
Analysis of Semestral Progress in Higher
Technical Education with HMM Models

Ewa Lach*1[0000−0001−5380−6508], Damian Grzechca1[0000−0003−1391−8809],
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Abstract. Supporting educational processes with Hidden Markov Mod-
els (HMMs) has great potential. In this paper, we explore the possibility
of identifying students’ learning progress with HMMs. Students’ grades
are used to train the HMMs to find out if the analysis of obtained models
lets us detect patterns emerging from student’s results. We also try to
predict the final students’ results on the basis of their partial grades. A
new, classification approach for this problem, using properties of HMMs
is proposed: High and Low State Model (HLSM).
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1 Introduction

Mathematical modeling of educational processes is a wide area, which can con-
cern different aspects of learning/cognitive processes, such as mastering of skills,
strategies, behaviors, studies on influence of many factors on effectiveness of
learning/teaching, analyses and design of plans for educational scenarios. It can
also concern different types of educational processes and different levels of edu-
cation. Mathematical or statistical modeling of learning/cognitive processes has
been a part of researches in psychometrics, psychology and cognitive psychology,
over decades (e.g. [1],[2],[3],[4]). There is also a lot of on-going research activ-
ity in modeling educational processes. New studies in the area of mathematical
and statistical modeling of educational processes head towards including many
explanatory variables of educational processes in one model, e.g., expertise, mo-
tivation, organization, discovering distinct phases of the learning progress, as
well as distinguishing levels of students competence (e.g.[5],[6],[7],[8],[9]). Re-
cently published approaches also include a wide range of different mathematical
and statistical tools, among which applications of artificial intelligence and ma-
chine learning algorithms for developing educational programs and scenarios,
are especially interesting [10]. Studies in the area of applying formal models for
educational processes highly benefit from wide availability of electronic records
now routinely kept in educational institutions. Supporting educational processes
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with mathematical modeling obviously has a great potential. Research towards
aiding educational practice with mathematical modeling is considerably improv-
ing human education. Mathematical modeling allows for better understanding
the learning process, factors behind it and contributes to better defining and
measuring learning achievements and indexes of student progress. Formulating
mathematical models can also help developing educational plans towards per-
sonalizing, profiling with respect to background, motivation level [11]. There are,
nevertheless, many challenges in developing and applying models of educational
processes. There are numerous factors that can influence learning processes.
It might be disputable whether the factors are indeed important or which are
stronger than others. Both factors influencing learning and indexes of the quality
of the learning process, mastery, practice, experience, are not directly observed
[12]. Researchers must design systems and models for their estimations. Stu-
dents groups in studies are always heterogeneous, which poses difficulties for
formulating conclusions of experiments and for repeatability of research results.
Acquisition of skills is a dynamic process, whose dynamics is not trivial and
again can be very heterogeneous. Learning processes are different for different
levels, types and targets of education. One of the very promising mathematical
approaches for modeling learning processes is by using hidden Markov models
(HMM), which allow for capturing the key elements of the learning or skills
acquisition processes. States of HMM can represent unobservable states of stu-
dents learning progress while emission matrices can represent different testing
procedures, which generate observations available to the tutor/researcher. HMM
can be used for predicting results of education/learning and for estimating dy-
namics of the process. A special version of the HMM model of learning progress
is the Bayesian Knowledge Tracing model (BKT)[13], with two unobservable
states. There are numerous studies devoted to different aspects of applications
of HMMs for modeling educational processes [5],[7],[14],[15].

On the basis of the collected data (grades of students from technical uni-
versity for selected courses) we have pursued a research involving using HMM
for modeling educational progress of students. We have fitted HMM models
for the data on semestral courses for students groups. We performed statistical
analyses of the obtained HMM models and we compared them with simpler de-
scriptive models of the students learning progress. We used elaborated models
for predicting exam results. In particular, we proposed new classifier (based on
HMMs): High and Low State Model (HLSM). Comparisons between models and
statistical analyses allowed us to study some questions regarding modeling of
educational processes: “Can one observe (in semestral/yearly) horizon the dy-
namics of the learning process by using HMM?”, “How does the scenario of the
tutoring process influence the process of skills acquisition?’.

2 Educational Data

In our research, we study achievements of the students from technical university:
The Silesian University of Technology, the Faculty of Automatic Control, Elec-
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tronics and Computer Science, from different disciplines of studies: Informatics,
Biotechnology and interdisciplinary studies: Control, Electronics, and Informa-
tion Engineering (CEIE). The results were gathered during selected technical
curses. A characteristic feature of courses at technical university is very strong
feedback given to students throughout their duration. The feedback is given by
partial grades, i.e., scores of assignments, short tests and scores of reports from
laboratory exercises. We use two types of scores: partial grades, collected weekly
or every two, or three weeks during laboratories or exercise classes and semes-
tral/final scores collected as either result of examination sessions or as results of
one or two semestral credit tests. Both types of scores are routinely kept as an
element of administrative documentation of the education activity of the Faculty
of Automatic Control, Electronics and Computer Science. Much of the available
data, especially older recoreds, is still stored on paper. However, there is a clear
trend of switching to electronic recording, which will allow for the expansion of
data related to education and increase the possibilities of their analysis.

2.1 Description of courses

In our work, we used data from the following five courses:

Introduction to System Dynamics (SD) is a one-semester course for third
semester of CEIE, at the engineering level of studies. The course includes
15 lectures (30 hours) and 7 laboratories (15 hours). The course is taught
in English. The final score is the result of the written exam. The aim of the
course is making students familiar with problems and methods related to
modeling physical dynamical systems and dynamical systems as engineering
constructions. During the classes part students are obligated to solve three
different tasks which are marked by a tutor: modeling physical and engineer-
ing systems by using the method of balances (2 classes), Lagrange equations
I and II (2 classes) and electromechanical analogies I and II (1 or 2 classes
depending on schedule).

Fundamentals of Computer Programming (FoCP) is a one–semester course
taught in Polish at the engineering level, in the first year of Informatics stud-
ies. The course includes 15 lectures (30 hours) and 15 laboratories (30 hours).
The final score is the result of the written exam. FoCP course provides
knowledge required to understand, design and write computer programs in
the C++ language.

Statistical Inference (SI) . It is a two-semester course given to the students
of of the discipline Bio-engineering, specializing in bioinformatics, at the
MSc. level of studies. The course includes 15 lectures (30 hours) and 15
laboratories (30 hours). The course is taught in Polish. Topics covered by
the course include statistical learning theory, construction and validation of
classifiers, as well as numerous examples of using statistical learning and
classification in biotechnology and bioinformatics.

Introduction to Electric and Electronic Circuits (CT), formerly Circuit
Theory Course. It is a two-semester course provided for students of CEiE,
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at the engineering level of studies. The course is taught in English. The
aim of the course is to provide students a trade-off between theory (mainly
lectures), practical problems (computational problems solved on the class-
room tutorials), and practice (physical observations and measurements in
the laboratory). The laboratory exercises give an understanding of electric
and electronic circuit connections – students translate circuit diagrams into
real circuit connections. First semester of CT covers topics related to DC
(Direct Current Circuit analysis), the second semester is mainly focused on
AC (Alternating Current Analysis).

Biostatistics and Biometry (Bib). It is a one-semester course for students
of the discipline Bio-engineering, at the engineering level of studies. The
course includes 15 lectures (30 hours), 7 laboratories (15 hours) and 7 classs-
room exercises (15 hours). The final score is the result (average) of two semes-
tral credit tests. The course is taught in Polish. Topics covered by the course
include distributions of random variables, data pre-processing, parameter
estimation, parametric and non-parametric statistical tests.

2.2 Description of the collected data

SD. Data contain students’ classroom exercises test marks recorded bi-weekly
as well as final/semestral scores. Grades come from 206 different students
attending the course over the years 2015–2018 with pass rate 78%. Students
received partial grades from the eight-element set.

FoCP. Data contain results of students laboratory tests (10 short tests) recorded
weekly as well as final/semestral scores. Grades come from 872 different stu-
dents attending the course over the years 2016 - 2019 with pass rate 36%.
Students received partial grades from the three-element set.

SI. Data contain results of students six laboratory tests as well as final/semestral
scores. Grades come from 74 different students attending the course over one
year (2015) with pass rate 49%. Students received partial grades from the
five-element set.

CT. Data contain students’ classroom exercises test marks recorded weekly (15
tests) as well as final/semestral scores. Grades come from 62 different stu-
dents attending the course over one year (2016/17) with pass rate 35%.
Students received partial grades from the twelve-element set.

Bib. Data contain students’ classroom exercises tests marks recorded weekly
as well as final/semestral scores. Grades come from 96 different students
attending the course over one year (2015) with pass rate 45%. Students
received partial grades from the eleven-element set.

3 Methodology of the analysis of the educational progress
of students with the use of HMMs

HMMs are particularly suitable for analyzing the process of learning. They can
model the hypothesis that students’ levels of understanding of the material can
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be represented by a number of hidden states. Finding the unobservable states
of HMMs in which students can be during the learning process and estimating
possible transitions between states, can shed light to the behavioral patterns
emerging in education. The choice of the HMMs for modeling learning process is
also concordant to the assumption that during the educational process, not only
what grades are given to students is important, but also in which order they are
given. Accordingly, the fact that a student gets grades: {3, 4, 5}, and not {5, 4, 3}
provides important (additional) information about the student’s learning process
and is often taken into account by the teacher.

The language of HMMs is as follows. N is a number of states, M–number of
observations, S = {S1, S2, . . . , SN}–set of states, V = {1, 2, . . . ,M − 1}–set of
observations, T–sequence length, Q = {q1; q2; . . . ; qT }–sequence of states, O =
{o1; o2; . . . ; oT }–sequence of observations. Hidden Markov models (HMMs) are
stochastic models identifying processes unfolding over time: movement through
a sequence of states Q, that are not directly observed. Each state is described by
probabilities of observed variables, that for all states generate Emission proba-
bilities matrix B:

bj(k) = P (ot = k|qt = Sj) (1)

,where 1 ≤ t ≤ T , 1 ≤ j ≤ N , 1 ≤ k ≤ M ,
∑M

k=1 bj(k) = 1. State Transition
Probability matrix A describes the likelihood of moving from one state to each
other state in the next time period:

aij = P (qt = Sj |qt−1 = Si) (2)

,where 1 ≤ i, j ≤ N ,
∑N

j=1 aij = 1. Π is a vector of initial distribution transi-
tions probabilities. The figure 2 shows the matrices A and B of an illustrative
six-states model. HMM can be estimated with the Baum-Welch algorithm [16]
using the sequences of observable variables O. The Viterbi algorithm [17] can be
used to estimate Q for selected HMM and O .

In our research, we use partial grades of students as available observations to
estimate/train the HMMs to further find out if the analysis of obtained models
lets us detect patterns emerging from student’s results. As neither the true num-
ber of unobservable states nor values of model parameters (the matrices A and
B) are known they are estimated on the basis of available observations using the
Baum-Welch algorithm, which estimation quality depends on the initial values
of parameters. For the first try, we use the same values for each parameter:

aij = 1/N, bj(k) = 1/M (3)

If a Baum-Welch algorithm cannot differentiate between states, we set initial
differentiating values. First, we change transition probabilities, and if it does
not help we change emission probabilities. The second initial values for transition
probabilities use the assumption that it is easier to stay in the same state than
to move to another. We use:

aij =

{
0.8 for i = j
0.2
N−1 for i 6= j

(4)
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To define the second proposition of initial values for emission probabilities, we
assume, since observables are grades, that the probability that similar grades
will occur together is greater than that there will be more distant grades in one
state. Additionally, to solve the problem with the division of scores into states,
if the obtained value are not an integer, greater variety among higher grades is
assumed. We use:

bj(k) =


2

M+fMdN for
k > (fMdN ∗ (j − 1) + (M − (fMdN ∗N))) and
k ≤ (fMdN ∗ j + (M − (fMdN ∗N)))

1
M+fMdN for

k ≤ (fMdN ∗ (j − 1) + (M − (fMdN ∗N))) and
k > (fMdN ∗ j + (M − (fMdN ∗N)))

(5)
, where fMdN = floor(M/N) and function floor(x) rounds the real value x to
the next lower integer, in the −∞ direction.

As part of the analysis of the educational process, we look at the state transi-
tion probability matrix A and emission probabilities matrix B of obtained HMM
models, looking for patterns and rules. We compare HMMs for all students (HM-
Mall), students who passed (HMMpass), and failed (HMMfail) courses.

We also compare the goodness-of-fit, which describes how well a model fits a
set of observations, as assessed by the log-likelihood function (l). The function
(l) is a logarithmic transformation of the likelihood function, that measure the
probability that the model describe this particular data (sequences of observa-
tions). When fitting HMM models, it is possible to increase the likelihood by
adding states, but doing so may result in overfitting. We compare log-likelihood
for training and testing dataset.

The number of hidden states is estimated by multiple runs of the Baum-
Welch algorithm with different values of N (2 ≤ N ≤ M) and using Akaike
information criterion (AIC) [18] and Bayesian information criterion (BIC) [19].
BIC and AIC are used to compare models for a given set of data, trading-off
between the goodness-of-fit of the model and the simplicity of the model. by
introducing a penalty term for the number of parameters in the model. The
penalty term is larger in BIC than in AIC.

AIC = (−2)L+ 2k BIC = (−2)L+ ln(n)k (6)

,where: L–maximum log-likelihood, k–number of independently adjusted param-
eters within the model, n–the sample size (T*(number of sequences)). The model
with the lowest BIC or AIC criterion is preferred.

To test if adding states makes the HMM models overfitted in practice we
use the cross-validation technique to randomly divide the data in half 200 times,
calculating the mean L for the training and testing dataset for HMMs with
different values of N (2 ≤ N ≤M).

3.1 Results of fitting HMMs to students partial scores data

In this part of the work, we have fitted HMMs to all data on students’ partial
scores to find patterns and conclusions regarding students passing the courses.
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First, initial values of transition probabilities needed to be set according to
the second type of initial transition probabilities (eq. 4), because the training
algorithm wasn’t able to vary states with all probabilities set equally. For models
with three and more states for courses SD and CT initial values for emission
probabilities needed to be varied also (eq. 5). Without that emission probabilities
for the second and subsequent states were identical.

Table 1 presents AIC and BIC calculated for HMMs of five analyzed courses.
It shows that for our data adding states to models increases the value of AIC
and BIC. Considering this selection criterion, we should use two-state models to
analyze our data.

Table 1. BIC and AIC for HMM models

FoCP Bib CT SD SI
N AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

2 34.46 98.26 104.97 215.97 104.33 218.06 53.89 148.17 44.61 89.70

3 52.02 166.87 137.08 316.39 133.90 316.25 79.83 235.39 64.23 141.51

4 70.44 249.09 172.46 428.60 167.82 426.63 109.78 336.06 88.01 203.95

5 211.99 553.52 204.86 547.97 143.74 450.16 115.85 276.86

6 255.48 690.93 249.08 684.32 181.68 577.67 147.62 360.16

7 303.24 841.15 295.89 831.10 223.64 718.63

8 354.93 1003.83 347.31 990.33 269.57 872.98

9 410.79 1179.23 402.79 1161.46

10 470.34 1366.85 462.41 1344.57

11 534.10 1567.22 526.41 1539.89

12 601.54 1779.81 593.33 1745.97

The same result was obtained for experiments comparing the mean L for the
training and testing set for successive N values. We can see in Figure 1(b-e) an
increasing trend for L, calculated for the training set, and a decreasing trend for
the testing set for all courses. The same behavior can be observed for the HMMs
trained with data from earlier years and tested with data from subsequent years
(Fig. 1a). So we can observe that with more states we get models that are better
fitted for the training datasets, but less universal.

Finally, we looked at the matrices for HMMs with successive numbers of
states. For two states, there is a clear division of emission probabilities for indi-
vidual states. As the number of states increases, this division becomes blurred.
With two states, one state has a high probability of having higher grades, the
other state has a high probability of having lower grades. Adding additional
states does not result in the emergence of intermediate grade distributions. In-
stead, there are states for which we cannot make conclusive deductions about
students’ abilities based on their grading probability distribution. Within one
state there is, for example, the probability at the level of 0.1 - 0.3 for 1/3 - 2/3
grades (e.g. fig 2). There may also be states with one or two grades with high
probability, but the likelihood of leaving this state is greater than for the other
states (e.g. fig 2). We observe, also, a decreasing trend in the average proba-
bility of staying in the current state (aii) with a simultaneous increase in the
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Fig. 1. Maximum log-likelihood values calculated for the training (suffix ’L’) and test-
ing (suffix ’T’) datasets for a subsequent number of states of HMM models.

Fig. 2. State Transition Probability
matrix A and Emission probabilities
matrix B for six-sates HMM model for
course SD.
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Fig. 3. Average probability for all courses
(Avg) of staying in the current state and
its variance (V) for a subsequent number
of HMM states.

variance of aii (Fig. 3). This means frequent movement between states with a
large variety of probabilities describing the transition between states. There are
states in which the probability of staying is close to 0 and states from which it
is impossible to get out (aii = 1).This means that, from an analytical point of
view, it is difficult to establish any patterns in student behavior for HMMs with
more states.

The above results prompted us to focus on the analysis of two-state HMMs.
For each course, the two-state model divides the student skills into the high
state HS (with a high probability of obtaining higher grades) and the low state
LS (with a high probability of obtaining poor grades). Regardless of the course
type, number, and type of intermediate grades, we can observe the presence of
the high state and low one .
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Table 2. Values for courses’ HMMs.

course FoCP SD Bib SI CT FoCP SD

All Pass Fail All Pass Fail All Pass Fail All Pass Fail All Pass Fail 2016 2017 2018 2019 2015 2016 2017 2018

GHPr 0.70 0.80 0.59 0.73 0.72 0.52 0.96 0.98 0.63 0.80 0.95 0.57 0.86 0.96 0.71 0.72 0.72 0.66 0.73 0.93 0.81 0.77 0.74

GLPr 0.92 0.75 0.97 0.90 0.93 0.87 0.61 0.58 0.94 0.95 0.84 0.92 0.94 0.82 0.98 0.89 0.95 0.92 0.93 0.91 0.88 0.79 0.94

HS->HS 0.92 0.94 0.91 1.00 1.00 0.70 0.64 0.67 0.95 0.84 0.80 0.95 0.86 0.90 0.78 0.94 0.90 0.94 0.89 1.00 1.00 1.00 1.00

LS->LS 0.95 0.92 0.96 0.83 0.77 0.85 0.83 0.81 0.76 0.76 0.78 1.00 0.98 0.93 0.96 0.95 0.94 1.00 0.94 0.60 0.57 0.66 0.84

L -7.89 -6.68 -8.31 -6.97 -6.83 -7.10 -26.65 -25.97 -26.82 -8.39 -7.85 -8.48 -24.74 -26.72 -22.66 -7.79 -8.05 -7.80 -7.82 -8.08 -9.55 -6.78 -8.26

L-var 7.39 7.58 5.57 1.61 1.50 1.57 9.56 5.37 9.10 2.82 5.45 1.64 69.07 58.98 82.31 7.23 7.80 7.30 7.38 3.33 1.86 0.79 3.27

In order to compare two-state HMMs, additional values were introduced:
GHPr (the probability of good grades in HS) and GLPr (the probability of
poor grades in LS). These values are calculated by dividing the emission matrix
B into two parts and summing the probabilities of the columns from the different
parts for each state: for HS for good grades, for LS for poor grades.

We can observe similarities and differences in student behavior for different
courses (table 2). For example, the GHPr and GLPr values are similar for 4
out of 5 courses. Except for Bib, the GLPr value is greater than the GHPr and
is around 0.93, which tells us that in LS, a student has a high chance of getting
a poor grade (around 0.93). This chance is greater than the chance of getting
a good grade in HS (for two courses it is around 0.71, for the other two it is
around 0.83). As a participant of the Bib course, student has a good chance of a
good grade in HS (0.96) and as much as 0.39 in LS. This shows that students
get many more good grades during Bib course and average Bib students have a
greater chance of being assigned to LS, than for the rest courses. The likelihood
of a transition between these states varies with course. For FoCP, students have a
high probability of remaining in the current state (about 0.93); for SD there is a
0.17 probability of a transition to HS from LS and no possibility to leave HS; for
CT, there is a 0.14 probability of going to LS from HS and only 0.02 of leaving
the LS. BiB and SI students have more options for transitions between states.
This may be influenced by the existence of dependencies between subsequent
graded tasks ( without understanding the previous graded task, it is impossible
to understand the next topic) or the lack of it (each mark grades a separate
topic) and the ease of catching up. Looking at the variance of L for all courses,
we can assume that the behavior of the students of CT is more varied then for
rest courses. The comparison of the values of GHPr, GLPr, state transition
probabilities and L for HMMs from individual years for two courses: FoCP and
SD shows that students behave similarly within the same courses (tab. 2).

Interesting conclusions can be drawn from the comparison of HMMs for all
students, students who passed, and failed courses (tab. 2). It can be expected
that: the GHPr will be higher for HMMpass and lower for HMMfail, and the
opposite for the GLPr, the probability of staying in HS will be higher for
HMMpass and lower for HMMfail, and the opposite for the probability of staying
in LS. As for L, greater fitness for HMMpass and HMMfail is expected. The
results, however, are not so obvious. The above-described situation occurs only
for the FCoP, for the others, there are greater or lesser deviations from the
expected results. This would indicate that, within a given course, passing it
or not more or less can be explained by partial grades. On this basis, we can
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assume that other factors determine to a greater extent the passing or failing
of some courses. As for the HMMs log-likelihood - L, some models achieved a
slight improvement, but also some models received a lower L. On this basis, we
can conclude that there is a variation in behavior among students who pass or
fail a course (this is especially visible for students who fail: 4 out of 5 courses
recorded lower L for HMMfail).

4 Predicting students final results

Analyzing student partial grades the problem of predicting with them student’s
exam results was explored. In order to prepare a comprehensive comparison of
classification results, five different classical approaches plus a new High and Low
State Model (HLSM), based on results from section 3, were applied.

The obtained course data is randomly split in the proportion 67:33 200 times
[24]. 67 percent of the data is used as a training dataset, the rest as a testing
dataset. In addition, we check whether models trained on data from previous
years for a specific course can be used to predict exam results in subsequent
years for that course.

4.1 Models

In order to prepare comprehensive comparison of classification results, five dif-
ferent classical approaches were applied.

1. Support vector machine (SVM) is mainly used for two-class classification.
SVM finds classes by applying the best hyperplane to distinguish one class
from another (by means of largest margin). In this context, margin refers to
the maximum width of a plate parallel to the hyperplane without internal
data points. SVM was applied with the Gaussian kernel function [20].

2. K nearest neighbour (KNN) can give the k closest points in the feature
points. Classification results are based on a neighbour’s plural voting, where
the object is assigned to the class most frequently found among its k closest
neighbors. The number of neighbours in the algorithm was set to one with
a single standardization [21].

3. Linear regression (LR) models can be treated as a linear relationship of
response with respect to one or more predictive factors. LR was applied
along with binomial distribution [22].

4. Naive Bayes classifier (NB) in statistics is known as a probabilistic clas-
sifier which is based on Bayes theorem assuming strong (or rather naive)
independence between given features [23].

5. HMM classic classification method (HMMC) consists of training separate
HMMs for each class. The tested object is assigned to the class (HMM model)
for which the log-likelihood is the highest [7] .

6. High and Low State Model (HLSM) is a new classification model proposed
by the authors for the selected problem. It is based on the analysis of two-
state HMM models trained on the partial grades received by students during
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Fig. 4. HLSM classification process. Fig. 5. The Confusion Matrix.

specified technical courses. For each of the analyzed courses, the two-state
HMM models were characterized by one state with an assigned high prob-
ability of receiving higher partial grades and a low probability of receiving
lower partial grades (HS), and a second state with opposite probabilities
(LS). The proposed HLSM model assumes that by finding out the degree of
membership to a HS of a student’s behavior, we can determine the chance of
a student to pass an exam. The classification process starts with the training
of the two-state HMM model. Then, as a result of comparing the probabili-
ties in the emission matrix for the extreme one or two grades, the high and
low states are identified. Next, we use the Viterbi algorithm to calculate
for a given sequence of students’ grades, the most likely path (sequence of
states) through the trained HMM model. For a generated sequence of states,
we calculate how many times the student is in a high state in relation to
all states in which he is staying during the entire course: High State Rate
(HSR). Finally, we use HSR to predict whether the student will pass or
not the final exam comparing this value to the passing threshold (PT ). The
diagram in the figure 4 shows the whole classification process.

For all classifying models, we can define four parameters that assess their per-
formance: True Positive (TP), False Positive (FP), True Negative (TN), False
Negative (FN) as presented in the confusion matrix (fig. 5). Unfortunately, none
of these values can be used alone to judge the quality of a classifier. This results
in the definition of various measures that are using TP, FP, TN, and FN values
in different configurations. In the paper, we will use the area under the ROC
curve (AUC) that can give an idea about the usefulness of the classifier in gen-
eral. Greater AUC means a better model for a specific classification. The ROC
(Receiver Operating Characteristic) curve (fig. 6(b)) shows in a graphical way
the trade-off between sensitivity and specificity for every possible cut-off, where:

Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP ) (7)

In addition to comparing models, the ROC curve was used, also, to determine
the cut-off point for HLSM: passing threshold (PT). We use Youden’s index J.

J = Sensitivity + Specificity − 1 (8)
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4.2 Results

During the conducted experiments the highest AUC values were obtained by the
LR and HLSM models (fig. 6). For three courses (SD, FoCP and SI) LR model
gets the highest results, for two (CT and Bib) - HLSM. For the course SD, the
lead of a model LR is very small (0.003) and when we look at the classification
for the following semesters of SD, we can see that HLSM has the best results for
the three years, and only in one semester LR is doing better. If we average the
results for subsequent years of SD, HLSM has a lead of 0.049. For FoCP and SI,
LR has a lead (about 0.023), higher than for SD. The analysis of AUC for the
following semesters of FoCP shows LR leading for 3 out of 4 semesters (0.028 on
average). Only in 2019, HLSM has an AUC higher by 0.002. However, for CT and
Bib, HLSM has a greater difference in AUC value to LR (Bib-0.178, CT-0.099).
Because of that, when averaging the results for all courses, HLSM has the highest
value. The situation is similar when predicting behaviors of students based on
models generated for previous years. The LR and HLSM models achieve the best
results alternately. When averaging the results LR is better for the course SD,
HLSM for FoCP.

When comparing the predictions based on the models for previous years for
course SD, the HMMC model presented interesting behaviors (out of 9 classifica-
tions, it achieves the best results twice, four times the lowest). Ultimately, if we
compare the averaged values of the classification for models for previous years
for the SD course with the result of the classification for SD, HMMC recorded
the largest decrease in AUC value. In the remaining experiments, the HMMC
obtained positive results, but never exceeded the HLSM.

The courses are also characterized by different values of AUC. For SD, Bib,
and SI, the AUC is quite low (0.61-0.64) for FoCP it is higher (0.747) and CT
has the best chance of a good classification (0.831). This is in line with the
correlation calculated between the partial grades and the passing of the course
(accordingly: Bib-0.19, SD-0.27, SI-0.28, FoCP-0.42, CT-0.62).

To determine if our data wasn’t skewed by chance, we calculated statistical
significance for the AUC values (t-test and Wilcoxon rank-sum test) and ob-
tained results indicating that our experiments are statistically significant at the
0.05 significance level.

5 Conclusion

When looking at the trained HMM models for different courses, it can be noticed
that, while one can always distinguish high and low states for each course, the
models differ significantly. As shown in section 3, it is possible to distinguish
patterns for different courses based on generated HMMs. These observations
can be interpreted that by using HMM models, we can draw conclusions about
the educational process in individual courses.

The performed experiments also showed that it is possible, to some extent,
to predict the students’ final results based on their partial grades. In particular,
the proposed new classifier, based on HMMs, HLSM achieved good results.
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FoCP SD Bib SI CT
AVG

(courses)
FoCP16 FoCP17 FoCP18 FoCP19

AVG
(FoCP)

SD15 SD16 SD17 SD18
AVG
(SD)

HLSM 0.723 0.607 0.632 0.620 0.831 0.683 0.731 0.666 0.682 0.799 0.719 0.616 0.727 0.636 0.661 0.660
HMMC 0.664 0.586 0.601 0.625 0.702 0.636 0.721 0.611 0.682 0.718 0.683 0.596 0.695 0.592 0.660 0.636

LR 0.747 0.610 0.533 0.642 0.653 0.637 0.740 0.685 0.739 0.797 0.740 0.519 0.645 0.593 0.689 0.612
SVM 0.678 0.500 0.529 0.597 0.731 0.607 0.661 0.559 0.611 0.725 0.639 0.506 0.589 0.505 0.587 0.547
KNN 0.611 0.521 0.525 0.606 0.739 0.600 0.603 0.524 0.598 0.714 0.610 0.507 0.500 0.500 0.556 0.516
NB 0.704 0.548 0.529 0.641 0.756 0.636 0.699 0.661 0.702 0.734 0.699 0.525 0.688 0.533 0.662 0.602

FoCP SD

16->17 16->18 16->19 17->18 17->19 18->19 16/17->18 16/17->19 16/17/18->19 AVG 15n->16 15->17 15->18 16->17 16->18 17->18 15/16->17 15/16->18 15/16/17->18 AVG

HLSM 0.667 0.714 0.783 0.719 0.793 0.757 0.718 0.800 0.791 0.749 0.411 0.569 0.621 0.579 0.698 0.629 0.639 0.537 0.647 0.592

HMMC 0.609 0.692 0.768 0.666 0.667 0.703 0.695 0.681 0.672 0.684 0.387 0.481 0.667 0.526 0.437 0.507 0.569 0.719 0.389 0.520

LR 0.689 0.689 0.827 0.717 0.681 0.765 0.708 0.791 0.802 0.741 0.597 0.495 0.438 0.702 0.649 0.730 0.543 0.604 0.744 0.611

SVM 0.636 0.592 0.721 0.544 0.534 0.638 0.691 0.703 0.643 0.634 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

KNN 0.587 0.586 0.665 0.508 0.517 0.613 0.617 0.621 0.651 0.596 0.500 0.500 0.500 0.500 0.500 0.413 0.486 0.515 0.533 0.494

NB 0.638 0.721 0.716 0.710 0.729 0.681 0.724 0.742 0.725 0.710 0.500 0.486 0.515 0.486 0.659 0.574 0.500 0.548 0.524 0.532

Fig. 6. AUC values calculated for different classifiers for five courses and for following
semesters of SD and FoCP and an illustrative ROC curve for course CT (b).
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