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Abstract. One of the outstanding benchmark architectures for point
cloud processing with graph-based structures is Dynamic Graph Con-
volutional Neural Network (DGCNN). Though it works well for classi-
fication of nearly perfectly described digital models, it leaves much to
be desired for real-life cases burdened with noise and 3D scanning shad-
ows. Therefore we propose a novel, feature-preserving vicinity abstrac-
tion (VA) layer for the EdgeConv module. This allowed for enriching
the global feature vector with the local context provided by the k-NN
graph. Rather than processing a point together with its neighbours at
once, local information is aggregated before further processing, unlike in
the original DGCNN. Such an approach enabled a model to learn accu-
mulated information instead of max-pooling features from local context
at the end of each EdgeConv module. Thanks to this strategy mean- and
overall classification accuracy increased by 9.4pp and 4.4pp, respectively.
Furthermore, thanks to processing aggregated information rather than
the entire vicinity, the new VA-DGCNN model converges significantly
faster than the original DGCNN.
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1 Introduction

Classification of real three-dimensional objects, registered as a point cloud, is
currently a hot research topic, mainly due to the popularity of ubiquitous depth
sensors and emerging applications of 3D data automatic processing. Whereas
artificial, synthetic point sets [14] are handled quite well by the current bench-
mark methods, processing real-world data, collected in non-laboratory poorly
constrained environments, still leaves much to be desired. Such data imposes
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many challenges [12], usually not related to synthetic data such as uneven ob-
ject sampling, noise presence, missing points resulting from scanning shadows,
or remarkable classes imbalance, are just cases in point.

A challenge with approximating a function of point clouds is twofold: pro-
cessing imperfect real-life data and achieving immutable results regardless of any
permutation of point ordering. In other words, 3D object spatial point distribu-
tion can be depicted by any permutation of data. Unlike in the case of images,
sound waves, or other well-ordered structures, point clouds imply permutation
equivariance property of a model. As pointed out by the authors of [11], repre-
sentation of a function on sets is burdened with some limitations out of which
the essential one is the minimum size of latent space required to make a model
able to represent and generalize a set. The authors concluded that the latent
space dimension should be at least as large as the input size of a set [11].

Due to substantial cardinality of point cloud data sets, their efficient classi-
fication is recently performed with graph-based approaches. Such a hierarchical
point feature regression allows for retrieving core features constellation and per-
forming efficient classification afterwards. Nevertheless, incomplete and noised
real-world data sets impose severe challenges on a core features aggregation pro-
cess. In the paper, we aim at improving the performance of real-life 3D data
classification. To this end, we developed a novel method for processing real-life
three-dimensional objects described by point clouds. The proposed method in-
troduces multi-layer perceptron-based (MLP-based) features integration rather
than a coarse statistical features aggregation. Such a subtle modification exceeds
the accuracy of the state-of-the-art methods on an established real-world data
set (S3DIS [1]).

Compared to the literature, our method is faster as it uses vicinity-aware ag-
gregation of the local context. At the same time, it demonstrates better accuracy
because it learns more descriptive features. These studies provide new insights,
showing that the noisy, incomplete point clouds require aggregation of the local
context before hierarchical features learning. We also investigate the associated
problem of a local context range determination and show the tradeoff between
the size of the neighbourhood and the processing speed.

The rest of the paper is organized as follows. Section 2 presents related works
and the DGCNN architecture. A novel VA-DGCNN method is proposed in Sec-
tion 3. Research methodology, in turn, is outlined in Section 4. Section 5 contains
results of experiments. The article is concluded in Section 6.

2 Related Works

Point clouds are one of the simplest representation of 3D shapes coming, for
example, from LIDARs or time-of-flight cameras. Current methods allow pro-
cessing point clouds directly without intermediate mesh or denoising. Neural
networks innate input are regular structures (sequences, vectors, images or vol-
umes), whereas point clouds are unstructured and of various size. The first net-
work able to process such data was PoinNet [7]. PointNet takes a point from a
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point cloud and uses max pooling symmetric function. Qi et al. [8] in their fur-
ther study elaborated an extension of the basic PointNet network, introducing
hierarchical neural network for processing local features with a new approach
called PointNet++.

Since then, among point cloud classification-driven deep neural network mod-
els, graph-based solutions became one of the most efficient ones. As they sur-
passed the previous approaches, we compare our method in Section 4 only with
these state-of-the-art graph-based networks. Graph-based networks usually con-
sider points as vertices of a graph and construct then directed graph edges relying
on features of a point vicinity. More than often, such methods perform convo-
lution and pooling operation in spatial domain. Convolution is normally imple-
mented within MLP-inspired module over spatial neighbourhood, whereas pool-
ing aggregates information from a vicinity by forming a new coarsened graph.
A graph spread over a point cloud reflects well its sparsity and characteristics.
Moreover, it is inherently permutation-invariant, assuring nontrivial property
crucial for unorganised point cloud classification [9]. In consequence, dominant
graph-based approaches [4] like DGCNN [13] or closely related LDGCNN [15]
exceed 92% for overall accuracy and 90% for mean accuracy on the well-known
benchmark data set ModelNet40 [14]. Other competitive graph-based models
like HGCNN [16], Dynamic Points Agglomeration Module (DPAM) [5], Ker-
nel Correlation Network (KCNet) [10], or ClusterNet [2] – utilizing rigorously
rotation-invariant module to extract point rotation-invariant features, can also
be analysed; however they reveal inferior classification accuracy in comparison
with DGCNN [4].

The classification accuracy deteriorates when performing on non-synthetic,
real world data sets like S3DIS [1]. Such a database of real scanned objects,
affected by uneven object sampling, noise presence, missing points – resulting
from scanning shadows, imposes severe disturbances reducing quality of semantic
segmentation mIoU to about 56% or 64% for DGCNN and DPAM respectively
[4].

Intrigued by real data (S3DIS) experiments of semantic segmentation, we
conducted a study on the classification accuracy of such data. It revealed that
for S3DIS database, DGCNN substantially deteriorates classification accuracy,
achieving barely 60.2% and 80.3% for mean accuracy and overall accuracy re-
spectively. It confirmed our assumptions about the vulnerability of DGCNN to
noised and incomplete data. We claim that the drastic deterioration of classifica-
tion accuracy results from coarse, averaged aggregation of neighbouring points
features. For supporting the above hypothesis, we selected the DGCNN network
as it is a well-established baseline solution with still superior accuracy.

DGCNN is an architecture constituted by stacked layers of, so-called, Edge-
Conv modules. They are, in turn, followed by MLP and MaxPool layers. A single
EdgeConv module selects at first k nearest neighbours for each analysed point.
Then, vectors between point’s neighbours and a point itself, as well as points’
centroid coordinates itself, are processed by MLP (see Fig. 1).
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Fig. 1: EdgeConv layer of DGCNN architecture. The input is a matrix of N
points of F features (coordinates), k denotes the number of nearest neighbours
used to construct the graph, and Fc is the number of resulting features on the
layer output.

A k-NN graph for the input point cloud D of N points and F features/coor-
dinates, is defined as a matrix V of size N × k×F . For the first iteration, when
F = 3 (features are input coordinates) an entry for j−th neighbour of i−th point

is denoted as: Vij = {x(x)
j ,x

(y)
j ,x

(z)
j } such that ||xi − xj ||2 ≤ ||xi −Vi(j+1)||2.

MLP is defined as in Equation 1.

mlp(·) = ReLU(bn(· ∗G)) (1)

where G is a matrix of convolution kernels, bn( · ) is a batch normaliza-
tion, namely, scaling throughout batches, and ReLU is defined as ReLU(·) =
max{0, ·}

Later on, the maximum feature out of all neighbours is extracted for each
point. Out of resulting values, a vector of length Fc of maxima throughout
neighbours is drawn for each analysed point. Such an approach lets a model
learn local context well. However, it takes local information into consideration
in the last but one layer, MaxPool, where the vicinity context is aggregated
into a single representative per point. We argue that processing a point and the
associated vicinity information at once, may deteriorate classification results due
to the loss accumulated information provided by the local context. Introducing
an additional layer of abstraction may enrich global feature vector with local
information at a scale [3] – here defined by the vicinity of size k. Additionally,
such vicinity-aware feature aggregation may speed up the model training.

3 Proposed Method

The classical DGCNN is constructed by stacked layers of edge-convolution mod-
ules (EdgeConv, see Fig. 1), followed by a multilayer perceptron, where the
maximum value of features throughout the entire vicinity k is extracted for the
every point {p1, p2, p3, ..., pN}. In such an architecture, features are processed
without any regard to local context provided by the vicinity until the last but
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one layer, i.e. MaxPool, which, in the simplest manner, aggregates local context
to a single value per point.

In order to take into consideration the vicinity context from the very be-
ginning, we decided to introduce a simple single-layer module of shared vicinity
abstraction (VA) (Eq. 2) just between the k-NN graph and MLP (see Fig. 2). VA
acts as if it combines neighbours’ features so that the information is aggregated
in place and more general traits might be retrieved for further processing. As
such, it may be thought of as generating a kind of overlapping super-points for
each patch defined by a point and its vicinity

DV A = V A(V) = ReLU(WTV + h) , (2)

where DV A is a point cloud of points after V A layer, W are weights associated
with the layer, V is a matrix of neighbours of dimensions (N × k × F ), and
h is the layer bias.

D′ = EdgeConv(D, k) , (3)

where k is an assumed number of nearest neighbours. After VA layer, each point
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Fig. 2: Proposed modification of EdgeConv layer taking into account the vicinity
context before features processing.

of the input point cloud D is transformed into multidimensional feature space:
DV A = {xV A

1 ,xV A
2 ,xV A

3 , ...,xV A
N } where xV A

i ∈ RF is a resulting vector of
features (Eq. 2, Fig. 3) which is passed to convolution layers. This describes a
single EdgeConv module where an input point cloud matrix D of size N ×F (N
points of F initial features) is transformed to vicinity-aware point cloud matrix
D′ of size N ×Fc (Eq. 3). Besides classification quality boosting, such a strategy
will allow a model to converge faster as instead of processing the entire vicinity,
we process only combined features extracted from that vicinity. Such features
carry more semantic information with lower memory requirements.

It should be noted that VA is a highly permutation-changeable module. There
is, however, stipulated an intrinsic order relation among points by means of
a distance metric used to collect nearest neighbours (Euclidean in this con-
text). Therefore, VA does not need to show permutation-equivariant properties
as neighbours of a point do not permute for that point.
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Fig. 3: Shapes of matrices (bottom row) while processing through EdgeConv
with V A

4 Research Methodology

In this section we compare our approach with DGCNN on the real-life S3DIS
dataset [1]. The rationale behind comparing only with DGCNN is that it is
superior to the PointNet NN family and every other previous method on every
3D data set.

4.1 Used data

Classification models often are evaluated on either ModelNet10 or ModelNet40
[14] data sets. In these popular benchmark data sets, individual objects instances
(point clouds), were constructed by means of sampling digital, CAD models.
These data sets seem to be not useful for evaluation of real-life application models
due to the fact they consist of synthetic, noiseless, complete object structures
rather than depth data acquisition samples, affected by numerous disturbances.

Therefore, we decided to use S3DIS [1] database collected with the Matter-
port Camera on six different areas (locations) having, in total, 273 single room
scans labeled with respect to instances of 14 classes (see Fig. 4). This set rep-
resents real data raising real problems, like noise presence or scanning shadows,
just to name a few. Moreover, S3DIS is a database of extremely uneven distri-
bution of labels (see Fig. 5). More than 39% of data is tagged as clutter, i.e. an
indefinite object type not belonging to any of 13 remaining classes. On the other
hand, class stairs has barely 0.2% of representatives. Some classes have distin-
guishable geometrical context. On the other hand, three classes: door, window,
wall are significantly less geometrically distinguishable than others, thus more
challenging for classification.

For regularization purposes dataset was augmented by rotating points along
vertical axis and by shifting.

4.2 Evaluation metrics

In order to indicate competitive advantages reached by the proposed method,
standard evaluation metrics for point cloud classification were used [4]. Two
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0. beam 1. board 2. bookcase

3. ceiling 4. chair 5. clutter

6. column 7. door 8. floor

9. sofa 10. stairs 11. table

12. wall 13. window

Fig. 4: Examples of class instances present in the S3DIS data set with their
reference numbers (0 - 13).
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Fig. 5: Histogram of classes across the S3DIS database showing its unbalance.

measures, namely mean accuracy (mAcc) and overall accuracy (oAcc) can be
easily derived from class-wise confusion matrix C of size A × A (see Eq. 4 and
5).

mAcc =
∑
i≤A

Ci,i∑
j≤A Ci,j

, (4)

where i is an iterator over rows (the actual labels) of a confusion matrix C and
j is an iterator over columns (the predicted labels).

oAcc =

∑
diag(C)∑
i,j Ci,j

, (5)

where 0 ≤ i, j ≤ A. It should be noted that for data sets of extremely non-
uniform classes distribution, mAcc is more informative in drawing general con-
clusions. Such a situation occurs in the S3DIS database, where classes are rel-
atively unbalanced. One of the classes (clutter) is on average about ten times
over-represented than others. For multi-class classification mean- and overall ac-
curacies may be thought to represent the same aspects of classification as macro-
and micro-averaged F1-score respectively, which means that false positives and
false negatives are taken into account as well.

For training deep learning models not only accuracy itself is crucial for eval-
uation but also the time required by a model to converge. This is the reason why
in Tab. 2 the convergence time (Tc) is also juxtaposed throughout the methods
being compared.

4.3 Experiments

Experiments were conducted using 5-fold cross validation. Prior to model train-
ing, the entire S3DIS database was split into three subsets: a training one, a
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validation one, and a test one, respectively of 60%, 20%, and 20%. Splits were
generated randomly for each fold, yet keeping the original distribution of classes
(see Fig. 5) in each split. Splits were created at the beginning and each object
was sampled to contain 1, 024 points. Sampling was done by random drawing
with replacement. The same data set was used for the state-of-the-art DGCNN
and the proposed novel VA-DGCNN model. During the training phase, each
object was randomly permuted every time prior to passing it to the network.
All hyper-parameters and the general complexity were the very same for both
DGCNN and VA-DGCNN (Tab. 1). The solution was implemented in Py-

Table 1: Hyperparameters used for both DGCNN and VA-DGCNN. We per-
fomed experiments for various k and chose k = 10 as the best accuracy-speed
tradeoff

Hyperparameter Value

learning rate 0.0005

batch size 32

k 10

1. EdgeConv features [3, 64, 64, 64]

2. EdgeConv features [64, 128]

Classification module neurons [128, 1024, 512, 256]

Torch [6]. Sufficiently small learning rate (see Tab. 1) was used to avoid gradient
explosion. First EdgeConv layer uses convolutions of filters 3×1 for the first con-
volution and 64 × 1 for the rest. For the second EdgeConv filters of size 64× 1
and 128 × 1 were applied. Classifier is built as four-layer MLP with 128, 1024,
512, 256 hidden neurons respectively. Learning was conducted for relatively long
time to be sure it converged. Moreover, quality measures for the validation set
were tracked to be sure that the model does not overfit.

Besides that studies of the impact of the vicinity size on the classification
results were performed. Several possible vicinities k = 2, 5, 10, 15, 20, 25 were
tested as to determine the optimal value with the most reasonable time to quality
metrics tradeoff.

5 Results

As it might be noticed in Figure 6, vicinity increase causes nearly logarithmic
increase of quality metrics at the cost of linear time growth. An inflection point
is located for k = 25. For wider neighbourhood quality measures tend to lower.
In fact, the neighbourhood of size k = 10 may be said to be the optimal one as it
ensures high mAcc and allAcc keeping processing time in acceptable bounds. In
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Fig. 6: oAcc and mAcc values for a test split vs. vicinity size (upper chart). Time
vs. vicinity size (lower chart)
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Table 2 a juxtaposition of evaluation measures for DGCNN and VA-DGCNN was
presented. As it may be seen therein, the VA component enhanced remarkably

Table 2: Comparison between the benchmark DGCNN method and the novel
VA-DGCNN with the proposed vicinity abstraction component

Measure DGCNN VA-DGCNN

mAcc [%] 72.8 ± 7.7 82.2 ± 2.6

oAcc [%] 85.7 ± 3.1 90.1 ± 0.9

Tc [·103 sec] 9.7 ± 0.2 4.6 ± 0.2

the results of classification on the S3DIS data set. Mean accuracy mAcc, which is
a more informative indicator for non-balanced data sets, yields the value of 82.2%
which was an improvement by 9.4pp with respect to the original DGCNN. Also,
overall accuracy (oAcc) improved by 4.4pp. This confirmed better classification
results also for classes having much more representatives than the others (see
confusion matrix in Fig. 7). Looking at the confusions matrices (Fig. 7), one
may clearly see that confusing objects like door, wall, or window were better
distinguishable having applied the proposed VA module. Also classes of a few
samples, like stairs or sofa were better classified in the VA-DGCNN architecture.
There was still a confusion between board and bookcase, yet diminished for the
proposed VA-based solution. Having a look at the last row of Table 2 one may
notice that the VA-DGCNN converged faster by virtually 53% (see also Fig. 8).
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(a) DGCNN (b) VA-DGCNN

Fig. 7: Confusion matrices for the original and the proposed model. Rows repre-
sent the actual labels and columns predicted labels, respectively. The values of
the confusion matrix are expressed as percent by row.

Fig. 8: oAcc values for validation split for a single fold
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6 Conclusions

The results of the conducted experiments clearly confirmed what stated at the
beginning of the paper, namely, aggregation of the local context prior to the
actual features distribution learning improves results of object classification on
noisy, real-life database like S3DIS. Thanks to the learning of aggregated local
vicinity features, training process converges faster and more descriptive features
are learnt. By applying the proposed, simple vicinity-abstraction layer, many
benefits were reached. At first, thanks to the applied VA module, it was possible
to boost mAcc by 9.4pp and oAcc by 4.4pp. Secondly, the convergence time
decreased by more than a half, from around 9,700 sec to 4,600 sec. It is also clear
that provided evidences relates only to indoor scans and outdoor point clouds
would need further investigation due to dramatically different characteristic. As
a recap, it was confirmed that enriching the global matrix with the aggregated
features of the local context, enhanced the results of classification. An interesting
aspect that will be considered in further studies relates to semantic segmentation
of noisy data making use of the proposed strategy.
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