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Abstract. We study the q-voter model with bounded confidence on the
complete graph. Agents can be in one of three states. Two types of agents
behaviour are investigated: conformity and independence. We analyze
whether this system is qualitatively different from a corresponding model
without bounded confidence. The key result of this paper is that the
system has two phase transitions: one between order-order phases and
another between order-disorder phases.
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1 Introduction

The q-voter model is widely used in the area of opinion dynamics [1–3]. Within
the q-voter model opinions are usually binary dynamical variables. Only recently,
a new version of the model with multi-state opinions was introduced [4, 5]. In [5]
agents can change opinions without any limitations: all opinions are equivalent.
The situation when opinions are not equivalent was analyzed by Stauffer for the
Sznajd model [6]: one agent can convince another to its opinion only if they
share similar opinions, i.e. not too distant from each other (this rule is known as
a bounded confidence [7]). The simplest multi-state model with bounded confi-
dence is a model with three opinions. In this case two opinions are considered as
extreme and agents do not change their opinion from one extreme to another due
to the bounded confidence in a single update. Agents with the middle opinion
can change it to any other. One can think about this simple realisation of multi-
state opinion model with bounded confidence in terms of political parties: left-
and right-wing extreme parties and centrist party. There is empirical evidence
that agents opinion has multidimensional nature [8] and cannot be reduced to
simple yes-no case. The model with three-state opinion and bounded confidence
is a step to make it more realistic. In the future even more states can be added.

In this paper we analyze to what extent the q-voter model with three-state
opinion and bounded confidence is different from the one without bounded con-
fidence.
? Research is supported by the National Science Center (NCN, Poland) through grant

no. 2019/35/B/HS6/02530.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_24

https://dx.doi.org/10.1007/978-3-030-77967-2_24


2 Wojciech Radosz and Maciej Doniec

2 Methodology

Considered system consists of N agents. Each agent is characterized by the
dynamical variable named opinion oi(t), i = 1, ..., N , where t denotes simulation
time measured in Monte Carlo steps (MCS). Opinion takes one of three possible
values: oi(t) = k ∈ {1, 2, 3} and only the following transitions between states are
allowed:

1 2 3. (1)

Transitions between states 1 and 3 are forbidden, so opinions 1 and 3 have only
opinion 2 as a neighbouring one, whereas for opinion 2 both 1 and 3 are the
neighbouring states.

Number of agents with opinion k at time t is denoted by Nk(t), and their
concentration is ck(t) = Nk(t)/N . Agents are placed in the vertices of a com-
plete graph (CG). We distinguish two types of behaviour: independence and
conformity [2, 5]. Agents behave independently with probability p and conform
to others with probability 1 − p. For the latter case agent is influenced by the
q-panel of unique neighbours (chosen without repetition). Changes of opinion
are limited by restrictions from Eq.(1). In simulations we use random sequential
updating, which means that in a single update only one agent can change its
opinion. Pseudocod of a single update is presented below.

Algorithm 1: pseudocod

i← randomint (1, N) ;
if p > random(0, 1) then

i.state← state (randomint (i.state− 1, i.state+ 1));
else

Find q neighbours;
if states of neighbours are equal then

if neighbour.state ∈ (state (i.state− 1) , state (i.state+ 1))
then
i.state← neighbour.state;

3 Mean-field approach

We investigate presented model on the CG - mainly because it allows for an
exact theoretical calculations as CG is equivalent with the mean-field approach.
Such an approach enables verification of the model by comparison of the Monte
Carlo (MC) results with analytical ones. The dynamics of the system can be in
general described as the flow of agents from one opinion to another. Opinions
1 and 3 have different dynamics than opinion 2 because of different number of
neighbours (see Eq.(1)).

We want to calculate the flow between opinions for certain values of parame-
ters and define the stationary state for each of those. Let us define concentration
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of a given state in the form of:

ck(t) =
Nk(t)

N
=

1

N

N∑
i=1

δ (oi(t), k) , (2)

where δ (i, j) is the Kronecker delta function.
In a random sequential updating the elementary change of concentration

ck(t) for all k in a single update is ∆c = 1/N . Concentration ck(t) can increase
or decrease with corresponding probabilities

γ+k = P (ck → ck +∆c), γ−k = P (ck → ck −∆c). (3)

Up to this moment we have been dealing with random variable ck(t). We can also
write the evolution equation of the corresponding expected values. For N →∞
we assume that random variable ck(t) localizes to the expected value. The time
evolution of the expected value of ck is

ck(t+∆t) = ck(t) +
1

N
(γ+k − γ

−
k ). (4)

Since there is N agents and one MCS means N individual updates then N∆t = 1
and ∆t = 1

N . If the system is large enough and N → ∞ then Eq.(4) simplifies
to

∂ck
∂t

= γ+k − γ
−
k . (5)

Now we write explicitly γ±k . With probability (1−p) agent is a conformist. There
are Nk′ agents with opinions in states different than k, but achievable for agent
in state k. We randomly choose q neighbours and they all need to share opinion
k. For the first neighbour there are Nk available agents out of N − 1. For every
next neighbour there is one less unique agent. Finally the conformism part γ+con
and the outflow γ−con can be written as

γ+k,con =
Nk′

N
(1− p)

(
q∏

i=0

Nk − i
N − 1− i

)
, γ−k,con =

Nk

N
(1− p)

(
q∏

i=0

Nk′ − i
N − 1− i

)
.

(6)
With probability p agent is independent. There are Nk′ agents in different state
than k and achievable for agent in state k. Due to the bounded confidence the
independence term is different for k = 1, 3 and k = 2. Random choice of state
for k = 1, 3 means that with probability 1

2 we can change to k′ = 2 or stay in
the same state. For state k = 2 there are three options: k′ = 1, 3 and preserving
opinion, so each term has probability 1

3 . So for example γ1,ind yields

γ+1,ind =
N2

N

p

3
, γ−1,ind =

N1

N

p

2
. (7)

Combining Eqs. (6-7) for state k = 1 we obtain

γ+1 =
N2

N

(
(1− p)

(
q∏

i=0

N1 − i
N − 1− i

)
+
p

3

)
, (8)
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and

γ−1 =
N1

N

(
(1− p)

(
q∏

i=0

N2 − i
N − 1− i

)
+
p

2

)
. (9)

When N →∞, the above equations simplify to

γ+1 = c2

(
(1− p)cq1 +

p

3

)
, γ−1 = c1

(
(1− p)cq2 +

p

2

)
. (10)

Analogic formulas were derived for k = 2, 3. The time evolution of the system
can be described via three equations:

∂c1
∂t

= c2

(
(1− p) (cq1) +

p

3

)
− c1

(
(1− p) (cq2) +

p

2

)
, (11)

∂c2
∂t

= (c1 + c3)
(

(1− p) (cq2) +
p

2

)
− c2

(
(1− p) (cq1 + cq3) +

2p

3

)
, (12)

∂c3
∂t

= c2

(
(1− p) (cq3) +

p

3

)
− c3

(
(1− p) (cq2) +

p

2

)
. (13)

In the next Section we compare results obtained from MC simulations with
numerical results from Eqs. (11-13).

4 Simulations

For the simulations we use the system of size N = 25 000 and simulation time
t = 5 000 MCS. Results were averaged over 64 independent realisations.

Fig. 1 shows the plot of concentration c1 against p for different values of q
(see legend). Solid lines represent theoretical solutions for c1(p), whereas symbols
denote the outcome of MC simulations. Coloured and empty symbols stand for
different initial conditions: the former for c1(0) = 1 and c2(0) = c3(0) = 0, the
latter for c2(0) = 1 and c1(0) = c3(0) = 0. It can be seen in more detail in the
inset of Fig. 1, that those data sets are different but they tend to overlap for
certain values of p. At first we focus on c1(p) for q = 2. Data maintains order up
to p ≈ 0.19 when c1 drops from ∼ 0.7 to ∼ 0.1 suggesting some kind of phase
transition in the system. For higher values of p, c1 slowly and smoothly grows,
through the inflection point to equilibrium value ∼ 0.27. Final value of c1 is not
equal to 1

3 because, as mentioned, opinions k = 1, 3 have only one neighbour
while central opinion k = 2 has two neighbours. Data for c1(0) = 0 (empty
squares) slowly growths up to p ≈ 0.2. For higher p both data sets overlap.

The data c1(p) for q = 3 (blue and empty circles) has very similar character
to q = 2. The drop in c1 value takes place earlier: for p ≈ 0.17, after which
coloured and empty circles overlap. Later growth is more rapid than for q = 2.

This character repeats for q = 4 (green and empty triangles). The only
noticeable difference is that growth after p ≈ 0.13 is much faster and an eye-
inspection reveals the position of inflection point.

The data for q = 5 (magenta and empty diamonds) displays qualitatively
different character. After the initial drop of c1 for p ≈ 0.1 we notice short, rapid
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Fig. 1. Dependence between the stationary concentration c1 of opinion 1 and probabil-
ity of independence p for several values of q obtained from MC simulations (symbols)
and numerical solutions of Eqs.(11-13) (solid lines). Coloured symbols stand for the
initial configuration c1(0) = 1. Empty symbols stand for c1(0) = 0 (inset shows this in
detail). Inset: hysteresis loop for q = 5, scaled up.

growth and another jump in value for p ≈ 0.14. The second jump is discontinuous
and displays hysteresis loop that can be seen via discrepancy between the two
data sets: coloured and empty symbols. This part of the graph can be seen in
more detail in the inset. This is the first case when we see double discontinuous
transition: from one order to another (dominant k = 1 into dominant k = 2 or
3) and from order into disorder (dominant k = 2 or 3 into disorder).

The next key issue is what happens with the system after the first and the

Fig. 2. Dependence between the stationary values of all opinions and the probability
of independence p for q = 5.
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second transition. To explain this we plot the concentration of all states c1,2,3(p)
for q = 5 - see Fig. 2. Initial condition was c1(0) = 1 and c2(0) = c3(0) = 0.
Up to p = 0.1 the concentration of states is the following: dominating state is
k = 1, while states k = 2, 3 are in minority. Afterwards there is a rapid drop of
c1 and a rapid growth of c2. For rather narrow region p ∈ [0.1, 0.14] state k = 2
dominates while states k = 1, 3 are equal. Then there is a second rapid drop
of value: this time c2 drops while c1,3 grow. For further increase of p there is a
smooth, rather slight change of values of all concentrations reaching final value
around p ≈ 0.3.

Fig. 2 clearly shows that the first transition for p ≈ 0.1 means the change
of domination from state k = 1 into k = 2. The second transition for p ≈ 0.14
means that state k = 2 looses decisive domination and for p > p∗ ≈ 0.14 almost
disordered phase is reached with only slight dominance of the central opinion
c2 over the extremes c1 = c3. This results is in agreement with theoretically
calculated values of stationary concentrations ck for high p, namely c1,3,st = 2

7
and c2,st = 3

7 .
To gain deeper insight into the behaviour of the system we present the

Fig. 3. Trajectories of ck(t) against MC time for q = 5 and various p. Each trajectory
graph is connected to red point showing its position on c1(p) graph. Black line corre-
sponds to c1, red to c2 and blue to c3. All the trajectory plots have the same axis labels
as plot (a).

trajectories – plots of time evolution of concentration ck(t) (see Fig. 3). We have
chosen data for q = 5 as for this value we obtained the most intriguing results.
Trajectories are presented together with data c1(p) for better understanding of
their position on the phase diagram. Each red point in graph c1 (p) corresponds
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to the given inset trajectory plot. For p = 0.05 and c2(0) = 1 (panel (a) in
Fig. 3) opinion k = 2 dominates for the whole simulation time. Trajectory (b)
for p = 0.09 and c1(0) = 1 shows similar character with domination of k = 1.
Trajectory (c) for p = 0.1 and c1(0) = 1 is qualitatively different from both
previous plots. State k = 1 dominates for about 1000 MCS and then rapidly
looses domination in favour of k = 2. Opinion k = 3 initially slowly increases,
then the sudden rapid growth is observed but after very short time it drops
to the final steady value. This surprising non-monotonic behaviour originates
from the growth of neighbouring opinion k = 2. Later the system stabilizes with
domination of k = 2. Trajectory (d) for p = 0.125 and c1(0) = 1 has similar
character to plot (c) but the change of domination happens much faster (∼ 100
MCS). Trajectory (e) for p = 0.142 and c1(0) = 1 has similar character to (d)
but k = 2 becomes dominant much faster. Its final concentration is considerably
smaller than in all previous cases. Plot (f) for p = 0.45 and c1(0) = 1 shows
very fast transition into domination of k = 2 on the lowest value of all cases:
c2 ≈ 0.43.

Those results indicate once more that the first transition localized at p ≈ 0.1
corresponds to the change of domination: from k = 1 to k = 2. The second
transition at p ≈ 0.14 corresponds to the loss of the overwhelming domination
of any state. From this point with growing p the system evolves towards mixed
state with equally numerous states k = 1, 3 and slightly more numerous middle
state k = 2.

5 Discussion

When opinion is multi-state people are rather unlikely to change their opinion
dramatically [6, 7]. In the model we express this in terms of bounded confi-
dence. We analyzed the q-voter model with three-state opinions and bounded
confidence on a complete graph. We took into account two types of the social
response: conformity and independence. There are two phase transitions: the
first from a certain order into a different order, and the second from an order
into disorder. The first transition is discontinuous in all analyzed cases, while the
second transition is discontinuous only for q ≥ 5. The system shows dynamics
that is qualitatively different than the corresponding system without bounded
confidence [5].

References

1. Castellano, C.; Munoz, M. A.; Pastor-Satorras, R. Phys. Rev. E 2009, 80, 041129.
2. Jedrzejewski, A.; Sznajd-Weron, K. Comptes Rendus Physique 2019, 20, 244-261.
3. Chmiel, A.; Sznajd-Weron, K. Phys. Rev. E 2015, 92, 052812.
4. Martins, A.C.R. Eur. Phys. J. B 2020, 93, 1.
5. Nowak, B.; Ston, B.; Sznajd-Weron, K. Sci. Rep. 2021, 11, 6098.
6. Stauffer, D. Advances in Complex Systems 2002, 5, 97-100.
7. Hegselmann, R.; Krause, U. JASSS 2002, 5.
8. Alos-Ferrer, C.; Granic, D.-G. Elect. Stud. 2015, 39, 56-71.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_24

https://dx.doi.org/10.1007/978-3-030-77967-2_24

