model phenomenon that would otherwise be not possible. In 
the future, the authors aim at developing a virtual agent system for training based on 
this model where the agent would collect data from body sensors of the patient and help 
him in undergoing therapies accordingly.  
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