
Grid-Based Concise Hash for Solar Images

Rafa l Grycuk1[0000−0002−3097−985X] and Rafa l Scherer1[0000−0001−9592−262X]

Czestochowa University of Technology, al. Armii Krajowej 36, Czestochowa, Poland
{rafal.grycuk,rafal.scherer}@pcz.pl

Abstract. Continuous full-disk observations of the solar chromosphere
and corona are provided nowadays by the Solar Dynamics Observatory.
Such data are crucial for analysing the Sun-Earth system and life on our
planet. Part of the data is an enormous number of high-resolution images.
We create a compact grid-based solar image hash to classify or retrieve
similar solar images. To compute the hash, we design intermediate hand-
crafted features. Then, we use a convolutional autoencoder to encode the
descriptors to the form of a concise hash.

Keywords: Fast image hash · Solar activity analysis · Solar image de-
scription · CBIR of solar images.

1 Introduction

The NASA Solar Dynamics Observatory spacecraft has been providing solar
data since 2010. Its part, the Atmospheric Imaging Assembly (AIA) delivers
continuous full-disk observations of the solar chromosphere and corona in seven
extreme ultraviolet (EUV) channels with the 12-second cadence in the form of
high-resolution 4096×4096 pixel images. The images are relatively similar to each
other, and general-purpose visual features are not suitable for their description.
Moreover, the images are denoted only by their timestamp.

Semantic hashing [18] aims at generating compact vectors which values re-
flect semantic content of the objects. Thus, to retrieve similar objects we can
search for similar hashes which is much faster and takes much less memory than
operating directly on the objects. In [18] a multilayer neural network was used
to generate hashes. Learned semantic hashes [20] are gaining in popularity in
image retrieval. Our initial attempts showed that computing hashes from full-
disk solar images would not be viable taking into account the size of the solar
image collections (in terms of resolution and the number of images). Therefore,
we developed the aforementioned hand-crafted intermediate descriptors.

A full-disk content-based image retrieval system is described in [1]. The au-
thors checked eighteen image similarity measures with various image features
resulting in one hundred and eighty combinations. The experiments shed light
on what metrics are suitable for comparing solar images to retrieve or classify
various phenomena.

A general-purpose retrieval engine Lucene is used to retrieve solar images in
[2]. Each image is a document consisting of 64 elements (rows of each image), and

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

2 R. Grycuk, R. Scherer

every image-document is unique. The solar images are then queried by setting
some wild-card characters in the query strings that allows to search for similar
solar events. The Lucene engine is compared in [3] with distance-based image
retrieval methods, however, without a clear winner. It turned out that every
tested method has its pros and cons in terms of accuracy, speed and applicability.
The trade-off between accuracy and speed is significant, and for accurate results,
the retrieval time was several minutes.

A sparse model representation of solar images was developed in [8]. The
method used the sparse representation from [13] and outperformed previous so-
lar image retrievals in accuracy and speed. In [10], some solar image parameters
are chosen to track multiple solar events across images with 6-minute cadence.
Sparse codes for AIA images are used also in [9], where ten texture-based im-
age parameters are used to create the code. The parameters are computed for
regions determined by a 64× 64 grid for nine wavelengths. For each wavelength,
a dictionary of k elements is learned, and then a sparse representation is com-
puted. To overcome the curse of dimensionality affecting the solar data, they
use the Minkowski norm and choose the right value of p parameter. Finally, the
authors used a 256-dimensional descriptor what is an efficient and accurate out-
come comparing to the previous approaches. In [11], a method for image retrieval
with fuzzy sets and boosting is developed.

To automate solar image retrieval and enable their fast classification, we
propose a fast and concise solar image hash generated from one-dimensional
hand-crafted features by a fully convolutional autoencoder. The hash has only
eleven real-valued elements, and the experiments showed that such compactness
is sufficient to describe the images. In the dataset, the images are annotated
only by their timestamp. It is very hard to make any meaning to data or explain
the trained system [14]. We treat the timestamp as a measure of similarity.
After training, our algorithm allows retrieving images by their visual similarity,
regardless of the timestamp proximity. The paper is organized as follows. Section
2 introduces the method for generating learned solar hashes. Experiments on the
SDO solar image collection are described in Section 3. Section 4 concludes the
paper.

2 Grid-based Image Hash for Solar Image Retrieval

Solar images are relatively similar to each other, and general-purpose descrip-
tors are usually not applicable in their retrieval. Therefore, we present a novel
grid-based algorithm for the solar image hashing. The proposed hash can be
used for image retrieval of solar images in large solar image datasets. The solar
images were taken from the Solar Dynamics Observatory (SDO), where they are
post-processed and published in the form of Web API by [12]. There are many
resolutions available, and we use the high definition 2048 × 2048 images;thus
creating image descriptors requires a significant amount of memory. In our ex-
perimental environment, we used GeForce RTX 2080 Ti 11GB GDDR6 graphics
card, which allowed us to use 11 GB of memory. Initially, we tried to design

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

Grid-Based Concise Hash for Solar Images 3

directly a full-disc autoencoder. Setting a higher mini-batch value caused an
out-of-memory exception. Moreover, the learning time in this simulation took
several days versus several minutes as in the presented approach. Therefore, we
decided to apply some preprocessing stage (calculation of grid-based descriptor)
and then use the autoencoder (see Sec. 2.3) to reduce the hand-crafted vectors to
11-element real-valued hashes without losing significant information about the
active regions. The presented algorithm is composed of four main stages: active
region detection, calculating solar image hand-crafted descriptors, encoding to
hash, and retrieval.

2.1 Active Region Detection

In the first step, we need to obtain the Active Regions (AR). They are brighter
regions of the solar images, and they are essential in detecting solar flares. ARs
have various shapes, and they change due to the Sun’s rotation movement. The
presented method determines the positions and shapes of Active Regions. Dur-
ing this process, at first, we change image colour space from RGB to grayscale.
Therefore we reduce the number of colour channels from three to one. As a re-
sult, every pixel of our grayscale solar image will have intensities values in the
range [0..255]. In the next stage, we use the Gaussian blur in order to remove
insignificant, small regions. Then, the pixel intensities are filtered by using the
threshold th, provided as the algorithm parameter. Thus, the obtained image is
properly preprocessed for the thresholding stage. Subsequently, every pixel in-
tensity is compared with the provided threshold parameter th value. If the value
is greater or equal, we determine that pixel is a part of the active region. The
value th parameter was determined empirically to 180, and it was obtained for
the given solar image dataset [12]. In the next step, we apply the morphologi-
cal operations, namely erosion and dilation to the thresholded image, obtained
in the previous step. The morphological operation erosion eradicates separated
small objects (pixels). These objects can be referred as “islands”. After this op-
eration, only substantive (important) objects remain. The dilation operation, on
the other hand, makes objects more visible; thus, it fills in small holes in objects.
These two types of operations can enhance the important areas of the active re-
gions. More informations about morphological operations can be found in [5][19].
The process of active region detection is described in the form of pseudo-code in
Algorithm 1. Figure 1 presents an input image (left) and active regions detected
in the image (right). The applied operations allow detecting active regions of
the solar image. The accurate detection of these regions is vital to subsequent
stages of the algorithm. The location and the shape of active regions are signifi-
cant in detecting the Coronal Mass Ejection (CME) and thus, in the solar flare
prediction.

2.2 Calculating Grid-based Descriptor

In this section, we describe the process of calculating the grid-based descriptor.
We take an image with active region detected (AR image) as input, and we obtain

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

4 R. Grycuk, R. Scherer

Fig. 1. Active region detection process, left image is the input, right image is the
output.

INPUT: SolarImage
OUTPUT: ActiveRegionDetectedImg
GrayScaleImg := ConvertGrayScale(SolarImage)
BlurredImg := Blur(GrayScaleImg)
ThreshImg := Threshold(BlurredImg)
ErodedImg := Erode(ThreshImg)
ActiveRegionDetectedImg = Dilate(ErodedImg)

Algorithm 1: Active region detection steps.

a grid-based descriptor of 100 length. The descriptor length was determined
empirically, but this can be changed by adjusting the parameters gridSizeN
and gridSizeM . Values of these variables are equal 10 for both of them, which
gives us a 100-element descriptor vector. In the first step, we take the AR image
and divide it into cells (sub-images) using the grid. During this process, we slice
image at x-axis and afterwards for each slice (cells) we perform slicing at y-axis.
Therefore, we obtain an image grid, where grid cells contain sub-images. By
using the parameters (gridSizeN and gridSizeM) we can define a number of
grid cells both for x and y axis. In the next step, we calculate a sum of active
region pixels for each grid cell. As a result of this process, we obtain n × m
DM matrix, where each element contains a grid cell sum. In the last step of
this stage, we perform a matrix normalization and vectorization and provide a
DV vector of size n ∗m, e.g. if matrix DM is 10× 10 then DV size is 100. It
should be noted that DV size depends on values of gridSizeN and gridSizeM
parameters. It also should be noted that both grid size parameters was obtained
empirically, and there values have significant impact on the results. Scaling the
values for both axis allows to determine the most suitable values for given solar
image resolution. The entire process of calculating the grid-based descriptor is

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

Grid-Based Concise Hash for Solar Images 5

presented in the form of pseudo-code in Alg. 2. Let us analyze the consecutive

INPUT: ARI - active region detected image
gridSizeN - grid size in x-axis
gridSizeM - grid size in y-axis
OUTPUT: GridBasedDescriptorV ector
Local Variables: ImageCells - list for containing grid image cells
SumMatrix - matrix sums of pixels in the cells
HSlices := DivideIntoHorizontalSlices(ARI, gridSizeN)
foreach HSlice ∈ HSlices do

CellsForHSlice := DivideSlicesV erticallyIntoCells(HSlice, gridSizeM)
foreach CellForHSlice ∈ CellsForHSlice do

ImageCells.Add(CellForHSlice)
end

end
foreach ImageCell ∈ ImageCells do

CellSum := CalculateSumOfActiveRegionPixelsInCell(ImageCell)
SumMatrix.SetCellSum(CellSum)

end
GridBasedDescriptorV ector = V ectorizeMatrix(SumMatrix)

Algorithm 2: Algorithm for calculating grid-based descriptor.

Fig. 2. Steps for calculation of the grid-based descriptor.

steps of this stage in the visual form; see Fig. 2. In the first step, the input image
is subjected to morphological operations of erosion and dilation, and then the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

6 R. Grycuk, R. Scherer

thresholding process is applied. As a result, we obtain the active region detected
image. This process is defined by Eq. 1. In the next step, we slice the image
into the grid cells. Based on the previously obtained grid, we calculate DM
matrix. This stage can be performed by using Eq. 2. Afterwards, we normalize
this matrix and then vectorize it in order to obtain the DV vector

t(ARI, i, j, th) =

{
1, ARIi,j ≥ th

0, otherwise
, (1)

where th is threshold value and ARI is active region image.

DM(ARI, th)k,l =

(k+1)∗csx−1∑
i=k∗csx

(l+1)∗csy−1∑
j=l∗csy

t(ARI, i, j, th) , (2)

where csx is the cell size in x-axis and csy is the cell size in y-axis. The process
of calculating grid-based descriptor allows reducing the data volume during the
encoding stage significantly. The aim of this process is to obtain a hand-crafted,
intermediate mathematical representation of AR images used in the next step.

2.3 Hash Generation

In this section, the hash generation (autoencoding) process is described. We use
previously obtained grid-based image descriptors to reduce the descriptor length
and in order to obtain the latent space a one-dimensional hash. To this task, we
used a convolutional autoencoder to encode our hand-crafted image descriptors
in its latent space. Autoencoders are used for network user identification [6, 16]
or for image reconstruction and improvement [15, 17]. We used the unsupervised
convolutional neural network as it does not require labelled data for training (it
was not provided in the Web API or the dataset). The autoencoder architecture
is presented in Tab. 1. As can be seen in Table 1, a convolutional autoencoder was
used for hash generation process, and the table should be analyzed top to bottom,
where the top layer is input. Afterwards, we have a set of encoding layers; it is
composed of 3-layer groups, where every group contains three layers (Conv1D,
ReLU , MaxPool1D). The kernel parameter used in Conv1D and MaxPool1D
layers is equal 2. After three convolutional layers with pooling, we have the latent
space, bottleneck layer, which is encoded layer for the hash generation. Then,
the autoencoder has decoding groups which are composed of MaxUnPool1D
(upsampling) layers, convolutional layers and ReLU . There is also a padding
layer, which allows obtaining the same shape of decoded data as the input one.
For the hash generation, we only use the encoding layers. The reason why we used
a one-dimensional autoencoder is that our grid-based image descriptors are one-
dimensional vectors for decreasing computational complexity. This process allows
reducing the hash length without significant loss of important information about
the active regions of the solar image. For the loss function, we used the mean
squared error function. We empirically proved that 50 epochs are sufficient to
obtain the required level of generalization and to prevent the network over-fitting.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

Grid-Based Concise Hash for Solar Images 7

Table 1. Tabular representation of the convolutional autoencoder model.

Layer (type) Output Filters Kernel Params
Shape (in, out) size no.

Input1d(InputLayer) [1, 1, 100]
Conv1d 1(Conv1D) [1, 64, 100] 1, 64 2 192

ReLU 1 [1, 64, 100]
Max pooling1d 1(MaxPool1D) [2, 64, 48] 2

Conv1d 2(Conv1D) [2, 32, 48] 64, 32 2 4128
ReLU 2 [2, 32, 48]

Max pooling1d 2(MaxPool1D) [2, 32, 24] 2
Conv1d 3(Conv1D) [1, 1, 23] 32, 1 2 65

ReLU 3 [1, 1, 11]
Encoded(MaxPool1D) [1, 1, 11] 2

up sampling1d 1(MaxUnPool1D) [1, 1, 22] 2
ConvTranspose1d 1(ConvTranspose1D) [1, 1, 23] 1, 32 2 96

ReLU 4 [1, 1, 23]
ConstPadding1(ConstPad1D) [1, 1, 24] 2

up sampling1d 2(MaxUnPool1D) [2, 32, 48] 2
ConvTranspose1d 2(ConvTranspose1D) [2, 64, 49] 32, 64 2 4160

ReLU 5 [2, 64, 49]
up sampling1d 3(MaxUnPool1D) [1, 64, 98] 2

ConvTranspose1d 3(ConvTranspose1D) [1, 1, 99] 61, 1 2 129
ReLU 6 [1, 1, 99]

ConstPadding1(ConstPad1D) [1, 1, 100] 2
Decoded(Tanh) [1, 1, 100]

After the training process is finished, every image descriptor is provided to the
latent space (encoded) layers of the autoencoder. As a result of this process,
we obtained encoded a fast image hash as a 11-tuple of real-value elements.
As can be seen in Table 2, the presented method provides the image hashes,
where hashes of consecutive images are similar, which is highly desirable, because
consecutive solar corona images have similar active regions. The obtained hash
can be used for content-based solar image retrieval applications. It also should
be noted that presented autoencoder architecture was selected in order to obtain
the most suited generalization level.

2.4 Retrieval

In the last stage of the presented method, we use previously obtained hashes for
image retrieval. After previous steps, we can assume that every solar image has
a hash assigned in our image database. The retrieval step allows executing the
image query by comparing distances between the query image hash and hashes
created for all images stored in the dataset. The retrieval step requires to have
a solar image database with a hash generated for every image. In the next step,
we calculate the distances between the query image hash and every hash in the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

8 R. Grycuk, R. Scherer

Table 2. Two examples of similar image pairs with their corresponding 11-element
hashes. They show how similar are the vectors for semantically similar images.

Hash values

Pair 1 Pair 2

2015-01-01 00:00:00 2015-01-01 00:06:00 2015-03-02 04:06:00 2015-03-02 04:12:00

0.18948224 0.18948224 0.09669617 0.09669617
0.38965224 0.34482240 0.09669617 0.09669617
0.18948224 0.18948224 0.09669617 0.09669617
0.18948224 0.18948781 0.10213041 0.10213816
0.18943328 0.18936896 0.10843775 0.10845160
0.18830273 0.18814683 0.11238195 0.11103466
0.18947415 0.18947072 0.10204165 0.10199506
0.19400954 0.19399905 0.11846152 0.11823325
0.18971351 0.18972327 0.10581696 0.10593924
0.18960209 0.18960896 0.09670250 0.09670459
0.18948224 0.18948224 0.09669617 0.09669617

database. The distance d is calculated by the cosine distance measure (for more
see [7])

cos(QHj , IHj) =

n∑
j=0

(QHj • IHj)

‖QHj‖ ‖IHj‖
, (3)

where • is dot product, QHj is the query image hash, and IHj a consecutive im-
age hash. After calculating the cosine distance, the images stored in the database
are sorted in ascending order by distance to the query (query hash). The last
step of the presented method allows to take n images closest to the query and
return them to the user as the retrieved images. During query execution, the n
parameter is required. The entire process is presented as pseudo-code in Alg. 3.
Alternatively, we can also retrieve images based on a threshold. In such a case,
we must provide a threshold parameter instead of n and then retrieve images
only if their cosine distance to the query is below the threshold. The proposed
method also allows applying such an approach. Nevertheless, we prefer the first
method because it is more suited for the system user.

INPUT: ImageHashes, QueryImage, n
OUTPUT: RetrievedImages
foreach ImageHash ∈ ImageHashes do

QueryImageHash = CalculateHash(QueryImage)
D[i] = Cos(QueryImageHash, ImageHash)

end
SortedDistances = SortAscending(D)
RetrievedImages = TakeF irst(n)

Algorithm 3: Image retrieval steps.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

Grid-Based Concise Hash for Solar Images 9

3 Experimental Results

This section describes simulation results along with a solution for the evaluation
of unlabelled images. Due to lack of labelled data, unsupervised learning was used
for descriptors encoding. Therefore, the evaluation of the proposed method with
state of the art approaches is difficult. In order to resolve this problem, we use the
Sun’s rotation movement to determine a set of similar images (SI). We assumed
that consecutive images within a small time window should have similar active
regions. Those regions are slightly shifted between consecutive images. The Web
API provides solar images with 6-minute cadence window. Due to the nature
of the Sun movement, we can assume the similarity of consecutive images. The
only condition is adjusting the difference time window. Based on experiments, we
determined that images within a 48-hour window can be treated as similar. Let
us take under consideration an image taken at 2012-02-15, 00:00:00. Based on
the above assumptions, we can assume that every image in 24 hours before and
in 24 hours after is similar. Only for evaluation purposes, images are identified
by the timestamps. The process of determining similar images is presented in
Table 3. By using the proposed method for determining image similarity we

Table 3. Defining image similarity. Based on experiments, we determined that images
within a 48-hour window can be treated as similar. This allows to evaluate the method.

Timestamp SI (similar image)/ NSI (not similar image)

2012-02-13, 23:54:00 NSI
2012-02-14, 00:00:00 SI
2012-02-14, 00:06:00 SI
2012-02-14, 00:12:00 SI
2012-02-14, 00:18:00 SI
2012-02-14, 00:24:00 SI
2012-02-14, 00:30:00 SI

........ SI
2012-02-15, 00:00:00 QI (query image)

........ SI
2012-02-15, 23:24:00 SI
2012-02-15, 23:30:00 SI
2012-02-15, 23:36:00 SI
2012-02-15, 23:42:00 SI
2012-02-15, 23:48:00 SI
2012-02-15, 23:54:00 SI
2012-02-16, 00:00:00 NSI

performed series of experiments and we obtained the similar images (SI).The
single experiment can be described by the following steps:

1. Execute image query and obtain the retrieved images.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

10 R. Grycuk, R. Scherer

2. For every retrieved image, compare its timestamp with the query image
timestamp.

3. If the timestamp is the 48 hour window, the image is similar to the query.

After defining similar images (SI), we can define performance measures precision
and recall [4][21] based on following sets:

– SI - set of similar images,
– RI - set of retrieved images for query,
– PRI(TP) - set of positive retrieved images (true positive),
– FPRI(FP) - false positive retrieved images (false positive),
– PNRI(FN) - positive, not retrieved images,
– FNRI(TN) - false, not retrieved images (TN).

Afterwards, we can define precision and recall for CBIR systems

precision =
|PRI|

|PRI + FPRI|
, (4)

recall =
|PRI|

|PRI + PNRI|
. (5)

F1 = 2 ∗ precision ∗ recall
precision + recall

. (6)

Timestamp R
I

S
I

P
R

I
(T

P
)

F
P

R
I

(F
P

)

P
N

R
I

(F
N

)

P
re

ci
si

o
n

R
ec

a
ll

F
1

2015-01-01 00:00:00 164 241 159 5 82 0.97 0.66 0,78
2015-01-03 01:00:00 372 481 330 42 151 0.89 0.69 0,77
2015-01-09 16:00:00 372 481 336 36 145 0.90 0.7 0,79

...
2015-05-12 00:36:00 362 481 330 32 151 0.91 0.69 0,78
2015-05-18 07:36:00 337 481 331 6 150 0.98 0.69 0,81
2015-05-25 18:36:00 349 481 317 32 164 0.91 0.66 0,76

...
2015-08-09 13:18:00 344 481 305 39 176 0.89 0.63 0,74
2015-08-11 05:24:00 327 481 315 12 166 0.96 0.65 0,77

Table 4. Experiment results for the proposed algorithm, performed on AIA images
obtained from [12]. Due to lack of space, we present only a part of all queries.

We present the experiment results in Tab. 4. The presented results proved the
effectiveness of the method. Our approach obtains a high value of the precision
measure. Most of the images close to the query are correctly retrieved. The

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

Grid-Based Concise Hash for Solar Images 11

farther from the query then more positive, not retrieved images (PNRI) are
retrieved. This phenomenon is caused by the Sun’s rotation, and thus more
missing active regions are detected between images. In the 48-hour cadence,
the significant active region can change its position; this may have a signifi-
cant impact on the hash. Therefore, the distance to the query will be increased.
The simulation environment was created in Python using Pytorch on the fol-
lowing hardware: Intel Core I9-9900k 3.6 GHz, 32 GB RAM, GeForce RTX
2080 Ti 11 GB, Windows Server 2016. The presented solution is available on
the BitBucket repository under the following link: https://bitbucket.org/rafal-
grycuk/novel grid-based image hash for content/src/src/master. The hash cre-
ation time took approximately 17.6 minutes, for 83, 819 images. The encoding
stage took approximately 1.5 hours. The average retrieval time is approximately
300 ms.

4 Conclusions

In this paper, we proposed a novel grid-based image hash for fast content-based
solar image retrieval and classification. Initially, we tried to make hashes directly
from full-disc images. It turned out to be infeasible having general-purpose GPUs
at our disposal. For this reason, we decided to design intermediate hand-crafted
features. To this end, we apply morphological operations for preprocessing and
active regions detection and then the grid for descriptor calculation. Only after
this step, we use an unsupervised convolutional autoencoder to encode the de-
scriptors to the concise hash form. The process of the second encoding allows
reducing the description length significantly; in our experiments, over ten times
compared to the hand-crafted descriptor obtained in the first stage. Reducing
the hash length is, of course, significant for the speed of calculating the distances
between hashes, that is, the similarity of solar images. As solar AIA images are
unlabelled, we treat images generated in a short time to each other (up to sev-
eral hours) as similar. In fact, at other time, the Sun configuration could be
similar. Therefore, our precision and recall measures which rely on the image
content solely will have even higher values in practice. The presented approach
has various potential applications. It can be used for searching, classifying and
retrieving solar flares, which has crucial importance for many aspects of life on
Earth.

References

1. Banda, J., Angryk, R., Martens, P.: Steps toward a large-scale solar image data
analysis to differentiate solar phenomena. Solar Physics 288(1), 435–462 (2013)

2. Banda, J.M., Angryk, R.A.: Scalable solar image retrieval with lucene. In: 2014
IEEE International Conference on Big Data (Big Data). pp. 11–17. IEEE (2014)

3. Banda, J.M., Angryk, R.A.: Regional content-based image retrieval for solar im-
ages: Traditional versus modern methods. Astronomy and computing 13, 108–116
(2015)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

12 R. Grycuk, R. Scherer

4. Buckland, M., Gey, F.: The relationship between recall and precision. Journal of
the American society for information science 45(1), 12 (1994)

5. Dougherty, E.R.: An introduction to morphological image processing. SPIE, 1992
(1992)

6. Gabryel, M., Grzanek, K., Hayashi, Y.: Browser fingerprint coding methods
increasing the effectiveness of user identification in the web traffic. Journal
of Artificial Intelligence and Soft Computing Research 10(4), 243–253 (2020).
https://doi.org/10.2478/jaiscr-2020-0016

7. Kavitha, K., Rao, B.T.: Evaluation of distance measures for feature based image
registration using alexnet. arXiv preprint arXiv:1907.12921 (2019)

8. Kempoton, D., Schuh, M., Angryk, R.: Towards using sparse coding in appear-
ance models for solar event tracking. In: 2016 19th International Conference on
Information Fusion (FUSION). pp. 1252–1259 (2016)

9. Kempton, D.J., Schuh, M.A., Angryk, R.A.: Describing solar images with sparse
coding for similarity search. In: 2016 IEEE International Conference on Big Data
(Big Data). pp. 3168–3176. IEEE (2016)

10. Kempton, D.J., Schuh, M.A., Angryk, R.A.: Tracking solar phenomena from the
sdo. The Astrophysical Journal 869(1), 54 (2018)

11. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha,
A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. Jour-
nal of Artificial Intelligence and Soft Computing Research 10(1), 57–69 (2020).
https://doi.org/10.2478/jaiscr-2020-0005

12. Kucuk, A., Banda, J.M., Angryk, R.A.: A large-scale solar dynamics observatory
image dataset for computer vision applications. Scientific data 4, 170096 (2017)

13. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research 11(Jan), 19–60 (2010)

14. Miko lajczyk, A., Grochowski, M., Kwasigroch, A.: Towards explainable classifiers
using the counterfactual approach - global explanations for discovering bias in
data. Journal of Artificial Intelligence and Soft Computing Research 11(1), 51–67
(2021). https://doi.org/10.2478/jaiscr-2021-0004

15. Najgebauer, P., Scherer, R., Rutkowski, L.: Fully convolutional net-
work for removing dct artefacts from images. In: 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). pp. 1–8 (2020).
https://doi.org/10.1109/IJCNN48605.2020.9207249

16. Nowak, J., Holotyak, T., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: Finger-
printing of url logs: Continuous user authentication from behavioural patterns. In:
Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A.,
Brissos, S., Teixeira, J. (eds.) Computational Science – ICCS 2020. pp. 184–195.
Springer International Publishing, Cham (2020)

17. Pawlak, M., Panesar, G.S., Korytkowski, M.: A novel method for invariant im-
age reconstruction. Journal of Artificial Intelligence and Soft Computing Research
11(1), 69–80 (2021). https://doi.org/10.2478/jaiscr-2021-0005

18. Salakhutdinov, R., Hinton, G.: Semantic hashing. International
Journal of Approximate Reasoning 50(7), 969 – 978 (2009).
https://doi.org/https://doi.org/10.1016/j.ijar.2008.11.006, special Section on
Graphical Models and Information Retrieval

19. Serra, J.: Image analysis and mathematical morphology. Academic Press, Inc.
(1983)

20. de Souza, G.B., da Silva Santos, D.F., Pires, R.G., Marananil, A.N., Papa, J.P.:
Deep features extraction for robust fingerprint spoofing attack detection. Jour-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

Grid-Based Concise Hash for Solar Images 13

nal of Artificial Intelligence and Soft Computing Research 9(1), 41–49 (2019).
https://doi.org/10.2478/jaiscr-2018-0023

21. Ting, K.M.: Precision and recall. In: Encyclopedia of machine learning, pp. 781–
781. Springer (2011)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_20

https://dx.doi.org/10.1007/978-3-030-77967-2_20

