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Abstract. The following work aims to propose a new method of con-
structing an ensemble of classifiers diversified by the appropriate selec-
tion of the problem subspace. The experiments were performed on a
numerical dataset in which three groups are present: healthy controls,
glaucoma suspects, and glaucoma patients. Overall, it consists of medi-
cal records from 211 cases described by 48 features, being the values of
biomarkers, collected at the time of glaucoma diagnosis. To avoid the
risk of losing information hidden in the features, the proposed method –
for each base classifier – draws a separate subset of the features from the
available pool, according to the probability determined by the anova
test. The method was validated with four base classifiers and various
subspace sizes, and compared with existing feature selection methods.
For all of the presented base classifiers, the method achieved superior
results in comparison with the others. A high generalization power is
maintained for different subspace sizes which also reduces the need to
optimize method hyperparameters. Experiments confirmed the effective-
ness of the proposed method to create an ensemble of classifiers for small,
high-dimensional datasets.

Keywords: Analysis of variance · Glaucoma classification · Subspace
selection · Non-uniform random subspace · Classifier ensembles

1 Introduction

Sight is the main and most important human sense. Using its capabilities, we
are receiving most of the information coming to us from the surrounding world.
Therefore, the narrowing of the field of view – often irrevocably leading to total
blindness – make it much more difficult to perform everyday activities. One of
the main factors leading to such disorders is glaucoma. It is estimated that over
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70 million people are suffering from this disease, but due to its asymptomatic
course, even over 50% of those affected may not be aware of it [15]. The most
common type of glaucoma is primary open-angle glaucoma, which does not give
any symptoms until the later stages, and its effects are irreversible. This form
of the disease will be taken into consideration in this article and will be later
abbreviated as glaucoma.

The current research is focusing on the early detection of glaucoma, at the
stage preceding irreversible changes – especially – visual field narrowing [4, 10, 9].
Biomarkers are the most commonly used for this purpose. They include, among
others, intraocular pressure (iop), retinal nerve fiber layer (rnfl) thickness,
parameters concerning the position and shape of the lamina cribrosa, size and
shape of the optic nerve disc and many others. Their observation and analysis
can have an impact on the early detection of developing glaucoma and can help
in trying to control the disease [2].

The dynamic development of machine learning methods allows to support
medical diagnostics [3, 7]. However, due to a large number of available biomark-
ers in the case of glaucoma, automatic classification of medical cases into dis-
ease groups, using pattern recognition methods, states a non-trivial problem.
It results from limited datasets and a large number of features describing each
analyzed sample. This problem is widely known as a curse of dimensionality [1].
There are different methods to cope with this problem [11], mainly based on
the feature selection, i.e. selecting the best subset of the available feature space,
which will be used for further analysis. However, this solution is not always ef-
fective, and by rejecting a certain number of features, the information contained
in them is lost. Additionally, sometimes long-term optimization of parameters is
needed to obtain a satisfactory result. An example of such a technique may be
an application of statistical methods to rank the features [5] or to use Principal
Component Analysis to reduce the size of the dataset [16].

The development of these methods and, at the same time, the solution to
the problem of rejecting input features is the use of ensemble learning to train
classifiers based on different subspaces. The most common type of such process-
ing is using the Random Subspace method, also known as feature bagging [6]. It
consists in drawing and returning features for a separate subspace for a single
classifier.

The following paper proposes a novel method that includes the basics of the
two above-mentioned methods. It allows to automatically build an ensemble of
classifiers on a non-randomly drawn subspace of features, where the probability
of drawing depends on the ranking obtained with the use of Analysis of Variance
(anova) [14]. Thus, each classifier is learned from a smaller amount of data,
avoiding the curse of dimensionality, and at the same time, no features are
rejected, minimizing the risk of rejecting valuable information contained in them.
Such an approach leads to an increase in the overall diversity of the trained
pool and allows to achieve high classification quality. The proposed method was
named anova Subspace Ensemble (anova sse). Finally, the proposed method
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was tested on a numerical medical dataset, and a built ensemble was able to
classify glaucoma progression groups.

The main contributions of this study are:
– a novel solution to diversify a homogeneous pool of classifiers based on the

analysis of variance,
– experimental evaluation of the method in the context of standard solutions

to the problem,
– statistical analysis of the obtained results.

2 Methods

The paper focuses on a method, that aims to extract a set of feature subsets
from a dataset and at the same time, creating a classifier ensemble, in which
each classifier will be trained on a different subset. The method is based on the
anova test, used to calculate the probability with which a given feature will be
drawn from the entire set of features. From the results of anova, F-value for each
feature is taken, and transformed in the way, that the sum of an array created
from this set of F-values will be equal to one. This operation is performed so
that the F-value vector may be interpreted as a discrete probability distribution.

The created array is passed to a function that generates the random sample
from a features vector, as a probability for each entry. Finally, the function,
according to the given probability, will draw from the set of features, increasing
the probability of drawing the features that obtained the greater F-value. Then,
as many subsets as there are classifiers in the ensemble are drawn, and each
classifier is trained on a separate subset.

Further, in the training process, weight is calculated for each classifier in
the ensemble based on its balanced accuracy on the training set. The aforemen-
tioned procedure, which is the classifier fit function, is described in the form
of pseudocode in Algorithm 1. At the final prediction, the supports of each are
multiplied by the weights and then the standard accumulation of the supports
is done. The method uses the information contained in all the features, not
rejecting any of them, while favoring features that have higher F-value, thus
maximizing the quality of the created ensemble.

3 Dataset

The dataset used in this study is a retrospective data collection, described in
more detail in [8]. It consists of a set of biomarker values for each of the patients.
These values are typically acquired during glaucoma diagnosis and are commonly
used. The set includes intraocular pressure (iop), retinal nerve fiber layer thick-
ness (rnfl), optic disk morphology parameters, and many others. An experi-
enced ophthalmologist assigned each patient individually to one of three groups:
healthy controls, glaucoma suspects, and glaucoma patients, based on the col-
lected data and images acquired with optical coherence tomography. The entire
collection contains data from 211 patients (69 controls, 72 glaucoma suspects,
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Algorithm 1: The fit function for the anova sse method

Input: X as an array of training examples with y containing corresponding
labels and n as an subspace size and k as a size of ensemble

Output: A list of trained base classifier (ensemble) and corresponding weights
n features := number of features avaiable in X ;
p := the list of F-value for each feature in X obtained from ANOVA;
p := p/sum(p);
f := [0, 1, ..., n features];
classfiers := a list of k base classifiers;
for classifier in classifiers do

ss indexes := a list of n drawn numbers from f with the probability of p;
train classifier on all samples from X but only on features with ss indexes;
append trained classifier to a list of ensemble;
append weight, calculated as a balance accuracy score for classifier
determined on those training samples, to a weights list ;

end

70 glaucoma patients), and for each of them, there are 48 features available.
Each patient from whom the data was derived gave their written consent and
the studies were approved by the Bioethical Committee of the Wroclaw Medical
University (KB–332/2015).

4 Experiment design

The whole experiment was conducted using Python language and scikit-learn
0.23.2 [12] package. The implementation of both the proposed method and ex-
perimental code, to preserve the possibility of replication of performed experi-
ments, is publicly available in Github repository1.

The performance evaluation, as well as the comparison of the various meth-
ods, was based on the balanced accuracy score, which is calculated as the arith-
metic mean of specificity and sensitivity. The t-test with non-parametric correc-
tion was used to check whether the results obtained with the different methods
are statistically dependent [13]. The 5x5 repeated cross-validation protocol was
used to obtain reliable results, both for the proposed and reference methods.

Four base classifiers were used and validated in the experiments: Multi-
layer Perceptron (mlp), k-Nearest Neighbors (knn), Classification and Regres-
sion Trees cart and Support Vector Machines classifier svc. The parameters of
the individual classifiers used for the experiments are presented in Table 1.

For comparison, models based on the two most common feature selection
methods were calculated, i.e. Random Subspace and the method of selecting
only the k most differentiable features based on the anova test (k-best). In
addition, the results for simple, single models, that were built on a full available
feature space, are also presented.

1 https://github.com/w4k2/anova sse
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Table 1. The parameters of the classifiers that were set during the computational
experiments.

Classifier Parameters

mlp hidden layers = 100; activation = the rectified linear activation function;
solver = Adam; alpha = 0.0001; constant learning rate = 0.001; maximum
number of iterations = 20; beta 1 = 0.9; beta 2 = 0.999; epsilon = 1e-8

knn number of neighbours = 5; uniform weights; leaf size = 30; Euclidean
metric

dtc Gini impurity criterion; without maximum depth; the minimum number of
samples required to split an internal node = 2; the minimum number of
samples required to be at a leaf node = 1

svc linear kernel; with the enabled probability estimates; number of
iteration = 1; one vs rest decision function shape

The aim of the experiments was to verify the effectiveness of the proposed
method both as a method for selecting a subspace on which classifier ensemble
was to be trained, as well as a method operating on a small part of the feature
subspace from the initial data set (e.g. due to the acceleration of learning).
Therefore, for solutions based on feature selection, experiments were performed
for several sizes of subspace ranging from 1 to 48.

5 Experimental evaluation

The obtained results are shown in Table 2 and Figure 1. They are the mean values
and standard deviations calculated across folds. Additionally, the approaches for
which the given method is statistically better are marked under the results in
the table. What may be observed, with a size of feature subspace greater than
18, none of the considered methods is statistically better than the proposed one.
Comparing them using the same base classifier leads to the observation that the
proposed method receives statistically better or no worse results than the other
two feature-selection methods.

Furthermore, as can be seen in Figure 1, it always get better results than the
base solution trained on the all features, regardless of the number of attributes
used. By analyzing plots, it can also be concluded that the obtained balanced
accuracy maintains its stability even for a large number of features. Which means
that a long-term optimization of the subspace size is not needed to get a good
result, unlike the method based on the selection of k-best features.

Additionally, in cases where random subspace achieves high balanced accu-
racy, the proposed method is also able to achieve a similar level of accuracy, but
for a much smaller number of features. The graphs also show a black, dashed
vertical line, which is the place where the number of features is equal to the root
of all available features. Here our method in each case achieves better results
than random subspace.
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Fig. 1. The dependence of the balanced accuracy on the size of the feature subspace
for various methods based on the selection of features and for the classifiers learned
on the whole set of features (dotted red). Additionally, a black vertical line marks the
number of features corresponding to the square root of all available in the set.

Summarizing the results presented in Table 2, the proposed method shows
the potential for being used to create an ensemble of classifiers based on different
subspaces of features, while the size of these subspaces is not critical and does not
significantly affect the results. Ultimately, the maximum score obtained with this
method is .872 using svc as a base classifier and feature subspace size of 9. This
model is statistically superior to almost any model based on the same subspace
size.

The results averaged over all four base classifiers are presented on the left side
of Table 3. They show that the proposed method always obtained statistically
better results than the other two, with the size of the feature subspace greater
than 9. In the case of size 9, there is no statistical difference between the proposed
one and the method consisting in using 9 best features based on the anova test.
From the obtained results it can be concluded that for the considered problem
of glaucoma progression group classification the best choice of a base classifier
is svc, which is always statistically better or not worse than the other achieving
the highest result of averaged balanced accuracy up to .843.

6 Conclusions

This paper takes up the topic of generating an ensemble of classifiers on the basis
of a high-dimensional dataset. The proposed method tries to solve this problem
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Table 2. The mean value and the standard deviation for all of the considered methods
based of feature selection for four different base classifiers. The results are presented
for different sizes of the used feature subspace. The numbers of the methods for which
the method obtained statistically better results are also shown under the results.
ss size is an abbreviation for the utilized size of subspace.

ss k-best random
subspace

anova
sse

size mlp knn dtc svc mlp knn dtc svc mlp knn dtc svc
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

9 .781 .807 .794 .850 .675 .721 .746 .831 .686 .849 .836 .872
±.062 ±.056 ±.052 ±.057 ±.048 ±.063 ±.065 ±.059 ±.029 ±.064 ±.054 ±.055

5,9 5, 6, 9 5, 9 3, 5–7,
9

— — — 5–7, 9 — 5–7, 9 5–7, 9 1–3, 5–9

18 .668 .742 .782 .833 .736 .723 .814 .853 .786 .847 .832 .868
±.061 ±.065 ±.059 ±.055 ±.048 ±.063 ±.062 ±.060 ±.046 ±.055 .058 ±.055

— — 1 1, 2, 5,
6

1 — 1, 5, 6 1–3, 5,
6, 9

1, 2 1, 2, 5,
6, 9

1–3, 5,
6

1–3, 5,
6, 9

30 .717 .694 .766 .813 .712 .723 .835 .859 .832 .849 .819 .861
±.068 ±.066 ±.058 ±.049 ±.070 ±.073 ±.055 ±.056 ±.052 ±.050 ±.062 ±.060

— — — 1, 2, 5,
6

— — 1, 2, 5,
6

1–3, 5,
6

1, 2, 5,
6

1–3, 5,
6

2, 5, 6 1–3, 5,
6

39 .712 .694 .764 .810 .752 .723 .830 .862 .840 .847 .814 .853
±.063 ±.056 ±.061 ±.059 ±.059 ±.071 ±.060 ±.058 ±.061 ±.056 ±.060 ±.068

— — 2 1, 2, 6 — — 1, 2, 5,
6

1–3, 5,
6

1, 2, 5,
6

1, 2, 5,
6

1, 2 1–3, 5,
6

48 .616 .634 .605 .681 .719 .721 .833 .849 .846 .852 .814 .861
±.043 ±.061 ±.055 ±.066 ±.042 ±.066 ±.054 ±.054 ±.052 ±.052 ±.059 ±.069

— — — 1, 3 1–3 1, 3 1–6 1–6 1–6 1–6 1–6 1–6

with the use of all available features, so as not to reject important information
that is hidden in these features that less differentiating classes. The method is
presented on a demanding dataset, which is above all small but also contains
many features that define each object. This set includes three classes: healthy
controls, glaucoma suspects, and glaucoma patients. The proposed method shows
that, in comparison with other methods based also on feature selection, it can
achieve the highest results, which was confirmed by statistical tests that fur-
ther support the benefits of using non-uniform feature selection. An additional
advantage is that the method is characterized by only small fluctuations in bal-
anced accuracy when changing the size of the feature subspace. This reduces the
need for a time-consuming process to search parameters to find the optimal size.
Additionally, in solutions where the random subspace method turns out to be
effective, the proposed method allows achieving similar results of accuracy with
a much smaller size of the feature subspace, speeding up the learning process.
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Table 3. The mean value and the standard deviation for all of the considered methods
averaged over base classifiers (left side) and of the considered base classifiers averaged
over methods (right side). The results are presented for different sizes of the used
feature subspace. The numbers/letters of the methods for which the method obtained
statistically better results are also shown under the results.
ss size is an abbreviation for the utilized size of subspace.

ss size k-best random
subspace

anova
sse mlp knn dtc svc

(1) (2) (3) (a) (b) (c) (d)
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30 .748 .782 .840 .754 .755 .803 .841
±.034 ±.046 ±.046 .044 ±.050 ±.049 ±.053

— — 1, 2 — — — a, b

39 .745 .792 .839 .768 .755 .803 .841
±.038 ±.050 ±.049 ±.051 ±.050 ±.049 ±.053

— 1 1, 2 — — — a, b

48 .634 .780 .843 .727 .735 .751 .797
±.048 ±.041 ±.047 ±.034 ±.044 ±.042 ±.048

— 1 1, 2 — — — a, b, c

niewicz and P. Zyblewski were supported by the Polish National Science Centre
under the grant No. 2017/27/B/ST6/01325.

References

1. Bellman, R.: Curse of dimensionality. Adaptive control processes: a guided tour.
Princeton, NJ 3, 2 (1961)

2. Beykin, G., Norcia, A.M., Srinivasan, V.J., Dubra, A., Goldberg, J.L.: Discovery
and clinical translation of novel glaucoma biomarkers. Progress in Retinal and Eye
Research p. 100875 (2020)

3. Goecks, J., Jalili, V., Heiser, L.M., Gray, J.W.: How machine learning will trans-
form biomedicine. Cell 181(1), 92–101 (2020)

4. Gupta, K., Thakur, A., Goldbaum, M., Yousefi, S.: Glaucoma precognition: Rec-
ognizing preclinical visual functional signs of glaucoma. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops (June 2020)

5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of machine learning research 3(Mar), 1157–1182 (2003)

6. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence 20(8), 832–844 (1998)

7. Jackowski, K., Jankowski, D., Ksieniewicz, P., Simić, D., Simić, S., Woźniak, M.:
Ensemble classifier systems for headache diagnosis. In: Information Technologies
in Biomedicine, Volume 4, pp. 273–284. Springer (2014)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_10

https://dx.doi.org/10.1007/978-3-030-77967-2_10


Analysis of variance application in construction of classifier ensemble. . . 9
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