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Abstract. Defining accurate and flexible models for real-world networks
of human beings is instrumental to understand the observed properties of
phenomena taking place across those networks and to support computer
simulations of dynamic processes of interest for several areas of research
– including computational epidemiology, which is recently high on the
agenda. In this paper we present a flexible model to generate age-stratified
and geo-referenced synthetic social networks on the basis of widely avail-
able aggregated demographic data and, possibly, of estimated age-based
social mixing patterns. Using the Italian city of Florence as a case study,
we characterize our network model under selected configurations and we
show its potential as a building block for the simulation of infections’
propagation. A fully operational and parametric implementation of our
model is released as open-source.

Keywords: Urban social network · Graph model · Simulator · Epi-
demic.

1 Introduction and Background

The definition of networks that encode in a suitable way patterns of connection
and interaction among individuals of a population is a widely studied problem.
Among the many reasons, finding accurate models for real-world social networks
is instrumental to study the dynamics of disease spreading [9] or propaganda [14].
Many simulation-based social studies complain about the lack of reliable data and
therefore model social networks by using well-known random graph models [1]. At
the other hand of the spectrum, with a focus on physical interactions, a growing
body of research makes use of extensive and often purposely collected data –
e.g., surveys and questionnaires, activity location, traffic and mobility data –
either to extract setting-specific contact matrices [24,3] or for tuning agent-based
simulators [10,3]. While simple random models cannot capture all the subtleties
of real networks [3], a recent call to action raised the attention towards the need
for accurate yet flexible and replicable approaches [32].

In this paper, we present a novel framework for the definition of a data-driven
urban social network, where each edge of the graph represents a “strong tie” [18]
between two geo-referenced and age-stratified individuals. We tell apart intra-
household (e.g., kinship) edges from friendship edges. The former are defined
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quite naturally by drawing a clique (i.e., a complete subgraph) for each household,
where the breakdown of the population into households is entirely inferred from
the available data. Friendship edges are instead drawn based on three guiding
elements: (i) the available contact data (e.g., extracted thanks to [35]), used to
trigger an age-based social mixing structure in the network; (ii) the existence
of an inverse power-law dependence of friendship upon physical distance [15,7];
(iii) a vertex-intrinsic social fitness [8] that models the individual propensity to
have friends. Our network model may be of help in any application setting that
requires to gather and elaborate information on the urban social fabric. It may
be used as a standalone tool, to characterize urban social relation patterns in
connection with the geography and the demography of a given territory – like we
show in Section 3. Moreover, it is instrumental in increasing the plausibility of
simulations of dynamic processes that may be influenced by agents’ preferences
and personal relations – like we show in Section 4 for an epidemic use case.

To guarantee usability and reproducibility, the source code of the software
used to simulate instances of our urban social network is publicly available1. The
model depends on a combination of data-driven and configuration parameters
that make it adaptable to different use cases. In [13] we provide a detailed
analysis that may guide potential users and that, overall, speaks in favor of
certain configurations, on which we will focus in this paper. Of special interest
are the combinations of parameters that allow to reproduce a few empirical and
sociological findings of urban social networks. First of all, the distance-based
penalization shall have exponent in the range [0.5, 2] [19,26]. Further, the graph
shall have a heavy- but not fat-tailed degree distribution [19,15,20,16] and be
(mostly) connected, as typically observed in urban areas [27,15,20,31]. Since social
ties comparable to kinship are rare [18], these properties will be enforced while
keeping “small” the average number of friends. As a consequence, in our graph
acquaintances correspond to short, but > 1, paths, and the network is quite
sparse, a necessary feature in most practical applications.

A review of related work follows. We then describe in details our network
model (Section 2), characterize the network obtained for the city of Florence,
Italy, under two selected configurations (Section 3), and present an epidemic
use case (Section 4). Finally, we discuss strengths and current limitations of our
model, and we identify suitable directions for future work (Section 5).

1.1 Related Work

We construct our synthetic population following an intermediate approach
between Synthetic Reconstruction (SR) [5] and Combinatorial Optimization
(CO) [33]. In SR the attributes of each agent are drawn from joint-distributions
deduced from aggregate and survey data. In CO a sample of real individuals
is available for different sub-areas of the territory of interest, and the whole
population is obtained through replication/resampling methods. Extensions and
modifications to these methods are well surveyed in [30].
1 The source code is released under the GPL v3 at gitlab.com/cranic-group/usn.
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One element of novelty of our network model is the usage of age-based social
mixing data to infer friendship links. Computational social scientists often rely on
rather simple graph models [1] or, possibly, on exponential random graphs [29].
Sample data (e.g., surveys, questionnaires, diaries), possibly integrated with
mobile/traffic/wearable sensor data [24,11,17], are extensively used to model
physical contacts. To this end, some authors extract contact matrices for specific
settings, such as households, schools and workplaces [24,3], others use agent-based
simulators to reproduce synthetic interactions [10,3]. We relied on the recently
released SOCRATES [35] Data Tool2 to extract data for Italy from Polymod [24].
The tool allows to easily specify parameters such as age breaks, gender, day of
the week, duration or location of the contacts, and it produces a social contact
matrix drawing from the best public survey datasets for the selected country.

The introduction of a penalization for “long” edges is not peculiar to our
model. While there is wide evidence that geographical factors alone cannot explain
the structure of real-world spatial social networks [31,20,15], the dependence of
friendship on distance is widely assumed to follow an inverse power-law with
exponent β ∈ [0.5, 2] [19,31,15,26,20,16,34,7] – and this surprisingly holds even for
online relationships [12]. In particular, β < 1 seems to work better for short range
contacts (< 20km) [16] and for urban networks [34]. The impact of this penaliza-
tion upon communities, path lengths, degree distribution and other topological
properties of the network has already been the object of study [36,4], but previous
modeling efforts assumed some simple (e.g., uniform) spatial distribution, instead
of using data-driven vertex locations.

Previous empirical findings did play a role, more generally, in guiding our
modeling choices. Real-world spatial social networks are usually “small-worlds”
[31,15], with a single giant connected component [27,15,20], average degree in
the range 5 to 20, and high clustering coefficient [20,31,15,20,16]. In line with
sociological studies [18], but contrary to other real-world networks [6,25], such
networks do not present very large hubs [27,19,15,20]. Their degree distribution
is right skewed and relatively long-tailed [15,20], and it has been, at times,
approximated by a power-law with a large (5 to 8) exponent [27,19] or by a
Lognormal distribution [16]. Within cities, population density impacts on the
frequency of close-range contacts, but usually not on the overall size of each
person’s network [7]. While geographical proximity and community structure
appear to be related [15,34,7], some authors argue that only small clusters (< 30
members) are geographically bounded [26] whereas the large ones may span
across very large areas of a city [15].

2 Graph Model

Our urban social network is represented by an unweighted undirected graph
G = (V,E), where V is the vertex set of size N = |V | and E is the edge set. In
particular, we have E = EH tEF , where EH is the set of household edges, EF
2 https://lwillem.shinyapps.io/socrates_rshiny/.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_23

https://lwillem.shinyapps.io/socrates_rshiny/
https://dx.doi.org/10.1007/978-3-030-77967-2_23


4 S. Guarino et al.

is the set of friendship edges and t denotes the disjoint union. In the following,
we explain how V , EH and EF are defined in our model. We will often use
the expression household graph to denote the subgraph GH = (V,EH) and the
expression friendship graph to denote the subgraph GF = (V,EF ).

2.1 Vertex set

Each vertex u ∈ V is characterized by three attributes: a fitness score fu ≥ 0, an
age label gu ∈ {0, . . . , n− 1}, and a tile label tu ∈ {0, . . . , T − 1}.

Fitness. Inspired by previous work, that modelled degree heterogeneity
by means of a vertex-intrinsic fitness [8], we make use of a sociability fitness
attribute fu. Our model does not put restrictions upon the choice of fu, but
the probability of a friendship edge between u and v is set proportional to fu
and fv (see Section 2.3). The distribution of fu shall thus be chosen considering
its impact on the degree distribution of the friendship graph. For the scope of
this paper, we consider fu ∼ 1 + LN

(
ln(2), 1

4
)
, where LN denotes a Lognormal

distribution3. This distribution has been chosen empirically in an attempt to
mimic two main aspects of real-world spatial social networks: only a few people
have very few social links and the hubs are limited in both number and size. In
general, Lognormally distributed data occur across different domains [23] and
recent work suggests that the sociability of real-world social networks makes no
exception [20,16]. Other choices may be preferred, some of which (e.g., a Pareto,
a uniform and a constant distribution) are already supported by our simulator.

Age. The age labels define a stratification of the population into age-groups,
i.e., a partition of the vertex set V into n disjoint subsets V0, . . . , Vn−1. For
the scope of this paper, we consider four age-groups: children (0 to 17), young
people (18 to 34), adults (35 to 64) and elderly people (65+). The proportion of
each group is determined according to census data at the provincial level made
available by the Italian Institute of Statistics (ISTAT)4 and for each vertex u the
age label gu is independently drawn. Any desired age-stratification can be easily
specified in the simulator’s configuration file – statistics for many other countries
are provided, for instance, by the United Nations Statistics Division (UNSD)5.

Tile. We decompose the territory of interest into a regular lattice of T square
tiles of side l and we set the tile label tu equal to the unique index of the tile
where u resides. The side l is a configuration parameter, set as l = 1Km for
the scope of this paper. Approximating the position of each vertex with its
tile is instrumental in simplifying the computation of pairwise distances and
of the household structure, as better explained in the following. A module of
the simulator is responsible for extracting the shape file of the city of interest.
We resort to the overpass API of the well known OpenStreetMap database6 to
3 Throughout this paper, we use the parameterization LN

(
λ, σ2) where λ and σ2 are

the mean and variance of the associated Normal distribution.
4 ISTAT data used in this paper are available at https://www.demo.istat.it/pop2020
5 https://unstats.un.org/unsd/demographic-social/census/censusdates/.
6 https://www.openstreetmap.org/.
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find the minimal grid that contains the city’s boundary; we then select only the
tiles of the grid whose center lies inside it. We get population density data for
the whole city from the WorldPop Project7, which provides data of the world
population for 100m×100m square cells, and we map those data to our tiles.

2.2 Household edges

To group individuals into households we follow a heuristic approach, imposing
that: (i) all members of a household live in the same tile; (ii) children are younger
than their parents; (iii) partners have, on average, a similar age. The algorithm
is based on the concept of household role, represented as a pair of the form
(household-type, role) taking values in {(singles,single), (single-parent,parent),
(single-parent,child), (couples,peer), (two-parents,parent), (two-parents,child),
(various,various)}8. For instance, ru =(single-parent,parent) means that u is a
parent in a household of type single-parent, where ru[0]=single-parent is the
household-type and ru[1]=parent is the role. We make use of two conditional
distributions: Pr[r | g] is the probability that an individual has role r given that
she/he belongs to age-group g; Pr[k | h] is the probability that a household of
type h has k members. These can be obtained for Italy based on ISTAT aggregate
national data, and, e.g., from the UNSD for other countries. At a high level, the
heuristics works as follows:

– Extract a role r for each vertex u, based on Pr[r | gu].
– For all u such that ru[0] ∈ {single-parent, two-parents}:
• if ru[0] =two-parents, select a random partner v for u such that tv = tu,
gv ∈ [gu − 1, gu + 1] and rv[0] = ru[0];

• extract the total number of members ku for the household of u, based on
Pr[k | ru[0]], and compute their total number of children cu.

– For i = 1, . . . ,maxu cu:
• for all u such that cu ≥ i, select a random w such that tw = tu, gw < gu,
rw[0] = ru[0] and rw[1]=child, and assign w to the household of u.

– For all u such that ru[0] =couples, select a random partner v for u such that
tv = tu, gv ∈ [gu − 1, gu + 1] and rv[0] = ru[0].

– Randomly compose the households of type various, based on Pr[k | various].

In our simulations, the number of individuals left out of any household by the
heuristics is negligible, and the empirical distributions of household types and
members per type almost perfectly match the expected ones (see [13] for details).
The household edges EH are finally obtained as the union of all the cliques that
connect all members of the same household.

7 https://www.worldpop.org/.
8 The pair (various,various) covers all cases other than the previous ones.
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2.3 Friendship edges

All friendship edges are drawn independently at random. For each pair (u, v) ∈
V × V , the probability Pr[u, v] = Pr[(u, v) ∈ EF ] is defined as:

Pr[u, v] = µ ·N
2 · mgu,gv · sgu,gv∑

i≤j (mi,j · si,j)
· d(u, v)−β · fu · fv∑

u′∈Vgu ,v
′∈Vgv

(d(u′, v′)−β · fu′ · fv′) (2.1)

where:
– µ is the average number of friends – a configuration parameter;
– mi,j = |Vi|·|Vj | if i 6= j andmi,i = |Vi|·(|Vi|−1)

2 – deduced from the data-driven
age-stratification;

– si,j is the age-based social mixing for groups i and j – a data-driven coefficient,
computed from aggregated social contact data as explained in Section 1.1;

– d(u, v) = max
{
l
2 , d
∗(tu, tv)

}
is the approximated distance between u and v,

where d∗(tu, tv) is the distance between the centers of the tiles tu and tv – a
data-driven value, except for l which is a configuration parameter;

– β is the exponent that determines the level of penalty imposed to long edges
– a configuration parameter.

A thorough description of (2.1) is presented in [13]. Here, we just highlight that
Pr[u, v] is normalized in such a way to guarantee that the data-driven age-based
social mixing induced by the coefficients si,j is respected, up to a scaling factor.
Indeed, the expected number of friendship edges between groups i and j is

E[|EF (i, j)|] = µ ·N
2 · mi,j · si,j∑

i≤j (mi,j · si,j)

It follows quite easily that E[|EF |] = µ·N
2 , hence the average degree of the

friendship graph is exactly µ, regardless of all other parameters. The expected
degree of a specific vertex u is proportional, besides to µ, to fu and to the average
of fv for all other v ∈ V , weighted by d(u, v)−β .

3 Network Analysis

Potential sources of information for real friendship patterns, e.g., telephone
data [11] or online social networks [21], are usually hard to acquire, private
and/or not entirely representative/dependable. Instead of a direct validation of
our model against real data, we therefore present a characterization of the urban
social network obtained for the city of Florence under selected configurations.
We refer the interested reader to [13] for an extensive experimental analysis.

In the following, we use age-stratification and household composition data
from ISTAT, spatial population density from WorldPop, and age-based social
mixing coefficients from [24], collected through the SOCRATES Data Tool. We
additionally take fu ∼ 1 +LN (ln(2), 0.25), µ = 10 and we consider both β = 0.5
and β = 2. It may be useful to know that, based on our data, Florence counts
363060 residents – roughly, 15% children, 17% young people, 43% adults, 25%
elderly people – and is contained in a 15Km×12Km grid.
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3.1 Topology of the graph

In Table 1, we overview the global topological properties of the graph. We recog-
nize the typical positive assortativity of social networks and a global clustering
several orders of magnitude greater than in the equivalent Erdos-Renyi graph.
However, a closer inspection highlights that the large number of small cliques
introduced in the household graph plays a paramount role in the formation of
triangles, whereas the friendship graph, despite the geographical and age-based
homophily, shows limited transitivity. Regardless of β, the average shortest path
length has a value of the order ln(N)

ln(〈deg〉) , typical of small world networks.

Table 1: Social graph for Florence with µ = 10 and fu ∼ 1 + LN (ln(2), 0.25):
average metrics over 10 independent runs (the negligible variance is omitted).

〈deg〉 〈dist〉 C Cloc ρ # comp. giant %

β = 0.5 11.812 5.2633 0.0156 0.0325 0.2106 924.9 99.74%
β = 2 11.815 5.3199 0.0148 0.0438 0.2605 2333.1 99.28%

〈deg〉: average degree; 〈dist〉: average path length; C: global clustering coefficient;
Cloc: average local clustering coefficient; ρ: degree assortativity; # comp.: number
of connected components; giant %: percentage of nodes in the giant component.

From Fig. 1a we see that, as expected, the right tail of the degree distribution
is heavy but not fat (i.e., subexponential but not power-law) – as a matter of
fact, the frequency of degrees ≥ µ is well-fitted by a Lognormal distribution.
Comparing the two regimes for β, we see that β = 2 yields a larger portion of
loosely connected vertices compensated by the presence of greater hubs. The
rationale is that only when the dependence on the distance is weak the individuals
living in central and denser areas connect to peripheral vertices, that remain
otherwise isolated. β = 2 thus favors the assortativity and the average local
clustering, but causes a greater number of connected components. In any case,
the giant component consistently covers more than 99% of the graph.

For what concerns the organization of our network in communities, we consider
modularity-based clusters obtained with the Louvain algorithm [25]. From Fig. 1b,
we see that when β = 0.5 the network de facto consists of ≈ 20 clusters of
comparable size. The relatively low modularity of the obtained partition (≈ 0.27)
indicates that these clusters are significantly intertwined. Conversely, when β = 2
most nodes of the network lie in few well-defined giant communities, surrounded
by a multitude of communities of variable size.

3.2 Socio-geography of the graph

Since our model incorporates a penalization for long edges, we expect some
indication of correlation between topological properties and population density.
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(a) Degree distribution with LN fit. (b) Size of the largest 50 communities.

Fig. 1: Social graph for Florence with µ = 10 and fu ∼ 1 + LN (ln(2), 0.25):
average features with a 95% confidence interval over 10 independent runs.

The first, almost obvious, finding is that setting β = 0.5 significantly favors the
creation of long edges at the expenses of very short ones, as shown in Fig. 2a.
Notably, the distribution of the edges’ physical length does not depend on the
chosen µ and fu, but it is entirely controlled by β.

In Fig. 2b we show the mean and max intra-cluster distance for the first
50 clusters of the graph. In line with empirical findings [26], only very small
communities are geographically bounded – this is especially visible for β = 0.5
due to the sudden drop in community size emerged in Figure 1b. Remarkably,
when β = 2 the mean intra-cluster distance is often comparable to the tile side
l (set to 1Km as per Section 2.1), meaning that, even in large clusters, most
adjacent vertices are at one tile of distance or less. When β = 0.5, instead, the
mean distance consistently lies between 2l and 3l.

(a) Physical distance of adjacent vertices. (b) Mean/max intra-cluster distance.

Fig. 2: Social graph for Florence with µ = 10 and fu ∼ 1 + LN (ln(2), 0.25):
average features with a 95% confidence interval over 10 independent runs.

It is reasonable to expect that vertices that are closer, on average, to other
vertices will generally have a greater degree. This is confirmed by Figs. 3a
and 3b, two heatmaps where the color gradient indicates the average degree of
each tile. In particular, with β = 2, most tiles are far below average whereas
the tiles surrounded by a densely populated area have a high average degree.
The introduction of a social fitness attribute makes it possible to achieve the
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heterogeneity of sociable individuals within each tile. Yet, on average, the vertices
having a favorable position in the territory will have a greater degree and the
main hubs will be individuals with large fu living in densely populated areas.

Finally, in Figure 3c we plot the graph’s adjacency matrix for β = 0.5 (the
case β = 2 being completely alike), where nodes are ordered by their age-group.
The observable assortativity by age, inherited by the data-driven coefficients si,j ,
is clear and in qualitative agreement with previous work on social mixing patterns
[10,17,28,22]. In analogous contact matrices, it is often possible to identify sub-
diagonals which account for parent-children contacts [10,22]. Such sub-diagonals
are, in our case, non-detectable having just four age-groups.

(a) Average degree of each
tile for β = 0.5.

(b) Average degree of each
tile for β = 2.

(c) Adjacency matrix for β =
0.5, nodes sorted by age.

Fig. 3: Social graph for Florence with µ = 10 and fu ∼ 1 + LN (ln(2), 0.25).

4 Epidemic Use Case

To further assess the practical relevance of our model, we simulated a SIR epidemic
upon the giant connected component of the synthetic graphs obtained with µ = 10,
fu ∼ 1 + LN (ln(2), 0.25) and, unless otherwise specified, β = 0.5. We consider
a discrete-time synchronous cellular automaton in which the dynamic follows a
reactive process [2]: at each time step, each infected individual spreads the disease
to each of its neighbors with probability λ and recovers with probability δ. For the
scope of this use case, we arbitrarily set δ = 0.1 and λ = 0.03. If It denotes the
set of infected individuals at time t, we assume that |I0| = 100, i.e., < 0.03% of
the population is infected at time 0. Albeit typical epidemic simulations consider
possibly dynamic and denser networks of contacts, our network of strong ties
may be interpreted as a coarse-grained model for highly-infectious, frequent and
close contacts. In the following, we aim at showing that the parametric and
data-driven nature of our model allows to draw high-level indications about the
impact of several socio-demographic and geographic features on the epidemic.
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In Fig. 4a we show the evolution of the fraction of infected and recovered
individuals for different combinations of β and λ. When β = 2, the higher
frequency of edges in densely populated areas favors a quicker spread of the
infection, but the existence of loosely connected areas makes the total number
of infected nodes slightly lower with respect to the case β = 0.5. We also see
that, if household edges are three times more likely to transmit the disease than
friendship edges (i.e., λH = 3λF ), but the overall average infection probability is
still 〈λ〉 = 0.03, the epidemic is a bit slower but, eventually, equally pervasive.
As shown in Fig. 4b for λF = λH = 0.03, people living in households of size ≥ 3
have a significantly greater chance of catching the infection, probably due to the
combined effect of having, on average, a greater degree and of the presence of
children and young people in the household.

(a) SIR evolution as β and λ vary. (b) SIR evolution by household size.
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(c) It by age-group, with I0 chosen uni-
formly at random.
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(d) It by age-group, with I0 chosen among
elderly people only.

Fig. 4: Evolution of the fraction of infected and recovered individuals for different
system parameters, within different households and within different age-groups.

Since our model incorporates a data-driven age-based social mixing, it nat-
urally lends itself to an analysis of the evolution of the epidemic inside single
age-groups. From Figs. 4c and 4d, we see that children and young people experi-
ence a higher and earlier peak, and they are the only age-groups that reach a
90% prevalence of infected individuals. The younger groups are the drivers of
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the epidemic and the most infected, despite not being the largest groups, but
probably due to their strong internal cohesion. In contrast with Fig. 4c, where the
individuals in I0 are chosen uniformly at random, in Fig. 4d all 100 individuals
of I0 are elderly people. A bit surprisingly, in this scenario we only notice a time
shift in the epidemic, suggesting that the qualitative behavior of the epidemic
depends on when the contagion reaches the younger individuals.

In Fig. 5 we consider the average time, over 10 independent runs, of the first
infection occurring in each tile. The whole city center is reached in just a few days
both if the infection starts from a central and densely populated tile (Fig. 5a)
and if it starts from a peripheral and sparsely populated tile (Fig. 5b). Yet, some
areas may be preserved if isolated within one or even two weeks. The starting
position of the infection does play a role in our model, with an approximate 50%
delay in the time of the first infection for most tiles if the infection starts in the
periphery. In that case, the epidemic does not propagate locally but, apparently,
it reaches the center before moving back outskirt.

(a) I0 chosen in a central and densely
populated tile.

(b) I0 chosen in a peripheral and
sparsely populated tile.

Fig. 5: Time step of the first infected individual per tile.

5 Discussion and Conclusions

We have implemented a probabilistic model that mimics the strong social ties
among a set of nodes representing the population of a given territory, organized
into households. Our model is based on just a few clear assumptions: (i) not
all individuals are equally sociable; (ii) the geographical distance and the age
difference play a role in the probability that two individuals become friends; (iii)
it is often fundamental to rely only on data that is already widely available. The
simulator provides a way to recreate synthetic social networks within an arbitrary
territory for which the social mixing patterns can be inherited from any already
existing dataset, thus addressing the common circumstance where aggregated
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demographic data and some estimate of the age mixing patterns are the only
available information. Since the evolution of a social network is significantly slower
than most processes of interest occurring on it, our model is, by construction,
static. Exploring possible approaches to generate a dynamic interaction network
on top of our static social network is among the first directions for future work.

We evaluated our urban social network for the city of Florence, focusing on
two configurations selected in light of previous empirical findings – for a more
detailed analysis of the model we refer the reader to [13]. With only 10 friends
on average, the giant component spans more than 99% of the network. Age and
proximity based homophily guarantees the intended internal cohesion of single
age-groups and a positive assortativity, yet the transitivity remains weak. By
introducing a Lognormally distributed sociability we obtain the often desired
heavy-tailed degree distribution. However, when long edges are strongly penalized,
sociable hubs tend to concentrate in densely populated areas, thus intensifying the
correlation between favorable positioning and degree. Nevertheless, the variability
of the degree internal to a tile is preserved, being entirely controlled by the
social fitness. A weak penalization of long edges, on the other hand, makes it
more difficult to partition the network into well-defined communities. Almost
regardless of their size, the communities tend to have a large spatial extension,
even though the average distance of their members is small.

Some of the above properties are reflected in the outcomes of a SIR epidemic
simulation on the network. The penalization imposed to long edges has an impact
on the speed and pervasiveness – both quantitatively and geographically – of
the contagion, whereas the age-based social mixing determines which age-groups
drive the infection to a greater extent than the prevalence of different age-groups.
Regardless of the specific epidemic use case considered in this paper, our model
appears well suited to support the analysis of dynamic processes occurring within
a urban population, thanks to its adherence to real data and its flexibility that
allow to easily evaluate the impact of socio-demographic and geographic features.

The intrinsic ambiguity in the concept of “friendship” leaves a few issues,
somehow, open to further investigations. We plan to explore the integration
of explicit preferential attachment mechanisms, and to verify whether a fine-
grained age-stratification or age-specific β’s do foster triangles within certain
(e.g., school age) groups. Further, we will consider a density-aware dependence
on the distance [20], to gain more control on the social advantage associated to
high density areas – which may still be desirable if the goal is predicting physical
interactions, e.g., for use in computational epidemiology. Finally, closed results
binding the distribution of the social fitness to the obtained degree distribution
may significantly improve the usability of our simulator. That said, we believe
that our model presents unique features that make it a valuable resource for
computational social scientists. Since the simulator is fully parametric and
available as open source software, any potential user may adjust it to her/his
needs and possibly contribute to its further development.
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