
A Method for Improving Word Representation
Using Synonym Information

Huyen Trang Phan1[0000−0002−7466−9562], Ngoc Thanh
Nguyen2[0000−0002−3247−2948], Javokhir Musaev1[0000−0003−4656−0479], and

Dosam Hwang1,?[0000−0001−7851−7323]

1 Department of Computer Engineering, Yeungnam University, Gyeongsan, South
Korea

huyentrangtin@gmail.com, javokhirmuso@yu.ac.kr, dshwang@yu.ac.kr
2 Department of Applied Informatics, Wroclaw University of Science and Technology,

Wroclaw, Poland
Ngoc-Thanh.Nguyen@pwr.edu.pl

Abstract. The emergence of word embeddings has created good con-
ditions for natural language processing used in an increasing number of
applications related to machine translation and language understand-
ing. Several word-embedding models have been developed and applied,
achieving considerably good performance. In addition, several enriching
word embedding methods have been provided by handling various infor-
mation such as polysemous, subwords, temporal, and spatial. However,
prior popular vector representations of words ignored the knowledge of
synonyms. This is a drawback, particularly for languages with large vo-
cabularies and numerous synonym words. In this study, we introduce an
approach to enrich the vector representation of words by considering the
synonym information based on the vectors’ extraction and presentation
from their context words. Our proposal includes three main steps: First,
the context words of the synonym candidates are extracted using a con-
text window to scan the entire corpus; second, these context words are
grouped into small clusters using the latent Dirichlet allocation method;
and finally, synonyms are extracted and converted into vectors from the
synonym candidates based on their context words. In comparison to re-
cent word representation methods, we demonstrate that our proposal
achieves considerably good performance in terms of word similarity.

Keywords: Synonym words · Word embeddings · Synonym vector.

1 Introduction

Embeddings, similar to vector models that capture relational meaning, are more
fine-grained than just a string or index; in particular, embeddings are good at
modeling similarities/analogies. To apply embeddings, we only need to download
and use them. They are useful tools in practice and are more popular in several

? Corresponding author

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

2 H.T. Phan et al.

fields, specifically, word embeddings in the natural language processing area.
Word embeddings represent word meanings from corpus statistics.

The use of word embeddings has been widely increasing in applications re-
lated to natural language processing, such as sequence tagging [15], machine
translation [21], language understanding [18], text classification [13] and senti-
ment analysis [20]. In addition, word embeddings are useful in machine learning
and deep learning algorithms. Therefore, several pre-trained word embeddings
exhibit state-of-the-art performance. These methods are applied in several stud-
ies, such as Word2Vec [16], FastText [12], GloVe [17], and BERT [4]. Word2Vec3

includes two models: skip-gram and continuous bag-of-words. The first model
predicts the surrounding words for the current word, meanwhile the second model
uses the context words to predict the current word [28, 29]. This model produces
the same vector for a word irrespective of its meaning and context. GloVe4,
used for word representations, leverages the statistics of word occurrences in the
corpus and uses a neural network to represent the meaning of such statistics
[28, 29]. The idea of this model is similar to that of latent semantic analysis. It
captures the global and local contexts of the word. FastText5 is improved from
the Word2Vec skip-gram model by considering the subword information. A word
is represented as a sum of character n-gram embeddings that appeared in the
word. The FastText model outperforms skip-gram model in most scenarios and
datasets when dealing with syntactic tasks [29]. However, for semantic tasks, the
FastText model is less accurate than the skip-gram model [29]. It can generate
out-of-vocabulary word embeddings. BERT6 combines several tasks. It predicts
masked words in a sentence and indicates whether sentence A is followed by
sentence B, as embedding combines several hidden layers of the network [28, 29].
In addition, BERT learns relationships between sentences and predicts whether
sentence B is the actual sentence that follows sentence A or whether it is a
random sentence. However, the above methods have the same limitation that
ignores the impact of synonyms when representing words [28].

According to WordNet, synonym words are introduced as “words that de-
note the same concept and are interchangeable in many contexts”. To clearly
understand the importance of synonyms in the tweet sentiment analysis task,
we consider the following small example. Assume that there are two tweets as
follows: Tweet 1: “The color of this phone is outdated”. Tweet 2: “The color of
this phone is outmoded”. It can be seen that the words “outdated” and “out-
moded” have the same meaning, but they have entirely different characters in
words. These words are called synonyms. However, most of the previous meth-
ods used different vectors to represent them. This leads to a misunderstanding
of the word meaning by the computer. Therefore, the quality of word repre-
sentations is decreased, and the performance of applications is also affected. To
address the aforementioned synonyms problem, we introduce a model to enrich

3 https://code.google.com/archive/p/word2vec/
4 https://nlp.stanford.edu/projects/glove/
5 https://fasttext.cc/docs/en/crawl-vectors.html
6 https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

A Method for Improving Word Representation Using Synonym Information 3

the vector representation of words by adding the synonym information. This
proposal focuses on the extraction and presentation of synonyms based on their
context words by considering three main steps: First, the context words of the
synonym candidates are extracted; second, these context words are grouped into
small clusters using the latent Dirichlet allocation (LDA) method; and finally,
synonyms are extracted and converted into vectors from the synonym candi-
dates based on their context words. In comparison to recent word representation
methods, we demonstrate that our proposed method achieves state-of-the-art
performance on a given task in terms of word similarity. Our proposal is mo-
tivated by the distributional hypothesis [9] that says: “words that occur in the
same contexts tend to have similar meanings” and the basic hypothesis inves-
tigated by Rubenstein et al. [24]: “there is a positive relationship between the
degree of synonymy (semantic similarity) existing between a pair of words and
the degree to which their contexts are similar”.

The remainder of this paper is organized as follows: The literature regarding
sentiment analysis methods is summarized in Section 2. We describe the research
problem in Section 3 and introduce the proposed method in Section 4. The
information related to experimental results, such as data acquisition, evaluation
method, and result discussion, is provided in Section 5. The conclusions and
future work are discussed in the final section.

2 Related Works

Recently, several methods have been published to enrich word embeddings. In
this section, we represent certain recent and outstanding methods by discussing
their processes, advantages, and disadvantages.

Svoboda et al. introduced two approaches to improve the quality of vector
representations. In [27], the authors enriched word embeddings by considering
global information. In [26], the authors improved word meaning representations
using Wikipedia categories. Jianqiang et al. [11] provided enriching word em-
bedding approaches by using the word vectors in the GloVe collection, n-grams
of words, and the sentiment score of words. The model obtained good results.
However, the authors did not compare the performance with other studies on
the same datasets. Meanwhile, Hassan et al. [14] converted words into feature
vectors of real values. These features include the semantic and syntactic informa-
tion. However, this method only considered the word’s surface features ignoring
the impact of the in-depth features. Therefore, in [1], the authors improved word
embeddings by adding the information related to the features, such as generic
words and sentiment specific words. Rezaeinia et al. [22] increased the perfor-
mance of available word embeddings by considering the information of words,
such as the part-of-speech (POS) tag, lexicon, and position. Nevertheless, the
authors ignored the subword information, global information, and temporal and
spatial information. Therefore, Bojanowski et al. [3] proposed a new approach
based on the skip-gram model. Each word was represented as a bag of character
n-grams to overcome the limitation of ignoring the morphology of words. A vec-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

4 H.T. Phan et al.

tor representation was associated with each character n-gram, and words were
represented as the sum of these representations. This method could quickly train
models on large corpora and compute word representations for words that did
not appear in the training data. Besides, Gong et al. [6] proved that the meaning
of a word is closely linked to sociocultural factors that can change over time and
location, resulting in corresponding meaning changes. Therefore, they presented
a model for learning word representation conditioned on time and location to
solve the problem of ignoring the previous methods’ temporal or spatial infor-
mation. In addition, to capture meaning changes over time and location, the
authors required that the resulting word embeddings retained salient semantic
and geometric properties. This model was trained on time- and location-stamped
corpora and used both quantitative and qualitative evaluations to capture se-
mantics across time and locations. Whatever, the discussed methods did not
consider the impact of the polysemous words in word embeddings. To solve this
limitation, Gou et al. [7] presented an approach to convert the polysemous into
vectors by clustering the context words. This method is the basis of our improve-
ment method. The difference is selecting the word embedding model, extracting
and clustering context words, and determining the parameters’ value to predict
the synonyms.

Notably, the prior methods did not consider the impact of synonyms when
representing words in the vector space. Therefore, we chose to study this prob-
lem.

3 Model

Let T = {t1, t2, ..., tn} represent a set of tweets, where Wt = {w1,w2, ...,wh} rep-
resent a set of words existing in tweet t . Let W = {w1,w2, ...,wm}, (m > h) repre-
sent a set of words in the vocabulary, where W = ∪t∈T {Wt}. Let V = {Vw1 ,Vw2 , ...,Vwm},
where Vwj = {v 1

wj
, v 2

wj
, ..., v q

wj }, represent a set of context words that surround the

words in set W .

3.1 General Model

In this section, we briefly review the skip-gram model introduced by Mikolov et
al. [16]. Given a word vocabulary W , the goal of the skip-gram model is to learn
a vector representation for each word w . In other words, the aim of this model
is to maximize the average log probability as follows:

1

m

m∑
i=1

q∑
j=1

log p(v j
wi |wi) (1)

The probability of observing a context word v j
wi , given wi , is parameterized. Let

Sc denote a scoring function that maps pairs of (word, context) to scores in R.
The problem is to predict context words. For the word wi , all context words as

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

A Method for Improving Word Representation Using Synonym Information 5

positive examples and sample negatives from vocabulary are considered [3]. For a

target context word v j
wi , using the binary logistic loss, the negative log-likelihood

is shown as follows:

log(1 + e−Sc(wi ,v
j
wi)) +

∑
n∈Ni,j

log(1 + eSc(wi ,n)) (2)

where Ni,j represents a set of negative examples sampled from the vocabulary. By
denoting the logistic loss function l : x → log(1 + e−x), equation 1 is rewritten
as follows:

n∑
i=1

 k∑
j=1

l (Sc(wi , v j
wi)) +

∑
n∈Ni,j

l (−Sc(wi , n))

 (3)

Assume two vectors zwi and zv j
wi

, corresponding to word wi and context word v j
wi ,

respectively. Then the score Sc is computed as the scalar product between word

wi and context word v j
wi using the following equation:

Sc(wi , v j
wi) =z>wi

zv j
wi

(4)

3.2 Synonym Representation Model

Given a word w ∈ W , let Sw = {s1
w , s2

w , ..., sg
w} represents a set of synonym words

of word w , where each synonym word sg
w ∈ Sw is associated to a vector representa-

tion zsg
w
. A synonym word is represented by the sum of the vector representations

of its contexts. Thus, the scoring function of our model is shown as follows:

Sc(sw , vw) =
∑

vw∈Vw

z>vw
zsw (5)

Similar to the Word2Vec skip-gram model, our model decides whether the target
word is a synonym word or not by using the context words of the target word.
In addition, to identify the synonym word, we use a context window of size
between one and five words to decide the context words of the synonym candidate
word. Next, we formally define the problems related to the enrichment of word
embeddings by considering synonym information. As a computational problem,
the improvement of word embeddings assumes that the input is a set of tweets
T = {t1, t2, ..., tn}.

For t ∈ T : let Wt = {w1,w2, ...,wh} represent a set of words appearing in
t . Let W = {w1,w2, ...,wm}, (m > h) represent a set of words in the vocabulary,
where W = ∪t∈T {Wt}. For w ∈ W : let U = {uw1 , uw2 , ..., uwm} be a set of baseline
word embeddings of words in W , and uwj (j = 1, ...,m) denote the vector of word
wj . For w ∈ Wt and uw ∈ U : let M represent a word embeddings mapping table,
M = {[w1, uw1], [w2, uw2], ..., [wm , uwm]}. For w ∈ Wt and Vw ∈ V : let P represent
a context words mapping table of words, P = {[w1,Vw1], [w2,Vw2], ..., [wm ,Vwm]}.
From P and M : let G = {Gw1 ,Gw2 , ...,Gwm} represent a set of clusters of con-

text words, in which Gwj = {g 1
wj
, g 2

wj
, ..., g k

wj } (j = 1, ...,m); g i
wj

= {v 1
wj
, v 2

wj
, ..., v h

wj
},

(i = 1, ..., k) represents a set of context words in the i -th cluster of the word wj .

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

6 H.T. Phan et al.

Definition 1 wi and wj (i 6= j) are called synonyms if:

– wi ∈ tx and wj ∈ ty , (x 6= y)
And

– Gwi = Gwj

Definition 2 The word embedding of synonym word s, denoted by zs , is a trans-
form of synonym s into a d -dimensional vector by calculating the average vector
of context words of this synonym. The synonym word embedding zs is defined as
follows:

zs = AVG(vector (M ,Gs)) (6)

where AVG is a function to calculate the average vector, vector is a mapping
function that is used to map each context word into one word embedding.

3.3 Research Question

In this study, we attempt to answer the main question: How to determine the
vector representations of synonym words?. This question is divided into the fol-
lowing two questions:

1. How to identify the synonym words by using their context words?
2. How to convert the synonym words into numerical vectors?

4 Proposed Method

In this section, we present a methodology to enrich word embeddings by adding
synonym information. The workflow of our method is illustrated in Fig.1.

Fig. 1. Workflow of the proposed method.

Our proposed method consists of three main steps. First, the context words
of the synonym candidates are extracted using a context window to scan the
entire corpus. Second, these context words are grouped into small clusters using
the LDA method. Finally, synonyms are extracted and converted into vectors
from the synonym candidates based on their context words.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

A Method for Improving Word Representation Using Synonym Information 7

4.1 Word Embeddings

Word embeddings are created using the available text representation models
that are used to convert words in a corpus into a vector space. Here, we used
the model introduced in [20] to obtain word embeddings for our corpus. The
detailed steps to create these vectors are presented in Fig.2. Its components are
described as follows.

Fig. 2. The word embeddings model architecture.

Parameter l2v denotes the lexicon vector. To create the lexicon vector of
a word, first, n-grams starting from this word, such as 1-gram, 2-grams, and
3-grams, are extracted. Then, the term frequency-inverse document frequency
(TF-IDF) value of these n-grams is calculated. Finally, the TF-IDF values of
n-grams are concatenated into one vector.

Parameter sy2v denotes the word-type vector of a word. This vector is built as
follows: First, the POS tag of this word is identified. Then, this word is converted
into a one-hot encoding vector based on the position of the corresponding POS
tag.

Parameter se2v denotes the semantic vector. This vector is created based on
the GloVe embeddings [17]. If this word exists in the GloVe dataset, the word
vector of this word is extracted and assigned to the semantic vector. If not, a
random vector of this word is created and assigned to the semantic vector.

Parameter pl2v denotes the polarity sentiment vector of a word. To create this
vector, first, the kind of word of this word is determined. Then, the sentiment
score of this word is calculated. Finally, the polarity sentiment vector is created
based on this sentiment score.

Parameter ps2v denotes the position vector. To build the position vector of
the word, first, the position of this word is extracted by calculating the distances
from this word to the remaining words in a tweet. Then, the position vector is
created based on these distances.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

8 H.T. Phan et al.

4.2 Context Words Extraction

For each w : let region(w , d) represent a context region of word w with the region
length as 2 × r + 1, where r denotes the window size for a region. In this study,
synonym words are identified via the position of their context words. The aim of
this phase is to find set V = {Vw1 ,Vw2 , ...,Vwm}. Therefore, any word in a region
of text can become the context word of a target word. The context words set is
determined according to the following equation.

Vwi =

2×r+1⋃
r=1

region(wi , r) (7)

Hence,

V =

h⋃
i=1

Vwi (8)

The positions of context words of word w are determined determined accord-
ing to Algorithm 1.

Algorithm 1 Context words extraction

Input: M ;
Output: P ;
1: for i = 1 to m do
2: for each wi do
3: wc := wi ;
4: for θ = 1 to 2 × r + 1 do
5: if wc ∈ region(wi , θ); then insert wc into Vwi ;
6: end for;
7: end for;
8: insert Vwi into V ;
9: end for;

10: for i = 1 to m do
11: for Vwi ∈ V do
12: P = {[wi ,Vwi]}
13: end for;
14: end for;
15: return P = {[w1,Vw1], [w2,Vw2], ..., [wm ,Vwm]}

4.3 Clustering context words

Given a set of context vocabularies denoted by V = {Vw1 ,Vw2 , ...,Vwm}, assuming
that we have a target word w and its context vocabulary Vw = {v 1

w , v 2
w , ..., v q

w}
in the mapping table P . In this phase, we use the LDA model [2] to group the con-

text words of the target word w into small clusters, denoted by Gw = {g 1
w , g 2

w , ..., g k
w},

where g i
w = {v 1

w , v 2
w , ..., v h

w}, (h < q and i = 1, .., k) represent a set of words that
are grouped into the i -th class of the context vocabulary of the word w . The

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

A Method for Improving Word Representation Using Synonym Information 9

LDA model can be generated using the following process [8, 19]: Let m denote
the size of the vocabulary and n the total number of context vocabularies in V . A
statistical topic model represents the words in a collection of tweets as mixtures
of k topics, words within context vocabularies we,q , (e = 1, ...,m ; q = 1, ..., n) are
observed variables while the probabilistic distribution over words of each latent
topic ϕl (l = 1, ..., k) with hyper parameter γ, the topic distribution per tweet
θe , (e = 1, ...,m) with hyperparameter δ and the perword topic assignment ze,q
are hidden variables. For each tweet, the words are created by the following
steps: First, a distribution over topics is randomly selected. A topic is randomly
selected for each word in the tweet based on the distribution over topics. Second,
the hidden random variables (ϕl and θe) are not observed that could be learned
through Gibbs sampling method7 via maximizing the probability p(V |δ, γ) as
the following equation:

p(V |δ, γ) =

m∏
e=1

∫
p(θe |δ)(

n∏
q=1

∑
ze,q

p(ze,q |θe)p(we,q |ze,q , γ))d θe (9)

The LDA model provides the outputs including k sub-clusters of context words
that belong to the given cluster Gw = {g 1

w , g 2
w , ..., g k

w}, the word distribution per
topic ϕl , (l = 1, ..., k) and the topic distribution per the context vocabulary
θe , (e = 1, ...,m). The steps to cluster the context words are presented as the
following Algorithm 2.

Algorithm 2 Clustering context words

Input: P ;
Output: Gwe , ϕwe , θwe ;
1: for l = 1 to k do
2: for e = 1 to m do
3: g l

we , ϕl , θe = LDA(P);
4: insert g l

we into Gwe ;
5: end for;
6: assign ϕl to ϕwe ;
7: assign θe to θwe ;
8: end for;
9: return Gwe , ϕwe , θwe

4.4 Synonym Words Extraction

In this study, the synonym words are extracted by calculating the Silhouette Co-
efficient [23]. Thus, for a cluster of context words of a target word g l

we
, (e = 1, ...,m ;

l = 1, ..., k), we have to calculate the Silhouette coefficient of each we ∈ g l
we

. Let

7 https://gist.github.com/mblondel/542786#file-lda gibbs-py

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

10 H.T. Phan et al.

SCwe denote the Silhouette coefficient of word we in cluster g l
we

.

SCwe =
1
m

m∑
e=1

(Swg l
we

) (10)

where Swg l
we

=
bwe − awe

max (awe , bwe)
(11)

where awe =
1

nl − 1

∑
wf ∈g l

we (f 6=e)

Def (12)

bwe = minh 6=l (
1
nh

∑
wf ∈g h

we

Def) (13)

where
Def =

√√√√ m∑
e,f =1

(Qwe − Qwf)
2 (14)

Qwe = ϕwe × θwe ; Qwf = ϕwf × θwf (15)

where Dij is the Euclidean distances for all pairs of the words in cluster g l
we

; nl (nh)
is the number of words in the l -th (h-th) cluster. The value of the Silhouette
Coefficient is in the interval [-1,1]. A higher value implies a better assignment
of words into clusters. Therefore, in this study, a word is decided as a synonym
word when the value of the Silhouette coefficient is equal to 1. The steps to
determine the synonym words are illustrated in Algorithm 3:

Algorithm 3 Synonym words extraction

Input: Gwe , ϕwe , θwe ;
Output: Swe ;
1: for l = 1 to k do
2: for e = 1 to m do
3: SCwe = Silhouette Coefficient(g l

we);
4: end for;
5: if SCwe > α then
6: we is determined as a synonym word;
7: swe := we ;
8: end if
9: insert swe into Swe ;

10: end for;
11: return Swe ;

4.5 Synonym Words Representation

Using the aforementioned steps, the synonym words are extracted from the
tweets. Next, we have to determine a way to convert these synonym words into
numerical vectors. In this study, the synonym words are represented as vectors
by calculating their context words’ average vectors. The equation to calculate the
context words’ average vectors is described in Definition 2. The overall algorithm
of the synonym word representation is presented in the following Algorithm 4.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

A Method for Improving Word Representation Using Synonym Information 11

Algorithm 4 Synonym words representation

Input: a set of synonym words Swe ;
a set of context words of synonym word swe , denoted by Gswe , where swe ∈ Swe ;

Output: zswe ;
1: for e = 1 to m do
2: zswe = AVG(vector (M ,Gswe));
3: end for;
4: return zswe ;

5 Experiment

5.1 Data Acquisition

The proposed method was applied to tweet data. The tweets in Semeval-20138

were used to train our proposal. Then, the unnecessary factors in tweets, such as
punctuation, retweet marks, URLs, hashtags, and query terms were discarded.
The Python emoji package9 was used to replace each emoji with descriptive text.
Tweets often include acronyms, spelling errors, and symbols. It is necessary to
correct them. We fixed these spellings using the Python-based Aspell library10.
In addition, to evaluate the performance of our method, we experimented with
three English word datasets, namely, WordSim-353 [5], RG-65 [24], and SimLex-
999 [10]. These datasets were obtained from Svoboda et al. [27]11. WordSim-353
includes 353 word pairs, including both concepts and named entities. RG-65
includes 65 word pair similarities. The SimLex-999 dataset is composed of 999
word pairs, 666 of which are noun pairs.

5.2 Evaluation Method

We evaluated the performance of our proposal for the task of word similarity (re-
latedness). This evaluation method was implemented by computing Spearman’s
rank correlation coefficient [25] between annotators and the obtained vectors of
our system. Furthermore, to prove the quality of our approach, we compared
our synonym word embedding model with corresponding state-of-the-art mod-
els by implementing the following baseline methods: Baseline 1: A Word2Vec
model that is trained on the entire corpus without considering the synonym in-
formation. Baseline 2: A GloVe model that is also trained on the entire corpus
without considering the synonym information. Baseline 3: A text representation
model regarding tweets containing fuzzy sentiment that considers elements such
as lexicon, word-type, semantic, position, and sentiment polarity of words [20].

8 https://www.kaggle.com/azzouza2018/semevaldatadets?select=semeval-2013-
train.csv

9 https://pypi.org/project/emoji/
10 https://pypi.org/project/aspell-python-py2/
11 https://github.com/Svobikl/global context/tree/master/AnalogyTester/evaluation data

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

12 H.T. Phan et al.

5.3 Training Setup

In this study, the tweets in the dataset were tokenized into separate words using
the NLTK package12. This model was trained on 10 iterations. After training,
the vector dimension for our model was set to d = 300. In addition, we used a
context window of size 5 to the left and 5 to the right from the target word to
extract the context words. Additionally, the threshold α is chosen by 0.7. All
above parameters were set manually following the experiments. We conducted
an exhaustive search for d from 50 to 400, α from 0.5 to 1. In each trial, we
adjusted the thresholds with increments of 50 and 0.1 for d and α, respectively.
An evaluation measure was necessary to select the highly reliable instances of
d and α in an exhaustive search. Therefore, in this study, the basis of choosing
the above parameters’ value is based on the value of the word-similar score. The
highest word-similar score was obtained for the threshold d = 300 and α = 0.7.
Selecting a higher or lower values for d and α would result in a misprediction of
more synonyms. The baseline methods were also trained with the same dataset.

5.4 Result and Discussion

The results for our method and the baseline methods are presented in Table 1.
Notably, some words in testing datasets were not included in our training data.
Therefore, we could not obtain the vector representation of these words. Hence,
for these words, we created random vectors to provide comparable results.

Table 1. Word similarity results (%).

Method WordSim-353 RG-65 SimLex-999

Baseline 1 76.12 69.31 42.26
Baseline 2 73.64 65.12 41.25
Baseline 3 78.73 69.32 40.57
Our approach 79.54 72.32 41.20

According to Table 1, it can be seen that for the WordSim-353 dataset, our
approach can improve the performance of the Baselines 1,2, and 3 by 3.42%,
5.9%, and 0.81%, respectively. Besides, for the RG-65 dataset, our method can
increase the word similarity accuracy of the baseline methods by up to 7.2%
(for Baseline 2), by at least 3% (for Baseline 3). However, for the SimLex-999
dataset, although the performance of our proposal was higher than Baseline 3,
but it was lower than the remaining methods by up to 1.06% comparison with
Baseline 1, by at least 0.05% comparison with Baseline 2.

As our assessment, our approach outperformed the baselines on the RG-65
and WordSim-353 datasets, but not on the SimLex-999 dataset. In this dataset,
the performance of our method was lower than that of Baseline 1 and Baseline 2
methods. This regard was because words in the SimLex-999 dataset were com-
mon words for good vectors obtained without exploiting synonym information.

12 https://www.nltk.org/ modules/nltk/tokenize/api.html

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

A Method for Improving Word Representation Using Synonym Information 13

When evaluating less frequent words, we noted that using the context words of
a target word helped to learn good word vectors.

In general, our method proved the role of synonym information when enrich-
ing word representations. Our approach improved the performance of the prior
techniques, but not always, owing to the imbalance of synonym frequency in the
datasets.

6 Conclusion and Future Work

We improved the vector representation of words by adding the synonym informa-
tion. This improvement focuses on the extraction and presentation of synonyms
based on their context words. We show that our method has extracted synonym
words based on grouping their context words. The synonym words have been
represented to vectors by computing the average vector from vectors of their
context words. By comparing to recent word representation methods, we proved
that our proposal achieved a quite good performance on a given task in terms
of word similarity. The main limitation is that we have not compared this pro-
posal’s performance to other methods of synonym representations because of the
difficulty in determining similar methods for comparison. We will open-source
our implementation to make easy the comparison of future work on learning
synonym vectors.

References

1. Al-Twairesh, N., Al-Negheimish, H.: Surface and deep features ensemble for senti-
ment analysis of arabic tweets. IEEE Access 7, 84122–84131 (2019)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993–1022 (2003)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

5. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: The concept revisited. In: Proceedings of
the 10th international conference on World Wide Web. pp. 406–414 (2001)

6. Gong, H., Bhat, S., Viswanath, P.: Enriching word embeddings with temporal and
spatial information. arXiv preprint arXiv:2010.00761 (2020)

7. Guo, S., Yao, N.: Polyseme-aware vector representation for text classification. IEEE
Access 8, 135686–135699 (2020)

8. Hamzehei, A., Wong, R.K., Koutra, D., Chen, F.: Collaborative topic regression
for predicting topic-based social influence. Machine Learning 108(10), 1831–1850
(2019)

9. Harris, Z.S.: Distributional structure. Word 10(2-3), 146–162 (1954)
10. Hill, F., Reichart, R., Korhonen, A.: Simlex-999: Evaluating semantic models with

(genuine) similarity estimation. Computational Linguistics 41(4), 665–695 (2015)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

14 H.T. Phan et al.

11. Jianqiang, Z., Xiaolin, G., Xuejun, Z.: Deep convolution neural networks for twitter
sentiment analysis. IEEE Access 6, 23253–23260 (2018)

12. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text. zip: Compressing text classification models. arXiv preprint arXiv:1612.03651
(2016)

13. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

14. Kundi, F.M., Ahmad, S., Khan, A., Asghar, M.Z.: Detection and scoring of internet
slangs for sentiment analysis using sentiwordnet. Life Science Journal 11(9), 66–72
(2014)

15. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

18. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,
Zettlemoyer, L.: Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018)

19. Phan, H.T., Nguyen, N.T., Tran, V.C., Hwang, D.: An ap-
proach for a decision-making support system based on measuring
the user satisfaction level on twitter. Information Sciences (2021).
https://doi.org/https://doi.org/10.1016/j.ins.2021.01.008

20. Phan, H.T., Tran, V.C., Nguyen, N.T., Hwang, D.: Improving the performance of
sentiment analysis of tweets containing fuzzy sentiment using the feature ensemble
model. IEEE Access 8, 14630–14641 (2020)

21. Qi, Y., Sachan, D.S., Felix, M., Padmanabhan, S.J., Neubig, G.: When and why are
pre-trained word embeddings useful for neural machine translation? arXiv preprint
arXiv:1804.06323 (2018)

22. Rezaeinia, S.M., Rahmani, R., Ghodsi, A., Veisi, H.: Sentiment analysis based on
improved pre-trained word embeddings. Expert Systems with Applications 117,
139–147 (2019)

23. Řezanková, H.: Different approaches to the silhouette coefficient calculation in
cluster evaluation. In: 21st International Scientific Conference AMSE Applications
of Mathematics and Statistics in Economics 2018. pp. 1–10 (2018)

24. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Communi-
cations of the ACM 8(10), 627–633 (1965)

25. Sedgwick, P.: Spearman’s rank correlation coefficient. Bmj 349, g7327 (2014)
26. Svoboda, L., Brychcın, T.: Improving word meaning representations using

wikipedia categories. Neural Network World 523, 534 (2018)
27. Svoboda, L., Brychćın, T.: Enriching word embeddings with global information

and testing on highly inflected language. Computación y Sistemas 23(3) (2019)
28. Ulčar, M., Robnik-Šikonja, M.: High quality elmo embeddings for seven less-

resourced languages. arXiv preprint arXiv:1911.10049 (2019)
29. Wang, B., Wang, A., Chen, F., Wang, Y., Kuo, C.C.J.: Evaluating word embedding

models: methods and experimental results. APSIPA transactions on signal and
information processing 8 (2019)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_28

https://dx.doi.org/10.1007/978-3-030-77967-2_28

