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Abstract. Open-set classifiers need to be able to recognize inputs that
are unlike the training or known data. As this problem, known as out-
of-distribution (OoD) detection, is non-trivial, a number of methods to
do this have been proposed. These methods are mostly heuristic, with
no clear consensus in the literature as to which should be used in spe-
cific OoD detection tasks. In this work, we focus on a recently proposed,
yet popular, Extreme Value Machine (EVM) algorithm. The method
is unique as it uses parametric models of class inclusion, justified by
the Extreme Value Theory, and as such is deemed superior to heuris-
tic methods. However, we demonstrated a number of open-set text and
image recognition tasks, in which the EVM was outperformed by sim-
ple heuristics. We explain this by showing that the parametric (Weibull)
model in EVM is not appropriate in many real datasets, which is due to
unsatisfied assumptions of the Extreme Value Theorem. Hence we argue
that the EVM should be considered another heuristic method.

Keywords: Open-set classification · Out-of-distribution detection · Ex-
treme Value Machine · Extreme Value Theory.

1 Introduction

Machine learning systems deployed for real-world recognition tasks often have
to deal with data that come from categories unseen during training. This occurs
especially in image or text recognition, where it is usually infeasible to collect
training examples that correspond to all categories which can be encountered at
prediction time. Hence it is important that classifiers can detect such examples
as unrecognized and not silently assign them to one of the known classes. How-
ever, most state-of-the-art models for image recognition operate as closed-set
classifiers, i.e., they tend to assign any example to some of the known classes.
An illustration of such behavior by the well-known ResNet model is shown in
Fig. 1. Such misclassification errors limit adoption of closed-set models in prob-
lems where new categories emerge over time (incremental learning problems) or
can lead to accidents in safety-critical computer vision applications, which is a
crucial concern in AI Safety [1].
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2 Walkowiak et al.

Fig. 1: Images of unknown class (Ligature, Highway, not available in training
data) recognized by the ResNet-50 model as a known class (Ligature recognized
as Jellyfish, Highway recognized as Dam). Examples from [12]

.

To deal with this problem, several methods have been proposed to recognize
when inputs to classifiers are unlike the training examples. In different studies,
such inputs are referred to as anomalous, outliers, or out-of-distribution (OoD)
examples with regard to the training data. Classifiers that incorporate such
detection methods are known as open-set classifiers. A recent comprehensive
survey of open-set recognition methods is given in [6]. Closed-set classifiers fail to
reject OoD examples, as they approximate posterior probabilities P (ci|x) for an
input sample x, where ci ∈ {c1, c2, . . . , cM} are the categories known in training
data and assign any sample to the class maximizing P (ci|x). Open-set classifiers
attempt to reject unrecognized inputs that are reasonably far from known data.
This is, broadly, done by constructing decision boundaries based on distributions
of training data or by building abating probability models, where the probability
of class membership decreases as observations move from training/known data.

An example of the former approach is the ’1-vs-set’ model proposed by [23],
and examples of the latter are W-SVM [22], or PI-SVM (probability-of-inclusion
SVM) by [13] (all these methods are open-set versions of the SVM model). Junior
et al. [14] proposed an open-set version of the Nearest-Neighbours classifier, with
a threshold on class similarity scores used to realize the rejection option. Bendale
and Bould [2] proposed an open-set version the nearest-class-mean model [17],
with rejection based on the thresholded Mahalanobis distance, see also [15].
Specific models for open-set recognition with deep CNNs include the Openmax
[3] and OoD methods with outlier-exposure [10, 9], which rely on the observation
that OoD differs in terms of the distribution of softmax probabilities as compared
with known (in-distribution) examples.

In contrast to all these methods, which can be seen as heuristic procedures,
with no theoretical justification, Rudd et al. [20] proposed a theoretically sound
classifier - the Extreme Value Machine (EVM). Its parametric model of the
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probability of inclusion uses the Weibull distribution, which is justified by the
Extreme Value Theory. The authors claim that this leads to the superior per-
formance of EVM on some open-set benchmark studies reported as compared to
heuristic methods.

The motivation of this research comes from the observation we made that
for a number of datasets in text or image recognition the EVM is surpassed by
simpler, heuristic models. The main contributions of this work are the following.
We analyzed Extreme Value Theory assumptions, which justify the adoption of
the Weibull distribution by the EVM method. We showed that these assumptions
often do not hold in real recognition problems and illustrated this in a number
of text and image classification studies. We empirically compared the EVM with
simple OoD detection methods based on the LOF (Local Outlier Factor) and
explained what properties of the training data lead to low performance of the
EVM. We conclude that the theoretical soundness of EVM in many real-life
studies can be questioned, and hence the method should be considered another
heuristic procedure.

The paper is organized as follows. In section 2, we explain how open-set clas-
sifiers perform out of distribution detection using a probability of inclusion-based
and density-based methods. Then we provide details on the EVM (probability
of inclusion-based) and the LOF (density-based), which we later use in the com-
parative study. We also provide OoD evaluation metrics. In section 3 we report
results of the numerical study comparing EVM with LOF on both text and im-
age data and provide results of goodness-of-fit tests, which show that the EVM
Weibull model is not appropriate. We discuss this concerning the EVT assump-
tions. Finally, we discuss the type of inter-class separation which most likely
leads to the low performance of the EVM.

2 Methods

2.1 Out of Distribution Detection

In order to realize open-set recognition, classifiers must be able to reject as un-
recognized the samples which are out-of distribution with regard to the training
data of known classes. This allows reducing the open-space risk [23], i.e. misclas-
sification of these OoD samples by assigning them to one of the known classes.

The key difference between open-set classifiers is how the rejection option is
implemented.

A commonly used approach to reduce the open-space risk is to implement
the probability of inclusion model. An input sample x is then classified as ci =
arg maxc∈C P (c|x) providing P (ci|x) > δ, and labelled as unrecognized other-
wise. The models of the probability of class inclusion attempt to model P (ci|x)
as a decreasing function of the distance between x and the training data Xi per-
taining to class ci. Such models are referred to as compact abating probability
(CAP) models [22]. The Extreme Value Machine which is the focus of this work
is based on this idea; in section 2.3 we explain how EVM constructs the CAP
model for P (ci|x).
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Another approach is realized by distance-based methods, where rejection is
done by directly using distance to known data. An input sample x is classified as
ci = arg maxc∈C P (c|x) providing d(x,Xi) < δ, where d(x,Xi) is some measure
of distance between x and the known training data Xi pertaining to class ci. For
d(x,Xi) ≥ δ, x is unrecognized. This idea is implemented e.g. by the open-set
version of the nearest class mean classifier [2, 17], where d(x,Xi) is calculated as
Mahalanobis distance.

Density-based methods can be seen as conceptually related to the distance-
based methods, however the measure d(x,Xi) used to realize rejection of OoD
samples is calculated as some measure of outlierness of x with regard to the
known data Xi. This can be based on the density or the outlierness factor such
as the Local Outlier Factor (LOF) [4]. The latter is used in the empirical study
as an alternative method compared to the Extreme Value Machine.

2.2 Local Outlier Factor

The Local Outlier Factor [4] is based on an analysis of the local density of
points. It works by calculating the so-called local reachability distance, defined
as an average distance between a given point, its neighbors, and their neighbors.
The relative density of a point against its neighbors is used to indicate the
degree of the object being an OoD. The local outlier factor is formally defined
as the average of the ratio of the local reachability of an object to its k-nearest
neighbors. If the LOF value for a given point is larger than some threshold, the
point is assumed to be OoD. In the case of the open set classification problem,
the LOF threshold could be calculated based on the assumption that the training
data include a given portion of outliers (called contamination in code 1).

2.3 Extreme Value Machine

Extreme Value Machine constructs a compact abating probability model of
P (ci|x) that x belongs to ci. This popular model is justified by the Extreme
Value Theory, and as such, deemed superior by the authors as compared with
heuristic models.

Technically, to construct the CAP model for a class ci ∈ C = {c1, c2, . . . , cM},
we create the radial inclusion function for each point xi ∈ Xi, where Xi repre-
sents the training data for class ci. Given a fixed point xi ∈ Xi, τ closest training
examples from classes other than ci are selected, denoted here as {t1, . . . , tτ},
and the margin distances from xi to these examples are calculated as

mij =
‖xi − tj‖

2
, j = 1, . . . , τ (1)

Then the parametric model of the margin distance from xi is estimated by
fitting the Weibull distribution to the data {mi1,mi2, . . . ,miτ}. This step is
justified by the authors by the Extreme Value Theory, and is later analyzed

1 http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
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in terms of validity of the underlying assumptions in section 3.3. The fitted
Weibull model is described by the scale λi and shape κi parameters, and hence
the Weibull survival function (1−CDF ) is postulated as the radial class inclusion
function:

Ψ(xi, x) = e
−
(
‖xi−x‖
λi

)κi
(2)

This can be interpreted as the CAP model of the decreasing probability of
inclusion of the sample x in the class represented by training example xi.

Given this model, the open-set classification of an input x is done as follows.
The probability that x is associated with the class ci is estimated as P̂ (ci|x) =
Ψ(xj , x)), where xj = arg maxxk∈Xi Ψ(xk, x) (ie. xj is the training example
in Xi closest to x). Finally, the open-set classification of x is done as ci =
arg maxc∈C P̂ (c|x) if P̂ (ci|x) > δ, and x is considered unknown otherwise.

Remarks on the Extreme Value Machine Implementation

It should be noticed that the ‘official’ implementation of the EVM2 uses the
libMR3 library for the Weibull model fitting (libMR is provided by the authors of
[24]). Given the sample {mi1,mi2, . . . ,miτ}, libMR first performs linear trans-
formation: ηij = −mij − max {mi1,mi2, . . . ,miτ} + 1, j = 1, . . . , τ , and then
returns the parameters (λi, κi) of the Weibull model fitted to {ηi1, ηi2, . . . , ηiτ}.
The parameters (λi, κi) are used in Eq. 2.

In the empirical study in Section 3, we verify the goodness of this fit and
show that in all the datasets considered the Weibull model is not appropriate
for {mi1,mi2, . . . ,miτ} (the original margin distances) and for {ηi1, ηi2, . . . , ηiτ}
(the transformed margin distances).

2.4 OoD Evaluation Metric

In the next section, we want to empirically compare the performance of the
EVM and LOF methods in the task of OoD detection. In the evaluation of
OoD detection algorithms, we follow the approach used in [11]. OoD detection is
treated as binary classification, with the OoD examples defined as the positive
class and the in-distribution examples as the negative class. As the OoD detection
quality metric we used the area under the receiver operating characteristic curve
(AUROC). It could be used since EVM and LOF (and other OoD methods,
Section 2.1) use a rejection threshold value which affects the false positive and
true negative rates. Technically, the ROC curve shows the False Positive Rate
(FPR) on the x-axis and the True Positive Rate (TPR) on the y-axis across
multiple thresholds. In the OoD problem, the FPR measures the fraction of in-
distribution examples that are misclassified as outliers. The TPR measures the
fraction of OoD examples that are correctly labeled as outliers.

2 https://github.com/EMRResearch/ExtremeValueMachine
3 https://github.com/Vastlab/libMR
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The performed experiments data were divided into three data sets: training,
testing, and outlier one. The first two are classical data sets used in closed-set
classification and represent in-distribution data. The training data set was used
to built OoD models, where test and outlier ones (as a negative and positive class)
are used to evaluate OoD algorithms. In performed experiments, the number of
outliers was set to be equal to the size of the test data. It could be noticed that
in the presented approach, OoD detection algorithms have no knowledge about
OoD world. They built their models based on in-distribution data only.

3 Computational Experiments

In this section, we empirically compare the EVM and LOF methods in the task
of OoD in image classification and text documents classification. Since results
of this study (Section 3.2) show that the theoretically-justified EMV can be
outperformed by a heuristic procedure, we verify using goodness-of-fit tests if
the EVM margin distances (Eq. (1)) in these datasets follow the Weibull distri-
bution (Section 3.3). Next in Section 3.4, we show that the EVM model with
the Weibull model replaced by some other distributions (e.g. normal) realizes
similar performance. Finally, we visually illustrate the way how the EVM and
LOF form the in-distribution and out-of-distribution areas, using the CIFAR-10
dataset projected onto the 2D space of the first two PCA components. This al-
lows us to partly explain the difference in the performance of OoD by the EVM
and LOF in our experiments.

3.1 Data Sets

To evaluate the OoD detection algorithms, we used two different sources of data:
text documents and images.

For the text documents case, we used the corpus of articles extracted from
the Polish language Wikipedia (Wiki). It consists of 9, 837 documents assigned
to 34 subject categories (classes). The corpus is divided into training [19] and
testing [18] set. As the OoD example, we randomly selected articles from the
Polish press news[25] dataset (Press).

Several approaches to represent documents by feature vectors were developed
during the past years. For our study, we have the most classical one - TF-IDF[21]
and one of the most recent approaches - BERT [5]. The TF-IDF uses a bag of
word model[7] where a feature vector consists of a set of frequencies of words
(terms). To limit the size of feature vectors, we focused only on the most fre-
quent terms. The term frequency (TF) representation is modified by the Inverted
Document Frequency (IDF)[21], giving the TF − IDF one. In performed exper-
iments, we used single words as well as 2-, and 3-grams. The vector space was
limited to 1000 terms. Moreover, the final TF-IDF vectors were L2 normalized.
The most frequent terms and corresponding IDFs were set up on the training set
and used for TF − IDF feature calculation for all data (i.e., training, testing,
and outliers).
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The second method, BERT [5], uses state-of-the-art deep-learning algorithms
(i.e. Transformers), resulting in a context-aware language modeling approach. In
this study, we used the Polbert4[16], a pre-trained BERT model for Polish. The
Polbert network with additional classification layers was tuned on the Wiki data
set. Only the embedding layer of the BERT was frozen. Since the Polbert is
capable of analyzing up to 512 subwords, longer texts were cut-off. The closed
set accuracy was 94.21% . As a feature vector (768-dimensional), we used the
first (with index zero) token from the last Transformer layer (i.e., the one before
the classification layers).

For the case of images, we used the CIFAR-10 database5. It contains 60, 000
32x32 color images divided in 10 classes, i.e. airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck. There are 5, 000 images per class in the training
set and 1, 000 in the test set. The ResNet-101 [8] CNN model was trained from
scratch for the classification task, and it achieved 95.15% final accuracy. The
2048-dimensional feature vectors were extracted from this model. As features,
we used the output of the average global pooling layer (called ”avgpool”).

As out-of-distribution data, the MNIST6 and the CIFAR-1007 benchmark
data sets were chosen. For each test in this paper, the number of OoD exam-
ples was equal to the number of images used in the CIFAR-10 test set. The
MNIST dataset contains 70, 000 28x28 grayscale images of handwritten digits.
We transformed them into three RGB channels and added extra padding (to
keep 32x32 size) to make them fit the trained CNN model. The CIFAR-100 set
has 100 classes with 600 images per class. None of the CIFAR-100 classes appear
in CIFAR-10.

3.2 Comparison of OoD Detection Methods

We compared the EVM with the LOF algorithm in the context of image and
text data. Since we wanted to observe the effect of input space modifications
on the quality of OoD detection, we also used the standardized versions of each
data set (we used the popular z-score normalization with the mean and standard
deviation for each variable estimated on the train data set).

In Table 1 we compare the AUCROC measure for the EVM and LOF method
over different data sets.

Despite its theoretical justification, the EVM is clearly outperformed by the
heuristic LOF algorithm in most test cases, except for the text data with BERT
feature vectors.

To explain this, we verified if the theoretically-grounded Weibull distribution
used in EVM is appropriate for data encountered in real OoD studies.

4 https://huggingface.co/dkleczek/bert-base-polish-cased-v1
5 https://www.cs.toronto.edu/ kriz/cifar.html
6 http://yann.lecun.com/exdb/mnist/
7 https://www.cs.toronto.edu/ kriz/cifar.html
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Table 1: AUCROC for EVM and LOF over different data sets. Standardised
data sets are denoted by ’+stand’

Data set EVM LOF

Wiki.vs.Press.TF-IDF 0.792937 0.827835

Wiki.vs.Press.TF-IDF+stand 0.521511 0.793559

Wiki.vs.Press.BERT 0.943888 0.904297

Wiki.vs.Press.BERT+stand 0.942756 0.904234

CIFAR-10.vs.CIFAR-100 0.796409 0.888728

CIFAR10.vs.CIFAR100+stand 0.879586 0.893454

CIFAR10.vs.MNIST 0.897874 0.984625

CIFAR10.vs.MNIST+stand 0.972384 0.982649

3.3 Weibull Distribution Testing

The main theoretical assumption of the EVM is that margin distances (see sec-
tion 2.3) follow the Weibull distribution. We empirically verified this by using
the Kolmogorov-Smirnov goodness of fit test, with the null hypothesis that the
margin distances have the Weibull distribution estimated by the EVM imple-
mentation. It is important to state that the margin distances were scaled by
the implementation as mentioned in section 2.3. In table 2 we present mean p-
values of Kolmogorov-Smirnov tests for all training examples in each data set.
Assuming the test significance level of 5%, we conclude that the Weibull distribu-
tion is not appropriate (p-value < 5%) or marginally accepted (p-value = 0.087,
Wiki.BERT data) in four out of six test cases. Clearly, the datasets with the high-
est p-values (ie. Wiki.BERT or CIFAR-10+stand, p-value > 5%, Weibull distri-
bution appropriate) correspond to the OoD test cases in which EVM showed the
best performance, as shown in table 1.

The detailed analysis of p-values for CIFAR-10 data set is shown on his-
tograms in Fig. 2a and 2b. We can notice that normalization of CIFAR-10 data
changes the distribution of margin distances: for a majority of training examples
in the raw dataset (fig 2a), the Weibull model does not fit the data (most of
p-values < 5%), whereas for standardized data (fig 2b) the Weibull model is ap-
propriate (most of p-values > 5%). This clearly leads to improved performance
of the EVM in OoD detection as shown in table 1 (AUCROC increased from
0.897 to 0.972).

This analysis proves that margin distances do not follow the Weibull distribu-
tion in many real datasets, contrary to the theoretical justification given in [20]
(Theorem 2). The justification given in [20] is grounded on the Fisher-Tippett-
Gnedenko (or Extreme Value) Theorem, which states that for a series of n i.i.d.
random variables, their maximum Mn is asymptotically Weibull-distributed, ie.
for some constants an, bn Pr(

Mn−bn
an

< z)→ G(z) as n→∞, where G(z) is un-
der some assumptions the Weibull distribution. Hence the underlying assumption
needed for the margin distances (eq. 1) to follow the Weibull distribution is that
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Table 2: Mean p-values from Weibull goodness-of-fit tests for different datasets
Data set mean p-value

Wiki.TF-IDF 0.003366

Wiki.TF-IDF+stand 0.010634

Wiki.BERT 0.086883

Wiki.BERT+stand 0.111862

CIFAR-10 0.043452

CIFAR-10+stand 0.215405

they can be treated as the maximum from a series of i.d.d. random variables,
which was not shown, but only postulated in [20].

(a) without normalization (b) with normalization

Fig. 2: Histograms of Weibull goodness-of fit test p-values for raw and standard-
ized CIFAR-10 features.

3.4 EVM as a Heuristic OoD Procedure

The analysis reported in the previous section leads to the conclusion that the
margin distances do not follow the Weibull distribution. Therefore, we believe
that the very Weibull distribution is not the key to the EVM performance. To
confirm this, we substituted the Weibull distribution by some other distributions
and repeated the previous OoD detection experiments using this modified EVM.
More specifically, we followed the EVM algorithm as described in the original
paper [20], but fitted the parametric model directly to the margin distances (mij ,
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eq. (1)), and not to the transformed {ηi1, ηi2, . . . , ηiτ}. We tried four alternative
CDFs: the Weibull Minimum Extreme Value (Weib min), Normal, Gamma, and
empirical CDF (ECDF). The achieved AUROC values are compared with the
original EVM in table 3. These results suggest that the parametric distribution
type, as well as transformation applied by the libMR8 have a minor influence on
the EVM performance. None of the analyzed distributions clearly outperformed
other models. This confirms that the assumption of the Weibull distribution is
not essential for the performance of the EVM.

Table 3: AUCROC for the original EVM and its modifications based on other
parametric models

Data set EVM Weib min Normal Gamma ECDF

Wiki.vs.Press.TF-IDF 0.792937 0.559025 0.588428 0.761878 0.523205

Wiki.vs.Press.TF-IDF+stand 0.521511 0.717006 0.551327 0.673260 0.518462

Wiki.vs.Press.BERT 0.943888 0.935413 0.949327 0.940496 0.922417

Wiki.vs.Press.BERT+stand 0.942756 0.930245 0.947738 0.941205 0.920710

CIFAR-10.vs.CIFAR-100 0.796409 0.887941 0.828649 0.772505 0.751740

CIFAR-10.vs.CIFAR-100+stand 0.879586 0.832547 0.878440 0.870419 0.817091

CIFAR-10.vs.MNIST 0.897874 0.957250 0.926712 0.872924 0.859684

CIFAR-10.vs.MNIST+stand 0.972384 0.978867 0.978688 0.972445 0.971501

3.5 Low Dimensional Example

To illustrate the behavior of OoD methods, we performed a set of numerical
experiments on CIFAR-10 images projected by PCA onto two-dimensional space.
Projected images were used to built EVM and LOF models. Next, the 2D space,
in the area of CIFAR-10 data values, was equally sub-sampled, forming a X-Y
grid. Each of the grid points was assigned to the OoD or in-distribution class
by the EVM and LOF algorithm using different values of rejection threshold, as
presented in Fig. 3 and Fig. 4. The training data points are marked in colors
corresponding to the original class. Black dots represent grid data marked by the
corresponding algorithm as in-distributions, whereas white dots represent OoD
points. Notice, that background is also white, so the area without any black dots
represents OoD space.

In Fig. 3a, we can notice that the in-distribution area (black points) covers
not only training data but also the area around them. So, all test examples are
likely to be correctly recognized as in-distribution, but OoD examples laying
between classes will be incorrectly recognized as in-distribution. Hence, the in-
distribution areas (shown by black points in 3a) are apparently too wide. We
can narrow them by increasing the threshold. However, as we can notice in 3a,

8 https://github.com/Vastlab/libMR
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(a) threshold 0.7 (b) threshold 0.99

Fig. 3: OoD detection by the EVM for PCA projected CIFAR-10 data.
The color points represent training data (CIFAR-10 images projected on 2D).
Black points (forming an X-Y grid) are in-distribution data detected by EVM.
White points (visible on colored areas, especially in picture (b)) correspond to
data detected by EVM as OoD. Notice, that background is also white, so the
area without any black dots is the OoD space.

(a) contamination 0.005 (b) contamination 0.1

Fig. 4: OoD detection by LOF for PCA projected CIFAR-10 data. The meaning
of white and black dots the same as in the previous figure.
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in the case of some classes (like the plane, ship, bird, and frog), this only slightly
squeezes the in-distribution areas, while in other cases (like deer and truck),
training data gets marked as OoD (white dots inside gray and blue area) as
OoD objects. It is an undesirable behavior of the EVM, resulting in a large
number of wrong decisions. It could be noticed that such problems occur when
one class is close to another, or when classes partly overlap (as cars and trucks
in our example).

A similar analysis done for the LOF method (Fig. 4) does not reveal such
undesirable behavior. Fig. 4a is similar to Fig. 3a. Moreover, after enlarging the
contamination parameter (this results in decreasing the rejection threshold), the
in-distribution areas (dark points) fit now closely to training data (Fig. 4b).
However, a close look at Fig. 4a shows that LOF in-distribution areas do not
extend beyond training points in directions opposite to other classes (see, for
example, top of the plane class - marked by blue), contrary to directions to
other classes (observe the bottom area of the ’plane’ class and compare it with
the area above). Such behavior is caused by the fact that LOF has no knowledge
about individual classes and sees the whole training data as one ’in-distribution’
set.

4 Conclusion

In this paper, we showed that the theoretical assumptions underlying the popu-
lar Extreme Value Machine are not fulfilled in the context of many real datasets.
Inter-class distances (margin distances) in practice often do not follow the Weibull
distribution, as assumed by the EVM. We compared the EVM with another
popular OoD detection method - LOF and showed that EVM should not be
generally considered superior to this heuristic method. Both these methods at-
tempt to model the local similarities around the training examples as the ’in-
distribution’ space. However, the EVM takes into account the distances to other
nearest classes, while LOF is focused only on local similarities.

Since the theoretical soundness of EVM in many real-life studies can be
questioned, we argue that the method should be considered another heuristic
OoD procedure.

Several data-related factors affect EVM performance. First, for high- dimen-
sional data (the curse of dimensionality effect), the inter-class borders are sam-
pled very roughly. (In our experiments, data dimensionality was between 768
and 2048). Secondly, the EVM builds a border between OoD space and ’in-
distribution’ space using the distances to the nearest points from other classes.
When classes are well separated (large inter-class gap), this leads to a high prob-
ability of inclusion of out-of-distribution examples lying far from the known data.
Hence, models of in-distribution areas tend to be over-extended, as compared
e.g. with the LOF model.

A modification of the EVM is worth investigating, in which the models of the
probability of inclusion are built using not only distances to other classes but

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_13

https://dx.doi.org/10.1007/978-3-030-77967-2_13


On Validity of Extreme Value Theory-based Models ... 13

also in-class distances. We believe this would address some problems observed
in the EVM.
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