
The Power of a Collective: Team of Agents
Solving Instances of the Flow Shop and Job

Shop Problems

Piotr Jedrzejowicz[0000−0001−6104−1381] and Izabela
Wierzbowska[0000−0003−4818−4841]

Gdynia Maritime University, Gdynia, Poland
p.jedrzejowicz@umg.edu.pl, i.wierzbowska@wpit.umg.edu.pl

Abstract. The paper proposes an approach for solving difficult combi-
natorial optimization problems integrating the mushroom picking popu-
lation-based metaheuristic, a collective of asynchronous agents, and a
parallel processing environment, in the form of the MPF framework de-
signed for the Apache Spark computing environment. To evaluate the
MPF performance we solve instances of two well-known NP-hard prob-
lems – job shop scheduling and flow shop scheduling. In MPF a collective
of simple agents works in parallel communicating indirectly through the
access to the common memory. Each agent receives a solution from this
memory and writes it back after a successful improvement. Computa-
tional experiment results confirm that the proposed MPF framework
can offer competitive results as compared with other recently published
approaches.

Keywords: Collective of Agents · Metaheuristics · Parallel Computa-
tions · Computationally Hard Combinatorial Optimization Problems

1 Introduction

Computational collective intelligence (CCI) techniques use computer-based mod-
els, algorithms, and tools that take advantage of the synergetic effects of inter-
actions between agents acting in parallel to reach a common goal. In the field of
optimization, applications of the CCI techniques usually involve the integration
of multiple agent systems with the population-based metaheuristics including
the cooperative co-evolutionary algorithms.

Population-based metaheuristics are used to deal with computationally diffi-
cult optimization problems like, for example, combinatorial optimization, global
optimization in complex systems, multi-criteria optimization as well as optimiza-
tion and control in dynamic systems. Population in a population-based meta-
heuristic represents solutions or some constructs that can be easily transformed
into solutions. Population-based algorithms reach their final solutions after hav-
ing carried out various operations transforming populations, sub-populations, or
population members to find the best solution. Advantages of the population-
based algorithms can be attributed to their following abilities:

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


2 P.Jedrzejowicz and I.Wierzbowska

– Reviewing in a reasonable time a big number of possible solutions from the
search space.

– Directing search processes towards more promising areas of the search space.
– Increasing computation effectiveness through implicit or explicit cooperation

between population members and thus achieving a synergetic effect.
– Performing a search for the optimum solution in parallel and a distributed

environment.

More details on the population-based metaheuristics can be found in reviews
of [6], [12] and [20].

An important tool for increasing computation effectiveness in solving difficult
optimization problems is the decentralization of efforts and cooperation between
decentralized computational units. To achieve full advantages of such a cooper-
ation, multiple agent frameworks have been proposed and implemented. Agent-
based implementation of metaheuristics allows autonomous agents to commu-
nicate and cooperate through information exchange synchronously or asynchro-
nously. Besides, there might be some kind of learning implemented in agents.
This feature enables the agent to assimilate knowledge about the environment
and other agents’ actions and use it to improve the consequences of their ac-
tions. The review of frameworks for the hybrid metaheuristics and multi-agent
systems for solving optimization problems can be found in [19]. Example frame-
works used for developing multi-agent systems and implementing population-
based metaheuristic algorithms include AMAM - a multi-agent framework ap-
plied for solving routing and scheduling problems [18] and JABAT, a middleware
for implementing JADE-based and population-based A-Teams [3].

Effects of integrating population-based metaheuristics and multi-agent tech-
nology for solving difficult computational problems, especially combinatorial op-
timization problems, are constrained by the available computation technologies.
Recent developments in the field of parallel and distributed computing make it
possible to alleviate some of these constraints. Several years ago parallel and
distributed computing were a promising, but rather a complex way of program-
ming. At present every programmer should have a working knowledge of these
paradigms, to exploit current computing architectures [8].

This paper aims to show that integrating an approach involving a population-
based metaheuristic, a collective of asynchronous agents, and a parallel process-
ing environment, may benefit the search for a solution in case of difficult combi-
natorial optimization problems. To demonstrate that the above statement holds
we show the results of a computational experiment involving parallel implemen-
tation of the Mushroom Picking Algorithm (MPA) with asynchronous agents.
Our test-bed consists of two well-known NP-hard scheduling problems – flow
shop (PFSP) and job shop (JSSP), and the MPF framework designed to enable
MPA implementation using the Apache Spark, an open-source data-processing
engine for large data sets. It is designed to deliver the computational speed,
scalability, and programmability required for Big Data [22].

The rest of the paper is constructed as follows. Section 2 contains a brief
description of the considered scheduling problems. Section 3 reviews currently

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


The Power of a Collective 3

published algorithms for solving instances of PFSP and JSSP. Section 4 gives
details of the implementation of the parallel, agent-based, using the MPF frame-
work. Section 5 contains the results of the computational experiment. Section 6
includes conclusions and suggestions for future research.

2 Scheduling Problems

Job Shop Scheduling Problem (JSSP) consists of a set of n jobs (j1, . . . , jn)
to be scheduled on m machines (m1, . . . ,mm). Each job consists of operations
(tasks) that have to be processed in the given order. Each operation within a
job must be processed on a specific machine, only after all preceding operations
of this job are completed.

Further constraints include:

– Operations cannot be interrupted.
– Each machine can handle only one job at a time.

The goal is to find the job sequences on machines minimizing the makespan.
A single solution may be represented as the ordered list of the numbers of the
jobs. The length of the list is n×m. There are m occurrences of each job in such
a list. When examining the list from the left to the right, the ith occurrence of
job j refers to the ith operation (task) of this job.

The problem was proven to be NP-hard in [16].

Permutation Flow Shop Scheduling Problem (PFSP) consists of a
set of different machines that carry out operations (tasks) of jobs. All jobs have
identical processing order of their operations. Following [5], assume that the order
of processing a set of jobs J on m different machines is described by the machine
sequence P1, . . . , Pm. Hence, job Jj ∈ J consists of m operations O1j , . . . , Omj

with processing times pij , i = 1, . . . ,m, j = 1, . . . , n where n is the number of
jobs in J .

The following constraints on jobs and machines have to be met:

– Operations cannot be interrupted.
– Each machine can handle only one job at a time.

While the machine sequence of all jobs is identical, the problem is to find the
job sequence minimizing the makespan (maximum of the completion times of all
tasks). A single solution may be represented as the ordered list of the numbers
of the jobs of the length n.

The problem was proven to be NP-hard in [10].

3 Current approaches for solving PFSP and JSSP

3.1 Algorithms and approaches for solving JSSP instances

Population-based algorithms including swarm intelligence and evolutionary sys-
tems have proven successful in tackling JSSP, one of the hard optimization prob-
lems considered in this study. A state of the art review on the application of the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


4 P.Jedrzejowicz and I.Wierzbowska

AI techniques for solving the JSSP as of 2013 can be found in [29]. Recently,
several interesting swarm intelligence solutions for JSSP were published. In [11]
the local search mechanism of the PSA and large-span search principle of the
cuckoo search algorithm are combined into an improved cuckoo search algorithm
(ICSA). A hybrid algorithm for solving JSSP integrating PSO and neural net-
work was proposed in [36]. An improved whale optimization algorithm (IWOA)
based on quantum computing for solving JSSP instances was proposed by [37].
An improved GA for JSSP [7] offers good performance. Their niche adaptive ge-
netic algorithm (NAGA) involves several rules to increase population diversity
and adjust the crossover rate and mutation rate according to the performance of
the genetic operators. Niche is seen as the environment permitting species with
similar features to compete for survival in the elimination process. According to
the authors, the niche technique prevents premature convergence and improves
population diversity. Recently, a well-performing GA for solving JSSP instances
was proposed in [14]. The authors suggest a feasibility preserving solution repre-
sentation, initialization, and operators for solving job-shop scheduling problems.
Another genetic algorithm combined with the local search was proposed in [30].
The approach features the use of a local search strategy in the traditional mu-
tation operator; and a new multi-crossover operator.

A novel two-level metaheuristic algorithm was suggested in [21]. The lower-
level algorithm is a local search algorithm searching for an optimal JSSP so-
lution within a hybrid neighborhood structure. The upper-level algorithm is a
population-based search algorithm developed for controlling the input parame-
ters of the lower-level algorithm.

A discrete wolf pack algorithm (DWPA) for job shop scheduling problems was
proposed in [32]. DWPA involves 3 phases: initialization, scouting, and summon-
ing. During initialization heuristic rules are used to generate a good quality initial
population. The scouting phase is devoted to the exploration while summoning
takes care of the intensification. In [31] a novel biomimicry hybrid bacterial for-
aging optimization algorithm (HBFOA) was developed. HBFOA is inspired by
the behavior of E. coli bacteria in its search for food. The algorithm is hybridized
with simulated annealing. Additionally, the algorithm was enhanced by a local
search method. Evaluation of the performance of several PSO-based algorithms
for solving the JSSP can be found in [1].

As in the case of other computationally difficult optimization problems, an
emerging technology supported development of parallel and distributed algo-
rithms for solving JSSP instances. A scheduling algorithm, called MapReduce
coral reef (MRCR) for JSSP instances was proposed in [28]. The basic idea of the
proposed algorithm is to apply the MapReduce platform and the Spark Apache
environment to implement the coral reef optimization algorithm to speed up its
response time. More recently, a large-scale flexible JSSP optimization by a dis-
tributed evolutionary algorithm was proposed in [25]. The algorithm belongs to
the distributed cooperative evolutionary algorithms class and is implemented on
Apache Spark.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


The Power of a Collective 5

3.2 Algorithms and approaches for solving PFSP instances

There exist several heuristic approaches for solving PFSP. Selected heuristics,
namely CDS, Palmer’s slope index, Gupta’s algorithm, and concurrent heuristic
algorithm for minimizing the makespan in permutation flow shop scheduling
problem were studied in [24]. An improved heuristic algorithm for solving the
flow shop scheduling problem was proposed in [23]. In [4] the adapted Nawaz-
Enscore-Ham (NEH) heuristic and two metaheuristics based on the exploration
of the neighborhood are studied. Another modification of NEH heuristic was
suggested in [17] where a novel tie-breaking rule was developed by minimizing
partial system idle time without increasing the computational complexity of the
NEH heuristic.

A Tabu Search with the intensive concentric exploration over non-explored
areas was proposed in [9] as an alternative solution to the simplest Tabu Search
with the random shifting of two jobs indexes operation for Permutation Flow
Shop Problem (PFSP) with the makespan minimization criterion.

Recently, several metaheuristics have proven effective in solving PFSP in-
stances. In [33] the authors propose two water wave optimization (WWO) algo-
rithms for PFSP. The first algorithm adapts the original evolutionary operators
of the basic WWO. The second further improves the first algorithm with a self-
adaptive local search procedure. Application of the cuckoo search metaheuristic
for PFSP was suggested in [35]. The approach shows good performance in solv-
ing the permutation flow shop scheduling problem. Modified Teaching-Learning-
Based Optimization with Opposite-Based-Learning algorithm was applied to
solve the Permutation Flow-Shop-Scheduling Problem under the criterion of min-
imizing the makespan was proposed in [2]. To deal with the complex PFSPs, the
paper of [34] proposed an improved simulated annealing (SA) algorithm based
on the residual network. First, this paper defines the neighborhood of the PFSP
and divides its key blocks. Second, the residual network algorithm is used to
extract and train the features of key blocks. Next, the trained parameters are
used in the SA algorithm to improve its performance.

4 An approach for solving JSSP and PFSP

4.1 The MPF framework

To deal with the considered combinatorial optimization problems we use the
Mushroom Picking Framework (MPF). The MPF is based on the Mushroom
Picking Algorithm (MPA) originally proposed in [13] for solving instances of the
Traveling Salesman Problem and job shop scheduling. The metaphor of MPA
refers to a situation where many mushroom pickers, with different preferences
as to the collected mushroom kinds, explore the woods in parallel pursuing in-
dividual or random, or mixed strategies and trying to increase the current crop.
Pickers exchange information indirectly by observing traces left by others and
modifying their strategies accordingly. In case of finding interesting species, they
intensify search in the vicinity hoping to find more specimens. In the MPA a set

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


6 P.Jedrzejowicz and I.Wierzbowska

of simple, dedicated, agents, metaphorically mushroom pickers, explore in par-
allel the search space. Agents differ between themselves by performing different
operations on the encountered solutions. They may have also different compu-
tational complexities. Agents explore a search space randomly intensifying their
efforts after having found an improved solution.

MPF differs from MPA in being only a framework, allowing the user to define
the internal algorithm controlling a solution improvement processes performed
by an agent. There are no constraints on the number of agents with different
internal algorithms used. There are also no constraints on the overall number of
agents employed for solving a particular instance of the problem at hand. The
user is also responsible for generating the initial population of solutions and for
storing it in the common memory. MPF provides the capability of reading one
or more solutions from the common memory and the capability of writing an
improved by an agent solution in the common memory.

Agents in the MPF work in parallel, in threads, and cycles. Each cycle in-
volves the following steps:

– Solutions in the common memory are randomly shuffled.

– The population of solutions in the common memory is divided into several
subpopulations of roughly equal size. Observe that shuffling at stage I assures
that subpopulations do not consist of the same solutions in different cycles.

– Each subpopulation is processed by a set of agents in a separate thread. The
same composition of agent kinds and numbers is used in each thread. Each
agent receives a solution or solutions (depending on the number of arguments
of the agent) and runs its internal algorithm which could be, for example, a
local search algorithm, to produce an improved solution. If such a solution
is found, it replaces the solution drawn from the subpopulation in the case
of the single argument agents. Otherwise, it replaces the worst one, out of
all solutions processed by an agent.

– The cycle ends after a predefined number of trials to improve the subpopu-
lations have been applied in all threads.

– At the end of a cycle all current subpopulations are appended into the com-
mon memory.

The overall stopping criterion is defined as no improvement of the best result
(fitness) after the predefined number of cycles has elapsed.

4.2 The MPF framework implementation for scheduling problems

The general scheme of the MPF implementation for scheduling problems is shown
in a pseudo-code as Algorithm 1.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


The Power of a Collective 7

Algorithm 1: MPA

n← the number of parallel threads
solutions← a set of solutions with empty sequence of jobs
while !stoppingCriterion do

populations← solutions randomly split into n subsets of equal size
populationsRDD ← populations parallelized in ApacheSpark
populationsRDD ← populationsRDD.map(p =>
p.applyOptimizations)
solutions = populationsRDD.flatMap(identity).collect()

// thanks to flatMap, collect returns list

// of solutions, not list of populations

bestSolution← a solution from solutions with the best fitness

return bestSolution

In Algorithm 1, applyOptimization is responsible for improving solutions in
each subpopulation in all threads. In the first cycle, ApplyOptimizations receives
solutions not yet initialized as for the sequence of jobs, and it starts with filling
these solutions with randomly generated sequences of jobs.

For the proposed implementation of the MPF for solving PFSP and JSSP
instances in each thread we use the following set of agents:

– randomReverse — takes a random slice of the list of jobs and reverses the
order of its elements;

– randomMove – takes one random job from the list of jobs and moves it to
another, random position,

– randomSwap – replaces jobs on two random positions in the list of jobs,
– crossover – requires two solutions. A slice from the first solution is extended

with the missing jobs in the order as in the second solution.

During computations, solutions in each subpopulation may, with time, be-
come similar or even the same. To assure the required level of diversification of
the solutions, two measures are introduced:

– The crossover agent is chosen by the ApplyOptimization procedure twice
less often than each of the one-argument agents (in each thread there is only
one such agent, while the other agents come in pairs).

– If two solutions drawn for the crossover agent have the same fitness, or fitness
differing by 1, the worse solution is replaced by a new random one.

ApplyOptimization is shown as Algorithm 2.
The implementation for both considered problems that is PFSP and JSSP

differs mainly in how solutions are represented as explained in Subsection 2 and
Subsection 2. In both cases, a solution is represented by a list of numbers and
such solutions are processed in the same way in all subpopulations, and by the
same agents, as described earlier.

If a method of calculating the length of the makespan is defined for the JSSP,
then it may be also used for PFSP, however first the solution of PFSP must be

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


8 P.Jedrzejowicz and I.Wierzbowska

Algorithm 2: applyOptimizations

solutions← solutions in the subpopulation
foreach s ∈ solutions do

if s.jobs == null then // s has empty sequence of jobs
s.jobs← random sequence of jobs

for k ← 1 to given number of iterations do
A← random agent from the available agents
if A is two argument agent then

s1, s2← two solutions drawn from solutions
sw ← s1 max s2 // solution with the bigger makespan

if abs(s1.makespan–s2.makespan) < 2 then
in solutions replace sw with a random solution

else
newSolution← A(s1, s2)
if newSolution.makespan < sw.makespan then

in solutions replace sw with newSolution
else

s← draw one solution from solutions
newSolution← A(s)
if newSolution.makespan < s.makespan then

in solutions replace s with newSolution
return solutions

transformed to represent the sequence of operations as in the JSSP case. The so-
lution (j1, j2, . . . , jn) is mapped to (j1, j1, . . . , j1, j2, j2, . . . , j2, . . . , jn, jn, . . . , jn).
Thus the same code with very few changes (including the mapping procedure)
has been used for both problems.

5 Computational Experiment Results

To validate the proposed approach, we have carried out several computational
experiments. Experiments were based on two widely used benchmark datasets:
the Lawrence dataset for JSSP [15], and the Taillard dataset for PFSP [27].
Both datasets contain instances with known optimal solutions for the minimum
makespan criterion. All computations have been run on Spark cluster consisting
of 8 nodes with 32 virtual central processing units at the Academic Computer
Center in Gdansk. Performance measures included errors calculated as a percent-
age deviation from the optimal solution value and computation time in seconds.

In [13] it has been shown, that in the MPA the choice of agents that are used
to improve solutions may lead to significant differences in the produced results.
For the current MPF implementation, agents have been redesigned and changed
as described in Subection 4.2. In Table 1 the performance of the proposed ap-
proach denoted as MPF is compared with results from [13] and performances of
other recently published algorithms for solving JSSP on Lawrence benchmark
instances. The errors for [14] have been calculated based on the results from their
paper. The results for MPF have been averaged over 30 runs for each problem

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


The Power of a Collective 9

instance. For solving the JSSP instances by the MPF, the following parameter
settings have been used:

– for instances from la01 to la15 - 200 subpopulations, each consisting of 3
solutions, 3000 iterations in each cycle and stopping criterion as no change
in the best solution for two consecutive cycles;

– for instances from la16 to la40 - 400 subpopulations, each consisting of 3
solutions, 6000 iterations in each cycle, and stopping criterion as no change
in the best solution for five consecutive cycles.

From Table 1 it can be observed that MPF outperforms in terms of both
measures - average error and computation time - MPA, GA of [14], enhanced
GA of [30]. The enhanced two-level metaheuristic (MUPLA) of [21] offers smaller
average errors at the cost of exceedingly high computation times.

To gain better insight into factors influencing the performance of the pro-
posed approach we have run several variants of MPF with different components
using a sample of instances from the Lawrence benchmark dataset as shown in
Table 2. These experiments were run with the same parameter settings as in the
case of results shown in Table 1.

From the results shown in Table 2, it can be observed that both mechanisms
introduced within the proposed approach, that is shuffling of solutions in the
common memory, and diversification by introducing random solutions, enhance
the performance of the MPF. Shuffling stands behind the indirect cooperation
between agents and both – diversification and shuffling help getting out of local
optima. It should be also noted that results produced by MPF are fairly stable
in terms of the average standard deviation of errors.

The PFSP problem experiment has been based on the Taillard benchmark
dataset consisting of 10 instances for each considered problem size. Best known
values for Taillard instances can be found online [26]. In the experiment the
following settings for the proposed MPF have been used:

– for sizes 200x20 and 500x20 - 112 three-solution subpopulations, 100 itera-
tions in each cycle and stopping criterion as no change in the best solution
for 10 and 5 consecutive cycles respectively;

– for 50x20, 100x10, 100x20, 200x10 - 200 three-solution subpopulations, 1500
iterations in each cycle and stopping criterion as no change in the best solu-
tion for 5 consecutive cycles;

– for all other instances – 200 three-solution subpopulations, 3000 iterations
in each cycle, and stopping criterion as no change in the best solution for 5
consecutive cycles;

In Table 3 the performance of MPF is compared with results of other, recently
published, approaches.

From the results shown in Table 3, it can be observed that in terms of aver-
age error outperforms other approaches except for the water wave optimization
algorithm implementation of [33]. Unfortunately, information as to computation
times is not available for other approaches. The average standard deviation of
errors in the case of the MPF is fairly stable for smaller instances, growing with
the problem size.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


10 P.Jedrzejowicz and I.Wierzbowska

Table 1. Comparison of results for the JSSP problem

MPF MPA [13] GA[14] mXLSGA [30] MUPLA [21]
Data- Make- Error Time SD Error Time Error Error Time Error Time

set span % s % % s % % s % s

la01 666 0.00% 1 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 1
la02 655 0.00% 1 0.00% 0.00% 1 1.22% 0.00% n.a. 0.00% 2
la03 597 0.41% 2 0.54% 0.84% 2 1.01% 0.00% 34 0.00% 10
la04 590 0.00% 1 0.00% 0.24% 1 2.37% 0.00% n.a. 0.00% 2
la05 593 0.00% 1 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 0
la06 926 0.00% 1 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 2
la07 890 0.00% 1 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 2
la08 863 0.00% 1 0.00% 0.00% 1 3.23% 0.00% n.a. 0.00% 2
la09 951 0.00% 1 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 2
la10 958 0.00% 1 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 2
la11 1222 0.00% 2 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 4
la12 1039 0.00% 2 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 8
la13 1150 0.00% 2 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 6
la14 1292 0.00% 2 0.00% 0.00% 1 0.00% 0.00% n.a. 0.00% 6
la15 1207 0.00% 3 0.00% 0.00% 31 0.75% 0.00% n.a. 0.00% 7
la16 945 0.07% 21 0.05% 0.31% 41 2.96% 0.00% n.a. 0.00% 294
la17 784 0.01% 16 0.07% 0.06% 40 1.66% 0.00% 70 0.00% 33
la18 848 0.00% 21 0.00% 0.20% 41 2.48% 0.00% n.a. 0.00% 24
la19 842 0.20% 26 0.35% 1.01% 42 4.87% 0.00% n.a. 0.00% 149
la20 901 0.46% 16 0.21% 0.50% 33 1.77% 0.00% n.a. 0.00% 1073
la21 1046 1.55% 64 0.58% 3.03% 79 10.07% 1.24% n.a. 0.06% 30668
la22 927 1.23% 63 0.42% 2.08% 75 11.00% 0.86% n.a. 0.00% 1439
la23 1032 0.00% 26 0.00% 0.00% 45 5.72% 0.00% n.a. 0.00% 25
la24 935 1.68% 57 0.78% 3.50% 65 10.37% 1.17% n.a. 0.26% 21350
la25 977 1.60% 67 0.74% 3.52% 78 8.50% 0.92% n.a. 0.00% 15827
la26 1218 0.13% 88 0.27% 1.61% 106 11.17% 0.00% n.a. 0.00% 82
la27 1235 3.21% 85 0.56% 4.49% 121 13.52% 2.75% n.a. 0.03% 194427
la28 1216 1.90% 117 0.65% 3.15% 114 13.65% 1.89% n.a. 0.00% 1972
la29 1152 5.69% 114 1.05% 7.77% 121 16.58% 4.26% n.a. 1.02% 130059
la30 1355 0.01% 68 0.05% 0.61% 112 9.30% 0.00% 236 0.00% 123
la31 1784 0.00% 64 0.00% 0.00% 64 3.25% 0.00% n.a. 0.00% 306
la32 1850 0.00% 76 0.00% 0.00% 85 5.46% 0.00% n.a. 0.00% 172
la33 1719 0.00% 60 0.00% 0.00% 74 4.07% 0.00% n.a. 0.00% 313
la34 1721 0.00% 87 0.00% 0.36% 172 7.50% 0.00% n.a. 0.00% 448
la35 1888 0.00% 71 0.00% 0.03% 95 3.92% 0.00% n.a. 0.00% 393
la36 1268 3.23% 87 0.72% 4.53% 80 10.02% 2.12% n.a. 0.00% 85418
la37 1397 3.84% 87 0.96% 4.94% 94 13.10% 1.28% n.a. 0.00% 60481
la38 1196 4.27% 116 1.17% 7.02% 106 17.56% 4.18% n.a. 0.25% 169974
la39 1233 2.39% 108 0.45% 4.25% 99 12.08% 2.02% n.a. 0.00% 18057
la40 1222 2.61% 102 0.99% 3.69% 109 13.26% 1.71% n.a. 0.16% 119463

avg 0.86% 43 0.00% 1.44% 55 5.56% 0.61% n.a. 0.04% 21316

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


The Power of a Collective 11

Table 2. MPF performance with different variants of components used

random, no random, random, no random,
shuffling shuffling no shuffling no shuffling

Dataset Error Time SD Error Time SD Error Time SD Error Time SD
% s % % s % % s % % s %

la20 0.46% 16 0.2% 0.48% 14 0.2% 0.46% 14 0.2% 0.63% 15 0.2%
la21 1.55% 64 0.6% 2.37% 43 0.8% 3.52% 54 0.8% 4.65% 39 0.7%
la22 1.23% 63 0.4% 1.70% 47 0.4% 2.44% 64 0.6% 3.32% 42 0.9%
la23 0.00% 26 0.0% 0.00% 26 0.0% 0.00% 34 0.0% 0.00% 32 0.0%
la24 1.68% 57 0.8% 2.74% 53 0.7% 3.28% 57 0.7% 4.72% 46 0.8%
la25 1.60% 67 0.7% 2.81% 57 1.0% 3.22% 59 1.0% 5.36% 42 0.7%
la26 0.13% 88 0.3% 0.35% 89 0.5% 1.42% 113 0.9% 2.61% 88 0.9%
la27 3.21% 85 0.6% 3.58% 84 0.6% 4.96% 95 0.6% 5.66% 78 0.8%
la28 1.90% 117 0.6% 2.20% 96 0.5% 3.75% 106 0.6% 4.90% 83 1.0%
la29 5.69% 114 1.1% 6.56% 106 1.3% 8.45% 90 0.5% 9.67% 83 0.9%
la30 0.01% 68 0.1% 0.11% 91 0.3% 0.52% 106 0.5% 1.92% 77 0.8%

avg 1.59% 70 0.5% 2.08% 64 0.6% 2.91% 72 0.6% 3.95% 57 0.7%

Table 3. Performance of the MPF versus other approaches

MPF CH [24] [23] NEHLJP1 [17] WWO [33]
Size Error Time SD Error Error Error Error

% s % % % % %

20x5 0.04% 5 0.00% 5.94% 1.99% 2.16% 0.00%
20x10 0.03% 15 0.03% 8.77% 3.97% 3.68% 0.01%
20x20 0.02% 27 0.02% 9.46% 3.26% 3.06% 0.02%
50x5 0.03% 25 0.02% 5.10% 0.57% 0.64% 0.00%
50x10 0.82% 94 0.17% 7.04% 4.24% 4.25% 0.19%
50x20 1.29% 164 0.30% 8.78% 5.29% 6.15% 0.28%
100x5 0.06% 70 0.02% 3.57% 0.36% 0.36% 0.00%
100x10 0.55% 162 0.17% 6.92% 1.50% 1.72% 0.21%
100x20 1.96% 830 0.28% 8.28% 4.68% 4.81% 0.86%
200x10 0.49% 861 0.13% 5.60% 0.96% 0.89% 0.08%
200x20 3.04% 881 0.38% 7.60% 4.14% 3.65% 2.36%
500x20 3.05% 3138 0.42% 5.50% 1.89% 1.62% 2.08%

avg 0.95% 523 0.16% 6.88% 2.74% 2.75% 2.74%

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


12 P.Jedrzejowicz and I.Wierzbowska

6 Conclusions

The paper proposes a framework for solving combinatorial optimization problems
using Apache Spark computation environment and a collective of simple opti-
mization agents. The proposed framework denoted as MPF is flexible and can be
used for solving a variety of combinatorial optimization problems. In the current
paper, we demonstrate the MPF application for solving instances of job shop
and flow shop scheduling problems. The idea of the MPF is based on recently
proposed by the authors mushroom picking metaheuristic, where many agents
explore randomly the solution space intensifying their search around promising
solutions with diversification mechanism enabling escape from local optima. The
approach assumes indirect cooperation between the collective members sharing
access to the common memory containing a population of solutions. The compu-
tational experiment carried out, and comparisons with several recently published
approaches to solving both considered scheduling problems, show that the pro-
posed MPF implementation can obtain competitive results in a reasonable time.

Future research will focus on designing and testing a wider library of op-
timization agents allowing for the effortless implementation of the approach
for solving a more extensive range of difficult optimization problems. Also, the
framework may be extended by some new features, like for example online ad-
justments in the intensity of usage of the available agents. At the current version
the number of agents and the frequency with which they are called is predefined.
Both values could be automatically adapted during computations.

References

1. Anuar, N.I., Fauadi, M.H.F.M., Saptari, A.: Performance Evaluation of Con-
tinuous and Discrete Particle Swarm Optimization in Job-Shop Scheduling
Problems. In: Materials Science and Engineering Conference Series. Materials
Science and Engineering Conference Series, vol. 530, p. 012044 (Jun 2019).
https://doi.org/10.1088/1757-899X/530/1/012044

2. Balande, U., Shrimankar, D.: A modified teaching learning metaheuristic algorithm
with opposite-based learning for permutation flow-shop scheduling problem. Evolu-
tionary Intelligence pp. 1–23 (2020). https://doi.org/10.1007/s12065-020-00487-5

3. Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak, E., Wierzbowska, I.:
Jade-based a-team as a tool for implementing population-based algorithms. In:
Sixth International Conference on Intelligent Systems Design and Applications.
vol. 3, pp. 144–149 (2006). https://doi.org/10.1109/ISDA.2006.31

4. Belabid, J., Aqil, S., Allali, K.: Solving permutation flow shop scheduling problem
with sequence-independent setup time. Journal of Applied Mathematics 2020, 1–
11 (01 2020). https://doi.org/10.1155/2020/7132469

5. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling computer
and manufacturing processes (1996). https://doi.org/10.1007/978-3-662-03217-6

6. Boussäıd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. In-
formation Sciences 237, 82 – 117 (2013). https://doi.org/10.1016/j.ins.2013.02.041

7. Chen, X., Zhang, B., Gao, D.: Algorithm based on improved genetic
algorithm for job shop scheduling problem. pp. 951–956 (08 2019).
https://doi.org/10.1109/ICMA.2019.8816334

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


The Power of a Collective 13

8. Danovaro, E., Clematis, A., Galizia, A., Ripepi, G., Quarati, A., D’Agostino,
D.: Heterogeneous architectures for computational intensive applications: A cost-
effectiveness analysis. Journal of Computational and Applied Mathematics 270,
63 – 77 (2014). https://doi.org/10.1016/j.cam.2014.02.022

9. Dodu, C., Ancau, M.: ”a tabu search approach for permutation flow shop schedul-
ing ”. Studia Universitatis Babes,-Bolyai Informatica 65, 104–115 (07 2020).
https://doi.org/10.24193/subbi.2020.1.08

10. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and job-
shop scheduling. Mathematics of Operations Research 1(2), 117–129 (1976),
http://www.jstor.org/stable/3689278

11. Hu, H., Lei, W., Gao, X., Zhang, Y.: Job-shop scheduling problem based on im-
proved cuckoo search algorithm. International Journal of Simulation Modelling 17,
337–346 (06 2018). https://doi.org/10.2507/IJSIMM17(2)CO8

12. Jedrzejowicz, P.: Current trends in the population-based optimization. In: Nguyen,
N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) Computational
Collective Intelligence. pp. 523–534. Springer International Publishing, Cham
(2019)

13. Jedrzejowicz, P., Wierzbowska, I.: Parallelized swarm intelligence approach
for solving tsp and jssp problems. Algorithms 13(6), 142 (Jun 2020).
https://doi.org/10.3390/a13060142

14. Kalshetty, Y., Adamuthe, A., Kumar, S.: Genetic algorithms with feasible oper-
ators for solving job shop scheduling problem. Journal of scientific research 64,
310–321 (01 2020). https://doi.org/10.37398/JSR.2020.640157

15. Lawrence, S.: Resource constrained project scheduling - technical report (1984)
16. Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine

scheduling problems. Annals of Discrete Mathematics 1, 343–362 (1977).
https://doi.org/10.1016/S0167-5060(08)70743-X

17. Liu, W., Jin, Y., Price, M.: A new improved neh heuristic for permutation flowshop
scheduling problems. International Journal of Production Economics 193, 21 – 30
(2017). https://doi.org/10.1016/j.ijpe.2017.06.026

18. Lopes Silva, M.A., de Souza, S.R., Freitas Souza, M.J., Bazzan, A.L.C.: A rein-
forcement learning-based multi-agent framework applied for solving routing and
scheduling problems. Expert Systems with Applications 131, 148 – 171 (2019).
https://doi.org/10.1016/j.eswa.2019.04.056

19. Lopes Silva, M.A., de Souza, S.R., Freitas Souza, M.J., de França Filho, M.F.:
Hybrid metaheuristics and multi-agent systems for solving optimization problems:
A review of frameworks and a comparative analysis. Applied Soft Computing 71,
433 – 459 (2018). https://doi.org/10.1016/j.asoc.2018.06.050

20. Ma, X., Li, X., Zhang, Q., Tang, K., Liang, Z., Xie, W., Zhu, Z.: A survey on
cooperative co-evolutionary algorithms. IEEE Transactions on Evolutionary Com-
putation 23(3), 421–441 (2019). https://doi.org/10.1109/TEVC.2018.2868770

21. Pongchairerks, P.: An enhanced two-level metaheuristic algorithm with adaptive
hybrid neighborhood structures for the job-shop scheduling problem. Complexity
2020, 1–15 (2020). https://doi.org/10.1155/2020/3489209

22. Salloum, S., Dautov, R., Chen, X., Peng, P., Huang, J.: Big data analytics on
apache spark. International Journal of Data Science and Analytics 1 (10 2016).
https://doi.org/10.1007/s41060-016-0027-9

23. Sharma, S., Jeet, K., Nailwal, K., Gupta, D.: An improvement heuristic for per-
mutation flow shop scheduling. International Journal of Process Management and
Benchmarking 9, 124 (01 2019). https://doi.org/10.1504/IJPMB.2019.10019077

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34


14 P.Jedrzejowicz and I.Wierzbowska

24. Soltysova, Z., Semanco, P., Modrak, J.: Exploring heuristic techniques for flow
shop scheduling. Management and Production Engineering Review vol. 10(No 3).
https://doi.org/10.24425/mper.2019.129598

25. Sun, L., Lin, L., Li, H., Gen, M.: Large scale flexible scheduling optimization by
a distributed evolutionary algorithm. Computers and Industrial Engineering 128,
894 – 904 (2019). https://doi.org/10.1016/j.cie.2018.09.025

26. Éric Taillard: Summary of best known lower and up-
per bounds of Taillard’s instances. http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html (2015),
[Online; accessed 23-November-2020]

27. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64(2), 278 – 285 (1993). https://doi.org/10.1016/0377-
2217(93)90182-M, project Management anf Scheduling

28. Tsai, C.W., Chang, H.C., Hu, K.C., Chiang, M.C.: Parallel coral reef algorithm for
solving jsp on spark. In: 2016 IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2016, Budapest, Hungary, October 9-12, 2016. pp. 1872–1877.
IEEE (2016). https://doi.org/10.1109/SMC.2016.7844511

29. Çaliş Uslu, B., Bulkan, S.: A research survey: review of ai solution strategies of
job shop scheduling problem. Journal of Intelligent Manufacturing 26 (01 2013).
https://doi.org/10.1007/s10845-013-0837-8

30. Viana, M.S., Morandin Junior, O., Contreras, R.C.: A modified genetic algorithm
with local search strategies and multi-crossover operator for job shop scheduling
problem. Sensors 20(18), 5440 (Sep 2020). https://doi.org/10.3390/s20185440

31. Vital-Soto, A., Azab, A., Baki, M.F.: Mathematical modeling and a hybridized bac-
terial foraging optimization algorithm for the flexible job-shop scheduling problem
with sequencing flexibility. Journal of Manufacturing Systems 54, 74 – 93 (2020).
https://doi.org/10.1016/j.jmsy.2019.11.010

32. Wang, F., Tian, Y., Wang, X.: A discrete wolf pack algorithm for job shop schedul-
ing problem. In: Proceedings of the 2019 5th International Conference on Control,
Automation and Robotics (ICCAR), Beijing, China, pp. 19–22 (Apr 2019)

33. Wu, J.Y., Wu, X., Lu, X.Q., Du, Y.C., Zhang, M.X.: Water wave optimization for
flow-shop scheduling. In: Huang, D.S., Huang, Z.K., Hussain, A. (eds.) Intelligent
Computing Methodologies. pp. 771–783. Springer International Publishing (2019)

34. Yang, L., Wang, C., Gao, L., Song, Y., Li, X.: An improved simulated annealing al-
gorithm based on residual network for permutation flow shop scheduling. Complex
& Intelligent Systems pp. 1–11 (2020). https://doi.org/10.1007/s40747-020-00205-
9

35. Zhang, L., Yu, Y., Luo, Y., Zhang, S.: Improved cuckoo search algorithm
and its application to permutation flow shop scheduling problem. Journal
of Algorithms & Computational Technology 14, 1748302620962403 (2020).
https://doi.org/10.1177/1748302620962403

36. Zhang, Z., Guan, Z., Zhang, J., Xie, X.: A novel job-shop schedul-
ing strategy based on particle swarm optimization and neural network.
International Journal of Simulation Modelling 18, 699–707 (12 2019).
https://doi.org/10.2507/IJSIMM18(4)CO18

37. Zhu, J., Shao, Z., Chen, C.: An improved whale optimization algorithm for job-
shop scheduling based on quantum computing. International Journal of Simulation
Modelling 18, 521–530 (09 2019). https://doi.org/10.2507/IJSIMM18(3)CO13

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_34

https://dx.doi.org/10.1007/978-3-030-77967-2_34

