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Abstract. In this paper we focus on class imbalance issue which often
leads to sub-optimal performance of classifiers. Despite many attempts
to solve this problem, there is still a need to look for better ones, which
can overcome the limitations of known methods. For this reason we de-
veloped a new algorithm that in contrast to traditional random under-
sampling removes maximum k nearest neighbors of the samples which
belong to the majority class. In such a way, there has been achieved not
only the effect of reduction in size of the majority set but also the exces-
sive removal of too many points from the given area has been successfully
prevented. The conducted experiments are provided for eighteen imbal-
anced datasets, and confirm the usefulness of the proposed method to
improve the results of the classification task, as compared to other un-
dersampling methods. Non-parametric statistical tests show that these
differences are usually statistically significant.

Keywords: Classification · Imbalanced dataset · Sampling methods ·
Undersampling · K-Nearest Neighbors methods.

1 Introduction

Uneven class distribution can be observed in datasets concerning many areas of
human life – medicine [21, 29], engineering [12, 24], banking, telecomunications
[15, 35], scientific tasks such as pattern recognition [30], etc. Many other examples
along with the exhaustive state-of-the-art which refers to development of research
in learning of imbalanced problem is included in [16, 17]. Unfortunately, a lot of
learning systems are not adapted to operate on imbalanced data, and although
many techniques have already been proposed in literature it is still an unresolved
issue and requires further studies. The charts presented in [16] confirm these facts
and show that the number of publications on the problem of class imbalance has
increased in recent years.

? This work was supported by Statutory Research funds of Department of Applied
Informatics, Silesian University of Technology, Gliwice, Poland.
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We have dealt with this issue for several years, which resulted in the publi-
cation of the scientific papers on that subject [2, 4]. The problem has not only
been analyzed in the context of specific real data using well-known balancing
algorithms, but we have also tried to develop our own data sampling methods
that could help reduce problems arising from the skewed data distribution. For
example, our method presented in paper [3] is oriented toward finding and thin-
ning clusters of examples from the majority class. However, while this method
in many cases outperformed the other compared ones, the results were not fully
satisfactory. Therefore, we decided to do further research and analyses, the ef-
fect of which is KNN RU algorithm presented in the article. The combination of
random undersampling and the idea of the nearest neighbors allows to remove
maximum k nearest neighbors of the samples which belong to the majority class,
and thus prevent an excessive removal of too many points from the given area.
To investigate the impact of such a method on the result of the binary clas-
sification task, we conducted experiments, where 6 classifiers were applied for
eighteen datasets of various imbalanced ratio. We also confronted our approach
with four other methods belonging to the data-level balancing category and test
whether the differences between them are statistically significant. To assess clas-
sifiers’ accuracy, we applied a number of metrics advisable for classification of
imbalanced data. Decision of analyzing scores of multiple estimation methods
instead of one was motivated by the fact that no single metric is able to comprise
all the interesting aspects of the analyzed model.

The structure of this paper is as follows. Section 2 overviews the ideas which
address the imbalanced data challenge. In Section 3 the proposed algorithm of
undersampling is outlined. The experiment details are described in Section 4.
There are also a short characteristic of analyzed data together with information
about applied classifiers and performance metrics used for evaluation. The results
of the performed tests and the discussion of the outcomes are given in this part
of the paper too, while the conclusions are given in Section 5.

2 Learning from imbalanced data

Related literature, e.g. [3, 14, 22, 31], provides information on solutions that coun-
teract the effects of data imbalance. They can be categorized into three major
groups: data-level, algorithmic level and cost-sensitive methods.

Data-level approaches tackle class imbalance by adding (oversampling) or re-
moving (undersampling) instances to achieve a more balanced class distribution.
Solutions of this category can be used at a preprocessing stage before applying
various learning algorithms. They are independent of the selected classifier. Com-
pared to the methods of the other two groups, data level solutions usually require
significantly less computing power. They are also characterized by simplicity and
speed of operation, which is especially important in the case of large datasets.
Importantly, resampling methods can also extend standard ensemble classifiers
to prepare data before learning component classifiers. The results presented in
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[14] show that such extensions applied e.g. to the bagging method significantly
improve the outcomes.

The simplest method from the group of undersampling techniques is ran-
dom undersampling (RU) which tries to balance class distribution by random
elimination of majority class examples. However, one of the drawbacks is, it can
discard data that is potentially important for learning. To overcome this limita-
tion heuristic approaches are used to identify and remove less significant training
examples. These may be borderline examples or examples which are suspicious
of being noisy, and their removal can make the decision surface smoother.

One of the most commonly used classes of heuristic undersampling methods
is based on k-Nearest Neighbors algorithm (KNN). In Wilson’s Edited Nearest
Neighbor (ENN) method undersampling of the majority class is done by remov-
ing samples whose class label differs from the class of the majority of their k
nearest neighbors [5, 36].

Neighborhood Cleaning Rule (NCL) algorithm for a two-class problem can
be described as follows: for each example in the training set its three nearest
neighbors are found. If tested example xi belongs to the dominant class and the
classification given by its three nearest neighbors contradicts the original class
of xi, then xi is removed. Otherwise, if xi belongs to the minority class and its
three nearest neighbors misclassify xi as a dominant, then the nearest neighbors
that belong to the majority class are removed [27].

Tomek link (T-link) algorithm can also be used to reduce majority class [34].
Tomek link can be defined as a pair of minimally distant nearest neighbors of
the opposite classes. Formally, a pair of examples xi and xj is called a Tomek
link if they belong to different classes and are each other’s nearest neighbors.
Tomek link can be used both as a method of undersampling and data cleaning,
in the first case only the majority class examples being a part of Tomek link are
eliminated, while in the second case the examples of both classes are removed.

Many other informed undersampling methods can be found in the literature,
but because our new solution is a kind of the hybrid of random undersampling
and the k-Nearest Neighbor algorithm, we decided to present only the solutions
based on mentioned concepts.

3 KNN RU algorithm outline

One of the problems with random undersampling is that there is no possibil-
ity to control what objects are removed and thus there is a danger of losing
valuable information about the majority class. Accordingly, the method works
well only when the removal does not change the distribution of the majority
class objects. In other case heuristic methods should be used, which try to reject
the least-significant examples of the majority class. Unfortunately, these meth-
ods also have some drawbacks, namely they usually do not allow to influence
the number of removed elements because it only comes from the nature of the
dataset. Therefore, sometimes only a small number of observations meets the
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Algorithm. KNN RU method for undersampling

function KNN RU (Smaj, P , k)
l = |Smaj |; // l is the number of examples from the majority class
ToRemove ← matrix (nrow=l, ncol=k);
for i = 1 to l

Calculate the distance between ith element of Smaj and other samples;
Sort the distance and determine nearest neighbors based on
the k minimum distance;

Save indexes of the found neighbors in the ith row of ToRemove matrix;
Z = bP ∗ lc; //Z is the number of examples to be removed from Smaj

if (length(unique(ToRemove)) >= Z) then
R← sample(unique(ToRemove), Z, replace = FALSE)

else R← unique(ToRemove);
return Smaj −R // The subset of the majority class

criteria taken into account in the individual algorithm and is removed from the
set.

In order to solve the described problems an attempt was made to create
the method which would reduce undesirable effects occurring during random
elimination and at the same time allow to determine the number of observations
which should be removed from the majority class.

The proposed solution KNN Random Undersampling (KNN RU) is similar to
the traditional random undersampling. The difference is that removing instances
is not based on the full set of majority objects, but on k nearest neighbors of
each of the samples belonging to the majority class. The ability to control the
number of analyzed neighbors and the percentage of undersampling let you fine-
tune the algorithm to find such a set of majority objects which allows to achieve
the satisfactory accuracy of classification.

The following notations are established to make presentation of the algorithm
more clear. S is the training dataset with m examples (i.e., |S| = m) defined as:
S = {(xi, yi)}, i = 1, ...,m, where xi ⊂ X is an instance in the n-dimensional
feature space, and yi ⊂ Y = {1, ..., C} is a class identity label associated with
instance xi

1. Smin ⊂ S and Smaj ⊂ S are the set of minority and majority class
examples in S, respectively.

The arguments of the function are: the set of elements belonging to the dom-
inant class – Smaj , the number of nearest neighbors analyzed for each majority
object – k, and the percentage of undersampling to carry out – P. The result of
the function is a subset of the majority class.

Algorithm works as follows. For each element of Smaj subset its k nearest
neighbors are found and their indexes are stored in the auxiliary matrix. In the
next step the duplicated indexes are identified. If the total number of unique
indexes is greater than Z, where Z is the number of examples which should be
removed, then Z random objects from the found set are selected for discarding.
However, if due to the nature of the dataset too many objects’ indexes are

1 For the two-class classification problem C = 2.
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repeated and consequently the number of unique indexes is less than or equal
to Z, then all found nearest neighbors are removed. In this case the assumed
percentage of undersampling – P may not be achieved. Such a situation can
occur primarily when the value of parameter Z is very large while parameter k
relatively small.

Due to the fact that in the proposed method for each sample at most k of
its neighbors are removed, it reduces the risk of removing too many points from
a certain area in comparison with the standard random undersampling method.
Consequently, it also decreases danger of losing important information.

4 Experiments

The KNN RU method was compared with several generally known balancing
techniques in order to verify whether the proposed algorithm can effectively
solve the problem of class imbalance in practice. To make the comparisons the
original random undersampling and three heuristic methods: ENN, NCL, and
Tomek links were used. All these methods are briefly described in the previous
section.

The outline of the performed experiments was as follows:

– Each analyzed dataset was undersampled with five methods. The obtained
subsets were treated by six classifiers, such as Naive Bayes, Rule Induction,
k-Nearest Neighbor, Random Forests, Support Vector Machines and Neural
Networks, and the precision of classification was measured by 6 metrics.

– The tested undersampling methods used parameters k (number of nearest
neighbors) and/or P (percentage of undersampling). The sampling of the
datasets was performed for the odd values of k = 1, 3, 5, 7 and P = 10%,
20%, 30% ... until full balance was achieved. It allowed to find the balancing
level that gave the best precision of classification.

– To make the analyses more complete, the results were also compared with
those based on the original set of data (i.e. without balancing).

Experimental environment
The presented research was performed using the RapidMiner ver. 9.8 and R

software environments.
A lot of conventional classification algorithms are often biased towards the

majority class and consequently cause higher misclassification rate for the mi-
nority examples. All objects are often assigned to the dominant, i.e. negative,
class regardless of the values of the feature vector. In [33] authors included a
brief introduction to some well-developed classifier learning methods and indi-
cated the deficiency of each of them with regard to the problem of class im-
balance. Unfortunately, there are no clear guidelines which classifiers should be
used in relation to imbalanced data, therefore descriptions of tests carried out
using various classifiers can be found in the literature. Thus, six classifiers based
on different paradigms and varying in their complexity were used in presented
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study: Naive Bayes [20], Rule Induction [25], k-Nearest Neighbor [1], Random
Forests[6], Support Vector Machines [9], and Neural Networks [8].

With regard to the classifiers used, the following parameter values were set:
(a) Laplace correction was used for NB classifier; (b) The entropy was taken
into account as the criterion for selecting attributes and numerical splits for RI
classifier; (c) One neighbor was selected for determining the output class in the
case of KNN. Additionally Mixed Measures were used to enable the calculation
of distances for both nominal and numerical attributes. For numerical values
the Euclidean distance was calculated. For nominal values a distance of 0 was
taken if both values were the same, and a distance of 1 was taken otherwise;
(d) ’Number of trees’ parameter which specifies the number of random trees to
generate in RF was set to 100; (e) There was used a feed-forward neural network
trained by a back propagation algorithm (multi-layer perceptron). ’Training cy-
cles’ parameter which specifies the number of cycles used for the neural network
training was set to 500. The ’hidden layer size’ parameter was set to -12. The
default settings were applied for the remaining parameters.

Five independent 5-fold cross-validation experiments were conducted and
the final gained results were the average values of these tests3. It was stratified
validation, which means that each fold contained roughly the same proportions
of examples from each class. To optimize parameters of used undersampling
algorithms double cross-validations were carried out – the inner one to guide the
search for optimal parameters while an outer one to validate those parameters
on an independent validation set.

To evaluate tested methods 18 datasets which considered clinical cases, the
biology of the shellfish population, proteins in yeast’s cell and criminological
investigations, was taken from KEEL4 and UCI5 repositories. When a dataset
was not two-class, each class was successively considered as the positive, while
the remaining were merged, thus forming one negative majority class. For that
reason some file names have consecutive numbers in their suffix (Table 1). The
ratio between the number of negative and positive instances, IR, ranged from
1.82 to 41.4 depending on the dataset.

Regarding performance measures, we chose ones, which are recommended as
the most valuable for evaluating imbalanced data classifications [23]: sensitivity,
specificity, Balanced Accuracy (BAcc), Geometric Mean (GMean), F-Measure,
and Cohen’s Kappa statistic.

Results and discussion

As mentioned in the paragraph outlining the experiments, the classification
tasks were performed for the original datasets as well as for the ones which were
undersampled with the use of various methods.

2 I.e. the layer size was calculated as: 1+(Number of attributes+Number of classes)/2.
3 We used 5-fold cross-validation instead of 10-fold cross-validation because one of the

tested datasets (Glass5) had fewer than 10 examples of the minority class.
4 http://www.keel.es/datasets.php.
5 http://archive.ics.uci.edu/ml/index.html.
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Table 1: Datasets summary descriptions
Name Instances Features IR Name Instances Features IR

Abalone 731 8 16.4 Glass4 214 9 15.46
Breast 483 9 18.32 Glass5 214 9 22.78
Ecoli1 336 7 3.36 Glass6 214 9 6.38
Ecoli2 336 7 5.46 Vowel0 988 13 9.98
Ecoli3 336 7 8.6 Yeast1 1484 8 2.46
Ecoli4 336 7 15.8 Yeast3 1484 8 8.1
Glass0 214 9 2.06 Yeast4 1484 8 28.1
Glass1 214 9 1.82 Yeast5 1484 8 32.73
Glass2 214 9 11.59 Yeast6 1484 8 41.4

The results in terms of F-Measure showed that KNN RU got the best result
in 73 out of 108 tested combinations (18 datasets * 6 classifiers). In the next
5 cases KNN RU gave the best result ex aequo with the other tested methods.
Considering the Kappa metrics the proposed method outperformed the remain-
ing ones in 70 cases and in 11 other cases more than one method achieved the
same best result as KNN RU. Table 2 summarizes the number of the best results
of the balancing methods in terms of the F-Measure, Kappa, BAcc, and GMean
metrics. More detailed results for the BAcc and Kappa metrics can be found on
the Gitlab6.

Table 2: Summary of the classification best results in terms of the analyzed
metrics between KNN RU and the other balancing methods

Metrics KNN RU Equal results Other methods

F-Measure 73 5 30
Kappa 70 11 27
BAcc 61 7 40
GMean 56 8 44

The proposed KNN RU solution in most cases gives better results than the
other tested methods. However, the obtained results are not always equally good.
There may be several possible reasons for this state of affairs. One of them is
the fact of different data characteristics. In [19, 28] it is concluded that class
imbalance itself does not seem to be a big problem, but when it is associated
with highly overlapped classes it can significantly reduce the number of correctly
classified examples of minority class.

To analyze the problem more thoroughly the scatterplots were generated for
all tested datasets. Two exemplary plots for Glass2 and Glass4 are presented
in Figure 1(A)-(B)7. Both sets have the same collection of attributes and are

6 https://gitlab.aei.polsl.pl/awerner/knn ru
7 To facilitate visualization and enable the presentation of an exemplary dataset in a

two-dimensional space there was performed dimensionality reduction via principal
component analysis.
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Fig. 1: Scatterplot for Glass2 (A), Glass4 (B), Yeast1 (C) and Yeast5 (D) datasets

characterized by a similar degree of imbalancing (IR= 11.59 and IR=15.46, re-
spectively), but they vary in level of class overlapping (higher for Glass2). The
results obtained for the Glass2 dataset are much worse than those for Glass4,
although the imbalance ratio for the first set is slightly lower. The maximum
value of BAcc that was achieved for the tested combinations of classifiers and
undersampling methods does not exceed 0.8, while for Glass4 the values are
much higher (they reach even 0.9516).

Considering the Kappa metrics, for the Glass2 set KNN RU algorithm gives
the best results for 5 out of 6 tested classifiers. However, the differences are
small. None of the tested undersampling methods gives satisfactory results for
the Glass2 set. Particularly poor results are obtained for Naive Bayes and SVM
classifiers. In these cases, Kappa does not exceed 0.1 for any of the tested un-
dersampling methods.

Figure 1(C)-(D) presents the scatterplots for Yeast1 and Yeast5 datasets. In
this case, the sets differ substantially in degree of imbalancing (IR= 2.46 and
IR=32.73 respectively). Although the size of the minority class in the Yeast1
set is over 13 times larger than in the Yeast5 one, the results obtained for the
first of mentioned dataset are much worse in many of the analyzed cases. This
confirms that the difficulty in separating the small class from the dominant
one is a very important issue and that the classification performance cannot
be stated explicitly taking into consideration only degree of imbalancing, since
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other factors such as sample size and separability are equally valid. In regard to
the Yeast1 set, the maximum achieved value of Kappa is a little over 0.4 (0.416
for NN classifier) while for Yeast5 more then 0.6 (0.625 for RF classifier). It is
also noteworthy that for the Yeast5 set the proposed KNN RU algorithm gives
the best results for 5 out of 6 tested classifiers. On the remaining one KNN RU
gives the best result ex aequo with RU methods.

It should be emphasized that in about 80% of the analyzed cases the results
which were found to be optimal for the KNN RU method were achieved for a
lower level of undersampling in comparison with the RU method. It is important
because any intrusion of the source dataset by its under- and/or over-sampling
can cause undesirable data distortion. The major drawback of undersampling
is that it can discard potentially useful data that could be important for the
learning process. Therefore, it is significant to obtain satisfactory classification
accuracy with the least possible interference in input data. The average levels
of undersampling with the use of the RU and KNN RU methods for the Glass2
and Abalone sets are presented in Table 3.

In the case of the T-link, ENN, and NCL methods the number of removed el-
ements comes from the nature of data and the user has no possibility to influence
the level of undersampling. For the analyzed datasets these methods tended to
remove less number of examples than the RU and KNN RU methods. However,
it can be concluded that in most cases the number of samples removed using the
analyzed heuristic methods was not optimal. It means that the tested classifiers
often achieved weaker performance than in the case of undersampling using the
RU and/or KNN RU methods. Taking into consideration BAcc measure only in
6 of the analyzed cases the tested heuristic methods of undersampling gave the
best results. There were: (a) the combination of the Glass2 dataset, the KNN
classifier and the T-link undersampling method; (b) the Ecoli1 dataset, the RI
classifier and T-link; (c) the Ecoli2 dataset with the NN classifier sampled using
NCL; (d) the Yeast4, the RI classifier and ENN; (e) the Yeast5 dataset, the NB
classifier and NCL ex aequo with ENN undersampling method; (f) the Abalone
dataset, the KNN classifier and NCL.

It is well known that the choice of the evaluation metrics can affect the
assessment of which tested methods are considered to be the best. The results

Table 3: Average level of undersampling (%)

Classifier
Glass2 Abalone

RU KNN RU RU KNN RU

NB 75 60 10 10
RI 70 55 80 60
KNN 60 30 45 55
RF 80 40 90 90
SVM 90 40 80 80
NN 60 55 45 20
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Fig. 2: Performance measures for Random Forest classifier and Abalone dataset.

presented in Table 2 confirm this fact. The various combinations of the classifiers
and undersampling methods are often ranked differently by various evaluation
measures. For example, according to BAcc for the Abalone dataset and the
Random Forest classifier the traditional method of random undersampling (RU)
proved to be the best. However, according to the Kappa metrics the proposed
KNN RU algorithm gave better results than RU. Figure 2 presents the results of
all analyzed performance measures for the mentioned Random Forest classifier
and the Abalone dataset.

To conduct a more complete comparison of the obtained results, the statis-
tical tests [10] were applied. The undersampling methods for each dataset and
classifier were ranked separately. The best method received rank 1, the second
best – rank 2, and so on. In case of ties, average ranks were assigned. For in-
stance, if two methods reached the same best result they both got rank 1.5.
Then, average ranks across all datasets were calculated.

To compare the obtained average ranks, the omnibus Friedman test [13, 32]
with Iman-Davenport extension [18] was applied. It allowed to check whether
there were any significant differences, with 95% confidence level, between the
tested methods. There was used the Conover-Iman post-hoc test8 to find the
particular pairwise comparisons which caused these differences.

Table 4 shows the results of the comparison of the tested undersampling
methods calculated for the Kappa metrics. It presents the average ranks for
each method and the Conover-Iman p-value between KNN RU and the method
from a given row. In all cases the average ranks for KNN RU are lower than
those obtained for the other methods, and that allows to treat the proposed
solution as a control method. The Iman-Davenport test for each used classifier
gives p-value less than 0.05. It means that it rejected the hypothesis that the
compared undersampling methods were equivalent. The results in bold indicate
the methods which are significantly worse than the KNN RU one. It can be
seen that the proposed undersampling method is significantly better than the
heuristic ones. However, the comparison with random undersampling (RU) shows

8 This test is considered to be more powerful than the Bonferroni-Dune one.
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Table 4: Average ranks for the Kappa metrics

Under- p- Under- p-
Classifier sampling Avarage Conover- Classifier sampling Avarage Conover-

method rank Iman method rank Iman
N

B
Im

a
n
-D

av
en

p
o
rt

=
3
2
.4

3
5
7
7
3
;

p
<

0
.0

0
0
0
0
1

KNN RU 1.583

R
F

Im
a
n
-D

av
en

p
o
rt

=
4
2
.3

8
9
2
2
2
;

p
<

0
.0

0
0
0
0
1

KNN RU 1.361
Original 3.917 <0.000001 Original 4.833 <0.000001
T-link 4.944 <0.000001 T-link 4.722 <0.000001
ENN 3.889 <0.000001 ENN 4.389 <0.000001
NCL 4.667 <0.000001 NCL 3.694 <0.000001
RU 2 0.23156 RU 2 0.04982

R
I

Im
a
n
-D

av
en

p
o
rt

=
9
.9

6
0
5
8
;

p
<

0
.0

0
0
0
0
1

KNN RU 1.861

S
V

M
Im

a
n
-D

av
en

p
o
rt

=
3
8
.4

2
0
4
4
;

p
<

0
.0

0
0
0
0
1

KNN RU 1.306
Original 4.44 <0.000001 Original 5 <0.000001
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KNN RU 1.361
Original 4.361 0.000001 Original 4.694 <0.000001
T-link 4.167 0.000001 T-link 4.444 <0.000001
ENN 3.583 0.000459 ENN 3.722 0.000003
NCL 4.139 0.000007 NCL 3.889 0.000001
RU 2.944 0.021884 RU 2.889 0.001783

that although KNN RU is better, i.e. has lower average rank in 2 cases: for
the NB and RI classifiers, the statistical significance of the observed differences
cannot be confirmed.

Better results obtained with the KNN RU method compared to heuristic ones
can be explained by the fact that it allows to influence the number of objects
that should be removed. On the other hand, compared to the classic random
method of undersampling, the proposed solution reduces the risk of removing
too many points from a certain area.

It should be noted that although the method used in KNN RU to remove ob-
jects is slightly more sophisticated than in the case of RU, it does not guarantee
cleaning the decision surface, reducing class overlapping or removing noisy ex-
amples. Therefore, we decided to create a hybrid solution, which would first use
a method that better detects and removes borderline or noisy cases and would
apply the KNN RU solution in the next step.

At the beginning, tests were carried out using the Glass2 dataset, which
appeared to be one of the most problematic. Combinations T link + KNN RU
and NCL + KNN RU were tested. The obtained results confirmed validity of the
conception of hybridization the methods. Table 5 presents the results with the
use of basic version of KNN RU and its combinations. One can see that KNN RU
preceded by T link or NCL improves values of the classification metrics. Better
results are highlighted in bold.
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Table 5: Classification results for the Glass2 dataset

Classifier
KNN RU T link + KNN RU NCL + KNN RU

F-measure BAcc Kappa Gmean F-measure BAcc Kappa Gmean F-measure BAcc Kappa Gmean

NB 0.196 0.634 0.065 0.583 0.197 0.637 0.067 0.587 0.198 0.637 0.067 0.587
RI 0.263 0.606 0.114 0.52 0.219 0.604 0.136 0.573 0.252 0.620 0.162 0.584
KNN 0.432 0.705 0.327 0.665 0.426 0.799 0.35 0.798 0.428 0.746 0.365 0.729
RF 0.182 0.559 0.112 0.456 0.305 0.664 0.224 0.635 0.283 0.609 0.217 0.521
SVM 0.105 0.527 0.073 0.242 0.187 0.597 0.054 0.552 0.173 0.578 0.034 0.492
NN 0.457 0.765 0.393 0.756 0.542 0.827 0.486 0.824 0.474 0.712 0.432 0.670

The averages for each measure (average across a column) were calculated.
Analyzing the values obtained in this way the improvement was observed for
both tested combinations. It was approximately from 3% for NCL + KNN RU
and BAcc up to 23% for T link + KNN RU and GMean. The use of the hybrid
version of KNN RU in most cases improves the results also in the remaining
datasets.

5 Conclusions

Many researchers suggest that random undersampling is one of the more effective
resampling methods [11, 26]. However, this method has a drawback, namely it
does not allow to control which samples from the majority class are thrown
away. To reduce – at least partially – this disadvantage we propose the KNN RU
algorithm which combines random approach with k-nearest neighbors analysis.

Six metrics for classification performance evaluation were examined and as it
was shown in the experimental section the choice of quality metrics had an im-
pact on the way the various undersampling methods were ranked. Nevertheless,
the outcomes of classification experiments conducted with KNN RU on eigh-
teen datasets in most cases outperformed the results obtained for four compared
undersampling methods.

To make a comparison of the KNN RU method more comprehensive we also
contrasted it with the previously developed one [3], which was mentioned in the
Introduction section. For the majority of tested data sets, the advantage of the
current solution over the previous one has also been confirmed9.

In our experiments all resampling methods were used only to perform the
undersampling task, which means that chosen samples were removed exclusively
from the majority class. However, some methods based on the idea of k-nearest
neighbors could be used to remove examples from both classes. It means that
each example misclassified by its nearest neighbors can be removed from the
training set, regardless of the class it belongs to. It should insure more detailed
data cleaning, and in consequence improve the accuracy of the classifications.
Therefore, we plan to analyze the next combinations of the proposed method
with other resampling methods which provide undersampling and have data
cleaning capabilities.

9 The complete comparisons are on Gitlab: https://gitlab.aei.polsl.pl/awerner/knn ru
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