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Abstract. This study presents a new hybrid approach to predictive modelling of 

disease dynamics for finding optimal therapy. We use existing methods, such as 

expert-based modelling methods, models of system dynamics and ML methods 

in compositions together with our proposed modelling methods for simulating 

treatment process and predicting treatment outcomes depending on the different 

therapy types. Treatment outcomes include a set of treatment-goal values, ther-

apy types include a combination of drugs and treatment procedures. Personal 

therapy recommendation by this approach is optimal in terms of achieving the 

best treatment multipurpose outcomes. We use this approach in the task of creat-

ing a practical tool for finding optimal therapy for T2DM disease. The proposed 

tool was validated using surveys of experts, clinical recommendations [1], and 

classic metrics for predictive task. All these validations have shown that the pro-

posed tool is high-quality, interpretable and usability, therefore it can be used as 

part of the Decision Support System for medical specialists who work with 

T2DM patients. 

Keywords: optimal therapy, predictive modeling, expert-based modeling, hy-

brid approach, diabetes mellitus, machine learning. 

1 Introduction 

In modern practical medicine, there are many approaches to personalize recommending 

therapy to a patient. Medical experts without experience selecting therapy based on 

clinical guidelines [1] for the treatment of a specific disease. However, clinical guide-

lines cannot consider the whole variety of combinations of patient conditions and com-

binations of drugs. More experienced specialists select therapy based on their own ex-

perience, studies, and fundamental knowledge of the particular disease course. How-

ever, the combinations space of indicators with individual patient's treatment history is 

multidimensional and multicomponent. The experience of experts may be insufficiently 

to make a decision in each specific case from this space. Therefore, special methods are 

required for making decisions in selecting therapy tasks. In this work, we present a new 

hybrid approach for finding the optimal therapy based on statistical modeling and mod-

eling of the dynamics of the course of the disease. 
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2 Related works and problem definition 

Methods for solving the problem of finding optimal therapy for chronic disease are 

widely described in the literature. These methods include 3 approaches. 

Articles in the first approach describe methods for identifying patterns of the effect 

of a particular therapy on specific treatment targets. Patterns are identified using statis-

tical modeling tools such as statistical hypothesis testing and correlations. In work [2] 

authors discusses the principles of rational using of antibiotics for sepsis and septic 

shock and presents scientifically based recommendations for optimal antibiotic therapy. 

In this work [3], experts studied the effect of two diabetic drugs on blood composition 

and calculated the coefficients of the effectiveness of these drugs. Jason K. At al. show 

the advantages of personalizing selection of cancer therapy in the work [4]. Burgmaier 

et al. have reviewed the potential action drugs on cardiovascular disease and summarize 

the potential role of present glucagon-like peptide-1-based therapies from a cardiolo-

gist's point of view [5]. The methods from this approach are not applicable for person-

alized selection of the optimal therapy for a particular case. However, using these meth-

ods, it is possible to identify patterns that can be a basis for creating methods for finding 

the optimal therapy. 

The second approach includes articles describing methods of identifying linear or 

non-linear patterns between particular drugs and treatment-goal indicators. Tools for 

identifying patterns includes Machine Learning methods [6], [7] including Deep Learn-

ings using neural networks [8]. Menden M. and al. predict the response of cancer cell 

lines to drug treatment. Models predicted IC50 values by 8-fold cross-validation and 

an independent blind test with coefficients of determination R2 0.72 and 0.64, respec-

tively [6]. In this study [7], Khaledi A. and al. sequenced the genomes and transcrip-

tomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. Researchers gen-

erated predictive models and identified biomarkers of resistance to four commonly ad-

ministered antimicrobial drugs. In the work [8] Barbieri C. and al. use feedforward ar-

tificial neural network for predicting the response to anemia treatment. Using this ap-

proach experts can predict effectiveness of particular drugs. However, a lot of this arti-

cles haven’t proposed method for finding the most effective therapy in drugs combina-

tions form.   

In contrast to the second approach, the third approach includes methods for predict-

ing the synergy of new drug combinations. This approach is based on special methods, 

such as Tree Combo [9] , Deep Synergy [10], and also Machine Learning methods [11]. 

Janizek J. and al. introduce new extreme gradient boosted tree-based approach to pre-

dict synergy of novel drug combinations, using chemical and physical properties of 

drugs and gene expression levels of cell lines as features [10]. The second examples of 

this approach is work [10], that describes method of predicting drugs synergy based on 

Deep Learning. This method was compared with other machine learning methods, 

DeepSynergy significantly outperformed the other methods with an improvement of 

7.2% over the second-best method at the prediction of novel drug combinations within 

the space of explored drugs and cell lines. In the work [12]  Kuenzi B. and al. developed 

DrugCell, an interpretable deep learning model of human cancer cells trained on the 

responses of 1,235 tumor cell lines to 684 drugs. Analysis of the DrugCell results leads 

to the development of synergistic drug combinations that are validated using combina-

torial CRISPR, in vitro drug-drug screening, and patient-derived xenografts. DrugCell 
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provides a blueprint for constructing interpretable predictive medicine models. Using 

models from this approach we can predict the synergy of drugs combinations. However, 

the space of drugs combinations and goal-treatment is multidimensional and multicom-

ponent.  

Also, there are a lot of novelties in the pharmacological sphere, and it is necessary 

to consider those in our task. Butler at all. described new knowledge and new develop-

ments in the pharmacological sphere for diabetes treatment[13]. 

Special methods are needed to find the optimal combination of drugs based on the 

assessment of the effectiveness of a particular combination (which this approach can 

predict). Therefore, a new method of searching for optimal therapy is needed. It should 

include all the advantages of the above methods. In this work, we propose a hybrid 

method that includes methods of the first and second approaches to identify the rela-

tionship between a drug and a target indicator of treatment, methods of the third ap-

proach to assesses the synergy of drug combinations, and new methods to find the op-

timal drug combination for a multi-component treatment goal. 

3 Hybrid predictive modelling for finding optimal therapy 

In the previous items, we explained necessarily to create an approach for personal-

ized finding optimal therapy.   

 
Fig. 1. Hybrid modeling scheme 

In this work we propose new hybrid approach for this goal. Scheme of creating this 

approach is shown in Figure 1. 
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The first stage is data mining. We collaborate with medical experts to transform real-

word medical processes into digital form. Primary information includes data from pa-

tient’s survey, laboratory results, records from electronic medical cards, medical im-

ages and other. Medical experts structuring, selecting, and aggregating information for 

hypothesis and modelling. Our team studying related works and mapping experience 

and background knowledge to equations, algorithms, and digital patterns. Next, we cre-

ate special scripts for transforming information by medical experts to matrices.  Rows 

are cases of diseases; columns are important indicators of course of the disease. In this 

stage of method, we use only expert-based modelling. This stage includes 1th-5th steps. 

The second stage is identification of patterns from data. This stage includes steps 

6th-10th from scheme on Figure 1 (further just a scheme). In the first, data are prepro-

cessed, it is 6th steps. This step includes the following: noise and emission processing, 

removing/replacing data gaps, coding categorical features using one-hot-label-encod-

ing/dummy encoding methods, scaling, and logging. Next, in the 8th step, we are iden-

tifying statical patterns from data. In parallel, we are using dynamical process model-

ling for identifying dynamical patterns and relationships in the 12th steps.  

The third stage is predictive modelling. This stage includes steps 11th-17th from 

scheme. We use dynamical and statical patterns for selecting indicators for final fea-

tures set. All samples are divided into training and testing parts. Next, we create ML 

predictive models. Models’ selection do use cross-validation for only training samples.  

Next, we create optimizing treatment goals method. For this we create set of syn-

thetic therapies in form of random combination of drugs. Set include a lot of variants 

of drugs. Then, we find top-100 best variants and creating only one drugs combination 

using this combination. This method describes in item 4.3 Optimization. Next, we 

upgrade this method using dynamical patterns, it is step 13th. 

Next step is interpretation. Interpretation methods include Shapley Additive expla-

nations (SHAP), Partial Depends Plots (PDP) and expert-based interpretation. Then, 

we validate methods using expert’s surveys, classic metric of predictive task quality 

and comparing results of using recommended therapy with real results. 

To summary, hybrid predictive modelling includes several approaches for finding 

optimal therapy – expert-based modeling, statistical modeling, and dynamic process 

modeling. We demonstrate this approach using the case study of finding optimal ther-

apy for treatment diabetes mellitus of two type (T2DM). 

4 Finding optimal therapy: T2DM case-study 

4.1 Problem description: T2DM-study 

Diabetes mellitus (DM) is one of the most common chronic diseases in the world. Ex-

perts from the World Diabetes Federation predict, predict that the number of patients 

with diabetes by 2030 will increase 1.5 times and reach 552 million people, mainly due 

to patients with type 2 diabetes (T2DM). For public health, this type of diabetes is one 

of the most priority problems, since this disease is associated with a large number of 

concomitant diseases, leading to early disability, and increased cardiovascular risk. 

Therefore, it is especially important for patients with this disease to prevent the 
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development of serious complications. The risks of complications can be reduced by 

right selected therapy, but it is important to choose the right drugs, considering the 

synergy of drugs and the patient's personal characteristics. There are many brands to 

treat this disease. Treatment targets are multicomponent and include carbohydrates me-

tabolism compensation (glycated hemoglobin), lipid control (total cholesterol), and op-

timization of systolic and diastolic pressure-level. The space of drug combinations and 

treatment targets is multidimensional and multi-component, special methods are re-

quired for personalized searching drug combinations, that are optimal in terms of better 

treatment multi-component outcomes. Therefore, the task of creating a method for a 

personalized search for optimal therapy for patients with type 2 diabetes is relevant and 

suitable for demonstrating the proposed hybrid approach.  

4.2 Data mining 

 The study was based on dataset including 189 671 medical records for patients who 

were treated for diabetes type 2 in Almazov National Medical Research Centre or in 

Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia in 2008-

2018. There are several entry and exclusionary criteria’s for including treatment case 

in study. Criteria showed in Table 1. 

Table 1. Entry and exclusionary criteria for including treatment case in dataset. 

Entry criteria Exclusionary criteria 

1. Diabetes type 2 

2. At least 2 measurements of 

glycated hemoglobin 

3. Age between 18 and 80 years 

 

1. Early stages of diabetes, prediabetes, impaired 

glucose tolerance 

2. The presence of a large number of gaps in key-in-

dicators 

3. The observation period is less than half a year 

Each treatment case describes using set of indicators. This is shown in Table 2. 

Table 2. Medical indicators for treatment cases 

Feature's group Features 

Measurements  Group includes height, weight, age, gender, SBP, DBP, pulse, body 

mass index, body surface area; 

Hypertensions  Group includes i10, i11, i12, i13, i15 ICD codes; 

Heart complications  Group includes chronic heart failure, chronic obstructive pulmonary 

disease, atherosclerosis, myocardial infarction, acute coronary syn-

drome, and others; 

Diabetic complications  Group includes retinopathy, angiopathy, nephropathy, neuropathy, 

foot ulcer, diabetic coma, osteoarthropathy and others;  

Other nosologies  Group includes anemia, hypothyroidism, acute pulmonary complica-

tions (pneumonia, bronchitis, other types of pneumonia); 

Insulin  Group includes 117 insulin preparations, short, medium, long-acting 

insulins, genetically engineered insulins, and many others: 
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Sugar-lowering drugs  Group includes 213 types of drugs. These drugs are most often used in 

the treatment of diabetes in the Russian Federation. This drug includes 

metformin, diabetalong, lixumia, and others; 

Other drugs  Group includes 211 different types of diuretics (e.g., Aldacton Saltu-

cin), 108 different types of statins (e.g., Anvistat), 193 types of beta-

blockers (e.g., Normoglaucon). 

These medical indicators include information about diseases in anamnesis, analysis' 

values, physical measurements, lifestyle, a lot of drug types. 

4.3 Optimization  

 Data mining. The data were presented as a time series of treatment of all patients. 

However, this data was not suitable for processing by traditional methods like ARIMA 

or LSTM network. It was caused by availability of a large number of data gaps. The 

second reason for not using these methods was the presence of various distances be-

tween visits. Due to these reasons series for all patients were compressed into one-

dimensional vector, which represents series with its statistical characteristics. The com-

pression scheme showed in Figure 2. 

 
Fig. 2. Time series transformation scheme 

This transformation was applied for visits which were between any two measure-

ments between target values. As targets for predicting were chosen 4 features, they are 

glycated hemoglobin, total cholesterol, systolic and diastolic pressure. For targets were 

applied other transformations, for glycated hemoglobin and total cholesterol the differ-

ence between the end and the start values in the series was calculated. However, for 

systolic and diastolic pressure this operation should not be applied, since these features 

change throughout the day, then the use of one value will be incorrect. Therefore, for 

pressures were calculated mean values within six months after the treatment. 
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Predictive modeling. Since the main goal is to reduce key indicators, first of all it 

is necessary to be able to predict their values by using treatment as a predictor. Thus, 

the problem becomes building a regression model.  

Machine learning models were created for all key indicators. The following algo-

rithms were used: Decision Tree, Random Forest, XGBoost, SGD, CatBoost. Mean 

squared error and coefficient of determination were used as validation metrics. Metrics 

of trained models showed in the Tables 3-6. 

Table 3. Metrics of glycated hemoglobin predicting model. 

Model Mean squared error 

(CI=95%) 

R2 (CI=95%) 

Decision Tree 

Random Forest 

XGBoost 

SGD 

CatBoost 

(0.2220-0.5290) 0.3755 

(0.1518-0.3134) 0.2326 

(0.1312-0.2784) 0.2048 

(0.5104-0.7710) 0.6407 

(0.1330-0.2546) 0.1938 

(0.4270-0.7616) 0.5943 

(0.6792-0.8338) 0.7565 

(0.7042-0.8594) 0.7818 

(0.2412-0.4118) 0.3265 

(0.7312-0.8594) 0.7953 

 

Table 4. Metrics of total cholesterol predicting model. 

Model Mean squared error 

(CI=95%) 

R2 (CI=95%) 

Decision Tree 

Random Forest 

XGBoost 

SGD 

CatBoost 

(0.6806-0.9546) 0.8176 

(0.4086-0.5642) 0.4864 

(0.4106-0.5690) 0.4898 

(1.0048-1.3264) 1.1656 

(0.4214-0.5712) 0.4963 

(0.3278-0.5294) 0.4286 

(0.6160-0.7076) 0.6618 

(0.6080-0.7094) 0.6587 

(0.1420-0.2414) 0.1917 

(0.6092-0.6986) 0.6539 

Table 5. Metrics of systolic pressure predicting model. 

Model Mean squared error 

(CI=95%) 

R2 (CI=95%) 

Decision Tree 

Random Forest 

XGBoost 

SGD 

CatBoost 

(24.4212-29.8376) 27.1294 

(15.4982-18.5108) 17.0045 

(31.6220-35.1730) 33.3975 

(190.2478-203.8474) 197.0476 

(32.2876-35.7460) 34.0168 

(0.9072-0.9236) 0.9154 

(0.9424-0.9516) 0.9470 

(0.8908-0.9010) 0.8959 

(0.3756-0.3962) 0.3859 

(0.8892-0.8990) 0.8941 

Table 6. Metrics of diastolic pressure predicting model. 

Model Mean squared error 

(CI=95%) 

R2 (CI=95%) 

Decision Tree 

Random Forest 

XGBoost 

SGD 

(17.8134-21.7346) 19.7740 

(10.9792-13.0486) 12.0139 

(23.7260-26.0768) 24.9014 

(161.9712-171.8524) 166.9118 

(0.9068-0.9232) 0.9150 

(0.9438-0.9528) 0.9483 

(0.8886-0.8972) 0.8929 

(0.2708-0.2918) 0.2813 
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CatBoost (24.5408-26.8876) 25.7142 (0.8850-0.8938) 0.8894 

 

Since trained models could predict our target values it is possible to change medi-

cine, which was used in treatment and to see how key indicator changed. For choosing 

best medicine combination it is necessary to apply models for all drugs combinations. 

However, there are 87 different medicaments in the dataset, thus 287 combinations 

should be checked, which is time-consuming task.  

Treatment selection becomes an optimization problem, where our target to find vec-

tor of medicines, which gives most acceptable values of key indicators. There are sev-

eral difficulties with solving this problem. First problem is that our target function is a 

black box function, which means that we do not know its behavior. The second one is 

that it has high evaluation cost, consequently using metaheuristic optimization algo-

rithms will be time consuming. The third problem is that it is necessary to pick up only 

integer values, because vector of medicines consists of zeros and ones. 

Since no suitable method was found to solve the optimization problem, the following 

approach was suggested. Scheme of this approach showed in Figure 4. 

 
Fig. 4. Drug selection scheme 

For a patient randomly generates 100000 different combinations of drugs. Next step 

is to predict key indicators values with ML models. Then the difference between the 

predicted value and the value that the patient needs to obtain to get within the acceptable 

interval is calculated. Next it is necessary to normalize these differences, multiply by 

the coefficient of importance and summarize them. Then we need to select the top 100 

obtained values with their corresponding medicines combinations and use them to cal-

culate the probability of taking the drug into treatment. For each drug we calculate its 

frequency of occurrence in top 100 combinations and divide it by 100. The last step is 
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the selection of drugs according to a random number generator based on the obtained 

probabilities. 

Interpreting. With using SHAP values it is possible to interpret model output, 

which means that an importance of concrete drug and its influence could be found out. 

SHAP values of glycated hemoglobin prediction model showed in Figure 5.

 
Fig. 5. SHAP values of glycated hemoglobin prediction model 

The graph shows the 10 drugs most affecting glycated hemoglobin. Red color means 

that the medicine was included in the treatment, blue is the opposite. According to a 

model deprotenized calf blood extract and glibenclamide are most effective drugs in 

terms of the lowering the indicator. On the other hand, simvastatin and propranolol 

raise this value most effectively. Also, there is interesting case with metformin, it does 

not decrease target value, but without using it this value is increasing, which mean that 

it could be used for keeping the indicator in appropriate range. 

SHAP values of systolic pressure prediction model showed in Figure 6. 

 
Fig. 6. SHAP values of systolic pressure prediction model 

According to this plot ethylmethyldroxypytidine succinate is most systolic pressure 

affective in terms of increasing this value. However, this medicine also in the list of 
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most glycated hemoglobin affective drugs, but it lowers this value. This is a good ex-

ample of why it is important to choose the right treatment, because bad combination 

could optimize only one target to the detriment of another. Therefore, patients taking 

this drug should also be prescribed medication to compensate for the increase in systolic 

pressure. 

SHAP values of diastolic pressure prediction model showed in Figure 7. 

 

 
Fig. 7. SHAP values of diastolic pressure prediction model 

Graph above shows good example of drug, which can be used to maintain acceptable 

values of key indicators. This is metformin, when using this drug, there is no need to 

compensate for the change in any indicator. 

SHAP values of total cholesterol prediction model showed in Figure 8. 

 
Fig. 8. SHAP values of total cholesterol prediction model 

From this graph we can see that using medical oxygen greatly decreases total cho-

lesterol value, but there is a problem with using this drug. SHAP values of this drug 

from diastolic pressure table are hard to interpret.  It means that if this medication will 
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be included into a treatment, it will be hard to compensate increasing or decreasing of 

diastolic pressure, since changes in target value can be in any direction. 

Validating. The optimization scheme was applied to patients for whom it was pos-

sible to calculate all 4 key indicators. Results showed in table 7. 

Table 7. Optimization scheme validation results. 

Target value Percentage of cases, when tar-

get value brought back to nor-

mal range  

Percentage of cases, when tar-

get value became better that in 

real treatment 

Glycated hemoglobin 

Total cholesterol 

Systolic pressure 

Diastolic pressure 

GH + TC 

GH + SP 

GH + DP 

TC + SP 

TC + DP 

SP + DP 

GH + TC + SP 

GH + TC + DP 

GH + SP + DP 

TC + SP + DP 

GH + TC + SP + DP 

67.64 

20.58 

47.05 

64.70 

20.58 

26.47 

50.00 

17.64 

14.70 

26.47 

17.64 

14.70 

20.58 

11.76 

11.76 

91.17 

26.47 

82.35 

79.41 

26.47 

73.52 

70.58 

20.58 

17.64 

70.58 

20.58 

17.64 

61.74 

17.64 

17.64 

 

 According to given results, most important target, which is glycated hemoglobin, 

becomes much better than in real cases, systolic and diastolic pressure also becomes 

better in big number of cases, however total cholesterol value is poorly improved. To 

increase the number of cases of improvement in total cholesterol, it is necessary to im-

prove the model. 
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Fig. 9. Graph of therapy trajectories. Colors are marks for clusters by modularity maximiza-

tion. 

 

We improve this model using dynamic patterns of the treatment process. For this, 

we analyze space of therapy trajectories (Figure 9 shows this space). For each patient, 

its treatment trajectory is identified in the form of a sequence of diagnosed certain com-

plications from the past history of the disease. Then, using the Tanimoto coefficient 

[14], we find similar trajectories (patients with similar medical past histories). Further, 

for these patients, we determine a set of pharmacological groups of drugs that show the 

best results for optimizing a multipurpose result. To determine this set of pharmacolog-

ical groups, we use our developed algorithm based on the analysis of precedents. Fur-

ther, we apply the above method, choosing drugs not from 87 drugs, but from a reduced 

number of drugs from individually selected pharmacological groups of drugs. Table 8 

shows the change in the quality indicators of the model from Table 7. 
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Table 8. Result of improve model for increasing number improving total cholesterol. 

Target value Percentage of cases when tar-

get value brought back to nor-

mal range  

Percentage of cases when tar-

get value became better that in 

real treatment 

Total cholesterol 

GH + TC 

TC + SP 

TC + DP 

- 

94.11 (+73,53%) 

26.47 (+9%) 

- 

44.11 (+17,64%) 

41.17 (+14,7%) 

29.41 (+9%) 

20.58 (+2,94%) 

5 Conclusion and Future Work 

This paper proposes a hybrid approach for creating a method for finding optimal 

therapy in the terms of optimizing the multipurpose outcome of patient treatment. This 

approach is based on identifying statistical and dynamic patterns from a course of the 

disease using expert-based modelling methods, machine learning methods, and predic-

tive modelling methods. This method was demonstrated on the practical task of finding 

the optimal therapy for type 2 diabetes mellitus in terms of achieving 4 treatment goals 

- compensation of carbohydrate metabolism (target value is glycated hemoglobin), 

compensation of lipid metabolism (target value is total cholesterol), optimization of 

half-year indicators of arterial pressure (target value are systolic and diastolic). This 

method was validated using a survey of experts-endocrinologists, classical metrics of 

predictive modelling tasks. Also, we have validated this method using real-treatments 

cases. We have found the optimal therapy for each case and have predicted results of 

the optimal therapy for each case using developed predictive models. As a result, the 

proposed hybrid method improves the target indicators of carbohydrate metabolism 

compensation in 91% of cases, the target of lipid metabolism in 44% of cases, the av-

erage semi-annual systolic pressure in 82% of cases, and average semi-annual diastolic 

pressure in 80% of cases, compared with real therapy for the selected patients. In sum-

mary, the method is of high quality, it can be applicated as part of a support and deci-

sion-making system for medical specialists working with T2DM patients.   

Acknowledgments.  The reported study was funded by RFBR according to the re-

search project № 20-31-70001. Participation in the ICCS conference was supported by 

the NWO Science Diplomacy Fund project # 483.20.038 "Russian-Dutch Collaboration 

in Computational Science" 

References 

[1] I. I. Dedov et al., “Standards of specialized diabetes care. Edited by Dedov I.I., 

Shestakova M.V., Mayorov A.Yu. 9th edition,” Diabetes Mellit., 2019. 

[2] A. Kumar, “Optimizing Antimicrobial Therapy in Sepsis and Septic Shock,” Critical 

Care Clinics. 2009. 

[3] P. Srividya, T. S. R. Devi, and S. Gunasekaran, “Ftir Spectral Study on Diabetic Blood 

Samples – Monotherapy and Combination Therapy,” Ojp, 2012. 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_40

https://dx.doi.org/10.1007/978-3-030-77967-2_40


14 

[4] J. K. Sicklick et al., “Molecular profiling of cancer patients enables personalized 

combination therapy: the I-PREDICT study,” Nat. Med., 2019. 

[5] M. Burgmaier, C. Heinrich, and N. Marx, “Cardiovascular effects of GLP-1 and GLP-

1-based therapies: Implications for the cardiovascular continuum in diabetes?,” Diabetic 

Medicine. 2013. 

[6] M. P. Menden et al., “Machine Learning Prediction of Cancer Cell Sensitivity to Drugs 

Based on Genomic and Chemical Properties,” PLoS One, 2013. 

[7] A. Khaledi et al., “ Predicting antimicrobial resistance in Pseudomonas aeruginosa with 

machine learning‐enabled molecular diagnostics ,” EMBO Mol. Med., 2020. 

[8] C. Barbieri et al., “A new machine learning approach for predicting the response to 

anemia treatment in a large cohort of End Stage Renal Disease patients undergoing 

dialysis,” Comput. Biol. Med., 2015. 

[9] J. D. Janizek, S. Celik, and S. I. Lee, “Explainable machine learning prediction of 

synergistic drug combinations for precision cancer medicine,” bioRxiv. 2018. 

[10] K. Preuer, R. P. I. Lewis, S. Hochreiter, A. Bender, K. C. Bulusu, and G. Klambauer, 

“DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning,” 

Bioinformatics, 2018. 

[11] A. A. Tabl, A. Alkhateeb, H. Q. Pham, L. Rueda, W. ElMaraghy, and A. Ngom, “A 

Novel Approach for Identifying Relevant Genes for Breast Cancer Survivability on 

Specific Therapies,” Evol. Bioinforma., 2018. 

[12] B. M. Kuenzi et al., “Predicting Drug Response and Synergy Using a Deep Learning 

Model of Human Cancer Cells,” Cancer Cell, 2020. 

[13] J. Butler, J. L. Januzzi, and J. Rosenstock, “Management of heart failure and type 2 

diabetes mellitus: Maximizing complementary drug therapy,” Diabetes, Obesity and 

Metabolism. 2020. 

[14] D. Bajusz, A. Rácz, and K. Héberger, “Why is Tanimoto index an appropriate choice 

for fingerprint-based similarity calculations?,” J. Cheminform., 2015. 

 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_40

https://dx.doi.org/10.1007/978-3-030-77967-2_40

