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Abstract. As smartphones strive to provide more versatility and func-
tionality to satiate their growing demand, more user data becomes vul-
nerable and exposed to attackers. Successful mobile malware attacks
could steal a user’s location, photos, or even banking information. Due
to the lack of post-attack strategies, firms also risk going out of business
due to data theft. Thus, there is a need to not only detect malware in-
trusion in smartphones but to also identify the data that has been stolen
in order to assess, aid in recovery and prevent future attacks. In this
paper, we propose such a machine learning solution∗ which is accessi-
ble, non-intrusive and can perform intrusion detection and stolen data
classification for any app under supervision. We do this with Android
usage data obtained from publicly available data collection framework–
SherLock. We test the performance of our architecture for multiple users
on real-world data collected using the same framework. Our architecture
exhibits less than 9% inaccuracy in detecting malware and can classify
the type of data that is being stolen with 83% certainty.

Keywords: Data Classification · Malware Detection · Cybersecurity ·
Smartphone

1 Introduction

Currently, Android has more than 1.6 billion active users, which accounts for
more than 70% of the global market share of mobile operating systems. As a
result, the application market for Android is flooded with apps. We define ma-
licious app or malware as Android applications that present themselves to the
user as benign, but secretly steal user information in the background. Although
the Android application store (Google Play Store) verifies apps for malicious
intent upon release, it does not aggressively track updates from these verified

∗https://github.com/PrasannaKumaran/AndroidDataTheft
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apps and cannot account for third-party apps downloaded independently by the
user. A report released in 2020 by McAfee Advanced Threat Research and Mo-
bile Malware Research [18] suggests that malware developers roll out malware
through verified apps in Google Play as updates to shield themselves from pre-
liminary verification. Undetected malware attacks can steal sensitive information
from users such as photos, documents and browsing data. Data breaches are ex-
tremely disastrous for small and midsize firms and businesses. A report by the
U.S. Securities and Exchange Commission [21] states that 60% of small firms
can not recuperate from data breaches and go out of business within 6 months.
The IBM “Cost of a Data Breach Report 2020” [12] suggests that companies
establish an incident response (IR) plan to determine the damage done by the
breach and contain it as soon as possible. It goes on to state that companies
with an IR plan save an average of $2 million in the event of a data breach.
Furthermore, the report projects an increase in the costs of data breaches due
to the COVID-19 pandemic and the increase in digital reliability. This calls for
a need to not only detect malicious attacks but also identify the stolen data to
assess the damage, strategically recover and prevent future attacks. Performing
this can help in understanding malware trends and aid in malware prevention
research.

We propose a novel two-stage machine learning approach to detect malicious
attacks for any app under supervision and identify the data stolen by the attack
to aid in assessment and recovery.

The course of this paper is as follows: Section 2 discusses relevant research in
the field of malware detection. In Section 3, we describe the dataset used in our
study extensively. We elucidate the steps taken to make the data computationally
feasible in Sections 4 and 5. Later, in Section 6 we outline our model architecture
and describe the parameters of its evaluation. In section 7 we report and discuss
our findings. Finally we conclude our work and discuss future scope to this
research in Section 8.

2 Related Work

Mobile malware detection has been an active and broad area of research for the
past several years. Static analysis was one of the first major mobile malware
detection approaches proposed [10,19]. Here, the source code of the target mal-
ware is analyzed to identify semantic signatures. Although static analysis can
detect malware even before running the app, static analysis systems fail when the
malware uses obfuscation techniques such as code encryption and repackaging.
Dynamic analysis techniques [6, 9] address code obfuscation and encryption in
malware detection by executing the source code of the application in an isolated
environment to analyze runtime characteristics based on frequency. However,
this proves to be a bottleneck in systems that use dynamic analysis as clean and
noiseless data is hard to achieve and implement in real-world scenarios. Static
and dynamic methods additionally require super-user (root) access since they
require source code to be executed. Furthermore, Moser et al. [16] suggest that
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the rate of developing rule-based solutions can not match the fast rate of new
malware released to the world. Thus, these solutions will fail to perform for new
malware since they are rule-based and discrete solutions.

Machine learning approaches were introduced to swiftly aid in detecting new
malware as they are released. Notable works using these approaches include
[4, 5, 8, 22] that outperform static and dynamic methods by modelling network
usage for detection. Bläsing et. al [6] used various anomaly detection methods
to detect malware using system and network data collected. Ronen et. al [17]
goes on to detect and classify the family of detected malware by analysing Dalvik
bytecode from Android devices. However, these works fail to address the security
risk for any end user trying to obtain bytecode. This exposes the phone to further
vulnerabilities due to the need for root access. There is a need for non-intrusive
malware detection systems based on low privilege information such as usage
statistics. This would allow easier user applicability and ensure better security
over super-user vulnerabilities.

We propose modeling malware on usage statistics data and we consider one of
the largest and most granular datasets for mobile sensor and software sampling -
Sherlock dataset. As a result of the dataset’s versatility, it is suitable for a multi-
tude of use-cases. Since it does not require root access to probe its data, it is safe
and reproducible for malware detection. Zheng et al. [24] explored usage pat-
terns, relationship between mobile usage and the state (benign/malicious) of the
application for this data. Wassermann et al. [23] used low-level system features
from this dataset coupled with sampling techniques to deal with the inherent
class imbalance and detect malicious actions performed on a smartphone.

Although current research tackles malware detection extensively it fails to
address data theft classification to aid damage assessment and recovery from
data breaches.

We use the SherLock dataset to develop a machine-learning based malware
detection pipeline that is capable of identifying the type of data stolen.

3 Dataset

The SherLock Dataset [15], spanning over 10 billion records and involving over
50 volunteers is the result of a real-world data collection experiment to obtain
low-level Android usage data alongside emulated malware. Such statistics do not
require root access, therefore making any solution developed on the dataset more
secure under real-world circumstances since rooting exposes a mobile phone to
further vulnerabilities.

The experiment introduces two data collection agents to the mobile phones
provided to the volunteers – Sherlock and Moriarty. Moriarty emulates malicious
actions on the volunteer’s mobile phones randomly through the course of the
experiment, generating distinct labels between malicious and benign actions.
Meanwhile, Sherlock logs usage attributes and statistics in the background.
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Table 1. Categories of Data Theft

Malware Service Type Target information

Contacts Phonebook data

GPS User coordinates (latitude and longitude)

URL Web address of every page visited by the user recently

Audio Records Audio records collected during the session

Contacts Names and Phone numbers

BrowserInfo Account details, bookmarks and browser history

Photos Images from gallery

3.1 Sherlock Data Collection Agent

One of the ways Sherlock logs phone attributes is through Pull Probes which
extract data periodically at a constant sampling rate. For our experiments we
consider the most frequently sampled pull probe in Sherlock named T4, which
has a sampling rate of 5 seconds. T4 probes Global System Features as well as
Local Application Features.

Global System Features (GSF): These features pertain to attributes with
a global scope in the Android system such as network traffic, CPU and memory
utilization, I/O interrupts and Wi-Fi related data. There are a total of 128 Global
System Features.

Local Application Features (LAF): Alongside Global System Features,
Linux-level data [1] for every running application is sampled. This includes
process-specific features such as the scheduling priority, number of bytes trans-
ferred, number of threads and kernel-level features used by an application at the
time instant. There are a total of 56 Local Application Features.

Local Application Features used in context with Global System Features
together provide a rich feature set to determine if a given app exhibits malicious
behaviour.

3.2 Moriarty Malicious Agent

Moriarty presents itself to the user as a benign application, such as a game or
a browser depending on the version of the app but covertly performs malicious
actions. The malware emulated by each version is dissimilar to its precursor
and targets different vulnerabilities in each version as illustrated in Table 1.
The malware used by Moriarty are behavioural copies of malware found in the
real-world.

The app contains labels indicating whether an action executed is benign
or malicious. Furthermore, the details of malicious actions such as the type of
data stolen, number of bytes transmitted and time taken to transfer the stolen
information are logged along with the labels. To collect sufficient information for
the experiment, the volunteers were reminded to use the Moriarty app at least
once every couple of days.
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For our experiments we have considered a computationally feasible subset
of the SherLock dataset. It consists of data collected during the first quarter of
2016, with over 300 million records, spanning across 5 users.

4 Data Pre-processing

We aim to enable efficient data merging between Local Application Features
(LAF ) and Global System Features (GSF ). Let g and n denote the number
of GSF and LAF. Assuming there are m apps running at the same time, each
Global System Feature would correspond to multiple LAF at that instant of
time. The vector space of application data (LAF at time t), denoted by Ωt for
any time instant t is represented in Equation (1).

Ωt =


ω11 ω12 . . . ω1n

ω21 ω22 . . . ω2n

...
...

...
...

ωm1 ωm2 . . . ωmn

 (1)

Consequently, if a relational join operation between GSF and LAF was per-
formed it would lead to the generation of GSF duplicates for every running
application with a shape of (m, g + n). The size of this data denoted by Snp is
m∗ (g+n) memory units. With the dataset spanning over 300 million records, it
becomes essential to reduce memory consumption to expedite the data handling
and modeling process. Therefore to overcome duplicates, Ωt is transformed into
a row vector of shape (1, m ∗n) by performing PIVOT operation represented in
Equation (2), thus obtaining a functional dependency with time.

PIV OT (Ωt) := {ωij | i ∈M and j ∈ N} (2)

M = Set of all applications on the device
N = Set of local application features

As a result of using PIV OT (Ωt) to merge with GSF as opposed to using
Ωt, we obtain a shape of (1, g + m ∗ n) and size of this data denoted by Sp is
1 ∗ (g + m ∗ n). The size comparison of the data obtained from merging GSF
with and without pivot operation is illustrated in Equation (3). Therefore, with
an increase in the number of applications the overall throughput decreases.

g +m ∗ n << g ∗m+m ∗ n
=⇒ Sp << Snp

(3)

For the first quarter of 2016 in SherLock, g = 128 features and n = 56 features
with an average of m = 55 apps running at any given time.

We observed that Snp / Sp was 3.2 indicating that the pivot operation was
effective in reducing the size of the merged data. We obtain a dataset with 14,234
features and 5.81 million records on merging this data with Moriarty labels.
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5 Feature Selection

We strive to reduce the dataset to its most informative features for smooth and
utilitarian processing. On closer inspection of the 14,234 features, we discovered
that 12,726 features had more than 70% null values in them, and we obtain 1508
features as a result of their removal. However, this remains significantly large for
us to process, considering that we have 5.8 million records.

To further reduce the feature set, we pursue a feature selection method that
ensures relevance towards our objective – malware detection and target classi-
fication. We considered LightGBM [13] as it has proven to be fast and scalable
especially when implemented on high dimensional datasets [7]. Using this tech-
nique we reduce our feature space to 150 and 100 important features for malicious
detection and target classification respectively. With the features reduced to less
than 15% of 1508 features, we now implement stepwise forward selection [11] –
an iterative method to determine the least number of features required to obtain
any given model’s best performance. Using stepwise forward selection we reduce
the features required to detect malware to 10 features and the features required
to determine the data targeted by malware to 16 features.

As a result of our feature selection approach, the feature set is reduced to
approximately 0.1% of the original feature set. Table 2 lists the most important
features that were considered for modeling.

Table 2. Features Selected for Proposed Architecture

Model Stage GSF LAF

Malware Detector
totalmemory used size,
totalmemory freesize,
traffic totalrxpackets

dalvikprivatedirty Moriarty,
dalvikprivatedirty WhatsApp,

dalvikpss Samsung Push Service,
otherpss SherLock, rss SherLock,

uidrxbytes Moriarty,
num threads SherLock

Target Classifier –

utime SherLock, rss SherLock,
utime Moriarty, stime Moriarty,

importance SherLock, lru SherLock,
dalvikprivatedirty SherLock,

vsize Hangouts, num threads Moriarty,
rss Hangouts, otherpss Hangouts,

dalvikpss Hangouts,
num threads SherLock,
utime Unified Daemon,

otherprivatedirty Context Service,
vsize Chrome
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6 Experimental Framework

Knowing the kind of data the malware steals could be of more use during data
breach assessment compared to just detecting the presence of a malicious action.
We propose a two-stage architecture illustrated in Fig. 1 to classify data targeted
by a positively detected malware. Our approach detects if a malicious action
occurs in the first stage and if positively detected, classifies the data targeted
during the malicious action in the second stage.

Target
Classifier

Malicious?
Malware
Detector

Malware
Feature

Selection

Target
Feature

Selection

Benign

GPS

Contacts

Browser
Info

Photos

Audio
Record

URL

Yes

No

Fig. 1. Two-stage Architecture

Malware Detection: We primarily consider supervised tree-based models
(Extra Trees, Random Forest, Decision Tree and XGBoost) [2, 3] for malicious
detection since they have proven to be effective for the data in use [14, 23, 24].
Anomaly detection methods are suggested by Mirsky et al. [15] due to the sparse
frequency of malicious records observed in the data as compared to benign
(1:90). We aim to identify if anomaly detection methods are effective as per
prior assumption, therefore we consider a tree-based anomaly and outlier detec-
tion method–Isolation Forest.

Target classification: We pass the values detected as malicious in the first
stage to further classify the data targeted in this stage. This is a multi–class
classification problem to determine the type of data targeted by the malware as
seen in Table 1. We consider Extra Trees, XGBoost and K-Nearest Neighbours
for this task.

6.1 Evaluation Metrics

Malware Detection: We propose using False Omission Rate (FOR) and False
Positive Rate (FPR) to evaluate the performance of a malware detector. Accu-
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racy and True Positive Rates as considered by [4,20,22,24] are not ideal metrics
as they evaluate the model’s performance using the true positive values of the
majority class. These values are generally high for highly imbalanced data such
as SherLock and therefore compensate for the impreciseness in classifying the
minority class.

We aim to reduce the number of instances where a malware is misclassifed
as benign. Therefore we consider False Omission Rate (FOR) and False Positive
Rate (FPR) to evaluate the performance of the malware detector.

FOR Illustrated in Equation (4) this metric indicates the fraction of benign
actions that are misclassified

FOR =
Number of benign records predicted asmalicious

Total number of malicious predictions

=
FalseNegatives

FalseNegatives+ TrueNegatives
(4)

FPR Illustrated in Equation (5) this metric indicates the fraction of malicious
records that go undetected by the malware classifier

FPR =
Number of malicious records falsely predicted as benign

Total number of malicious records

=
False Positives

False Positives+ TrueNegatives
(5)

Although each metric can be used individually, we propose using both FOR
and FPR in conjunction to discover a detector with an overall good-fit for detect-
ing presence of malware. A lower FOR signifies the success of the first stage of
our architecture (malware detection). Meanwhile, a lower FPR signifies a smaller
error that will cascade to the next stage. Ideally, both FOR and FPR need to be
minimised to improve performance in data classification stage of our proposed
two-stage architecture.

Target Classification: Target Classification is a multi-class classification
task that involves predicting what kind of data has been stolen by the malware.
The different types of malware stolen were given equal importance and hence
equal weights were considered for all the classes. Therefore, the average F1-score
is the metric of choice used to evaluate the model in this stage.

7 Results and Discussions

To evaluate the performance of our proposed architecture, we consider training
and testing on all the users combined. Each user has been proportionally sampled
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Fig. 2. Density distributions of some of the most important features

(stratified) while splitting the data into 75% for training and 25% for testing.
Since the proposed architecture consists of two stages, it cascades performance
at each level. We report the results at each stage for a deeper understanding of
our model’s performance.

7.1 Malware Detection

Tree-based classifiers display superior performance for this task as illustrated in
Table 3. This is due to their ability to capture discrete and categorical informa-
tion more accurately.

However, contrary to our prior assumption, the tree-based outlier detection
method – Isolation Forest fails to detect malware with an FOR of 0.79. On ob-
serving the density distributions of some of the most important features (Fig.
2) we discover an overlap between malicious and benign distributions. Anomaly
detection methods are effective to identify outliers from distributions [20]. Since
unsupervised and anomaly detection methods rely on the malware to exist out-
side benign distribution, these methods may fail to detect malicious activity for
this data.
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Table 3. Malware Detection Results

Classifier False Omission Rate False Positive Rate

Decision Tree 0.063 0.222

Extra Trees 0.087 0.019

Random Forest 0.088 0.058

XGBoost 0.646 0.296

Isolation Forest 0.793 0.976

With the least FOR of all the models considered (illustrated in Table 3), De-
cision Tree and Extra Trees are the best malware detectors with 6.3% and 8.7%
FOR respectively. However, on closer inspection of the Decision Tree detector
we observe that it can only achieve this accuracy at the cost of 22.2% FPR.
Since this is not desirable for a performance cascading architecture as discussed
in Section 6.1, we use Extra Trees to determine if an action is malicious before
we classify its target in the next stage of our two-stage model.

7.2 Progressive learning

To achieve good detection, it is necessary for any user to be trained using the
SherLock framework before the user can successfully monitor a newly installed
app from the market. The time taken by each user to train the detector with
SherLock would desirably need to be reduced, which can be done by minimising
the required train data for the detection task. Our detector tackles this problem
by combining all the users we have and performs stratified training and testing.
Our detector exhibits the same accuracy with a decrease in train size as the
number of users it has learned from increases. This is visualized in Fig. 3 where
we consider a threshold of 0.15 FOR to analyse the change in required train
data for an Extra Trees detector trained on 1-5 users. To achieve the threshold
FOR when our detector had trained only on a single user, the detector required
atleast 76% train data. However, our detector reduces the percentage of train
data required from each user as it learns from more users. When the model
was trained on 5 users, it required only 52.5% of the train data to achieve the
threshold FOR.

Table 4. Target Classification Results

Models Average F1 Score
Class-wise F1 Score (Support)

Audio Record

(5)

BrowserInfo

(13)

Contacts

(2,343)

GPS

(522)

Photos

(662)

URL

(91)

Extra Trees 0.82 0.44 0.58 0.99 0.99 0.99 0.90

XGBoost 0.83 0.44 0.64 0.99 0.98 0.99 0.89

K-Nearest Neighbors 0.79 0.40 0.50 0.99 0.98 0.99 0.86
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Fig. 3. Progressive learning with increase in users

7.3 Target Classification

Table 4 illustrates the results for classifying the target of the malicious actions
predicted by the first stage. Due to the non-linearity posed by the data stream,
we considered tree-based algorithms such as Extra Trees and XGBoost. Although
XGBoost and Extra Trees display comparable performances, we prefer XGBoost
to be integrated with our final pipeline since it has proven to be more scalable
than the latter and displays the highest average performance of the models
considered for the second stage.

With less than 9% inaccuracy in detecting malware from the first stage, we
can predict with 83% certainty on what kind of data is being stolen when we use
an Extra Trees detector (Table 3) coupled with an XGBoost classifier (Table 4).

Furthermore, by using our feature selection approach we maintain the afore-
mentioned model performance with the feature set reduced to approximately
0.1% of the original set.

Stepwise forward selection for malware detection (illustrated in Fig. 4) reveals
that we only require 10 features to determine if an action is malicious to achieve
a minimum FOR and FPR of 0.087 and 0.019 respectively. Fig. 5 illustrates
stepwise forward selection for target classification and suggests that we require
only 16 features to categorize the type of data stolen. As a result of using such a
small feature set, we minimize our throughput and processing time drastically.
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Fig. 4. Stepwise Forward Selection Convergence – Malware Detection

Fig. 5. Stepwise Forward Selection Convergence – Target Classification

8 Conclusion

In this paper, we propose and successfully test a two-stage machine learning
model on the SherLock dataset to detect malicious actions in a smartphone and
identify the type of data it steals. We successfully reduce one of the largest
datasets for malware classification (SherLock) to 0.1% salient features of its ini-
tial feature set using our data preprocessing techniques. Furthermore, we go on
to propose using False Omission Rate and False Positive Rate in conjunction
to evaluate malware detectors. With just 8.7% inaccuracy in detecting malware
from the first stage, our model can predict the kind of data stolen with 83%
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certainty when we use an Extra Trees detector coupled with an XGBoost clas-
sifier. We exhibit our detector’s robustness with the gradual decrease in the
required train data from one user to achieve the aforementioned performance by
training on more users and data. Anomaly detection techniques for malware fail,
since malicious actions do not lie outside benign distributions as conventionally
expected.

Although the proposed model reduces the percentage of train data required
by a user to the minimum, malware detection is still dependent on user behaviour
to work. There exists the need for a truly user-independent machine learning
solution for malware detection to enhance user experience and ergonomics.
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