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Abstract. In this paper we present an approach for embedding features
for action recognition on raw depth maps. Our approach demonstrates
high potential when amount of training data is small. A convolutional
autoencoder is trained to learn embedded features, encapsulating the
content of single depth maps. Afterwards, multichannel 1D CNN features
are extracted on multivariate time-series of such embedded features to
represent actions on depth map sequences. In the second stream the dy-
namic time warping is used to extract action features on multivariate
streams of statistical features from single depth maps. The output of
the third stream are class-specific action features extracted by TimeDis-
tributed and LSTM layers. The action recognition is achieved by voting
in an ensemble of one-vs-all weak classifiers. We demonstrate experimen-
tally that the proposed algorithm achieves competitive results on UTD-
MHAD dataset and outperforms by a large margin the best algorithms
on 3D Human-Object Interaction Set (SYSU 3DHOI).
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1 Introduction

People have an innate tendency to recognize and even predict other people’s
intentions based on their actions [1] and understanding actions and intentions of
other people is one of most vital social skills we have [2]. In recent years, deep
learning-based algorithms have shown high potential in modeling high-level ab-
stractions from intricate data in many areas such as natural language processing,
speech processing and computer vision [3]. After seminal works [4,5] that showed
potential and effectiveness of deep learning in human activity recognition, many
related studies have been published in this area [6,7]. Most of the present state-of-
the-art methods for action recognition either aims at improving the recognition
performance through modifications of the backbone CNN network, or they inves-
tigate different trade-offs between computational efficiency and performance, c.f.
work done in Amazon [8]. However, while deep learning-based algorithms have
achieved remarkable results, putting this technology into practice can be difficult
in many applications for human activity analysis because training deep models
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requires large datasets and specialized and energy-intensive equipment. In order
to cope with such challenges, massively parallel processing capabilities offered
by photonic architectures were investigated recently to achieve energy-efficient
solutions for real-time action recognition [9].

Several recent methods treat the problem of human action recognition as a
generic classification task and try to transfer best practice from ImageNet clas-
sification with difference that the input are frame sequences instead of single
frames. However, human activities are complex, ambiguous, have different levels
of granularity and differ in realization by individuals, including action dynamics.
Difficulties in recognition involve many factors such as non-rigid shape of hu-
mans, temporal structure, body movement, and human-object interaction, etc.
Due to such factors, environmental complexities and plenty another challenges,
current algorithms have poor performance in comparison to human ability to
recognize human motions and actions [10,11]. As shown in a recent study [12],
humans predict actions using grammar-like structures, and this may be one of
the reasons of not sufficient recognition performance of current end-to-end ap-
proaches that neglect such factors. Moreover, as showed in the discussed study,
losing time-information is a feature that can help grouping actions together in
the right way. One of the important conclusions of this work is that time may
rather confuse than help in recognition and prediction.

3D-based approaches to human action recognition provide higher accuracy
than 2D-based ones. Most of the present approaches to action recognition on
depth maps are based on the skeleton [13,14]. The number of approaches based on
depth maps only, particularly deep learning-based is very limited [11]. One reason
of lower interest on such research direction is that depth data is difficult as well
as the presence of noise in raw depth map sequences. Despite that skeleton-based
methods usually achieve better results than algorithms using only depth maps,
they can fail in many scenarios due to skeleton extraction failure. Moreover, in
scenarios involving interaction with objects, where detection of objects shapes,
6D poses, etc., is essential, skeleton only-based methods can be less useful. Depth
maps acquired from wall-mounted or ceiling-mounted sensors permit accurate
detection of patient mobility activities and their duration in intensive care units
[15] as well as events like human falls [16].

Traditional approaches to activity recognition on depth maps rely on the
handcrafted feature-based representations [17,18]. In contrast to handcrafted
representation-based approaches, in which actions are represented by engineered
features, learning-based algorithms are capable of discovering the most informa-
tive features automatically from raw data. Such deep learning-based methods
permit processing images/videos in their raw forms and thus they are capable
of automating the process of feature extraction and classification. These meth-
ods employ trainable feature extractors and computational models with multiple
layers for action representation and recognition.

In this work we propose an approach that, despite limited amount of data,
permits achieving high classification scores in action recognition on the basis
of raw depth data. To cope with limited and difficult data for learning the ac-
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tion classifier we utilize multi-stream features, which are extracted using DTW,
TimeDistributed and LSTM layers (TD-LSTM), and convolutional autoencoder
followed by a multi-channel, temporal CNN (1D-CNN). In order to improve
model uncertainty the final decision is taken on the basis of several models that
are simpler but more robust to the specifics of noisy data sequences.

2 The Algorithm

A characteristic feature of the proposed approach is that it does not require
skeleton. Thanks to using depth maps only, our algorithm can be employed
on depth data provided by stereo cameras, which can deliver the depth data
for persons being at larger distances to the sensors. It is well known that the
Kinect sensor fails to estimate the skeleton in several scenarios. In the next
Section, we demonstrate experimentally that despite no use of the skeleton,
our algorithm achieves better accuracies than several skeleton-based algorithms.
In the proposed approach, various features are learned in different domains,
like single depth map, time-series of embedded features, time-series warped by
DTW (dynamic time warping), and final decision is taken on the basis of voting
of one-vs-all weak classifiers. In the proposed approach multi-stream features
are processed to extract action features in sequences of depth maps. Action
features are extracted using DTW, TimeDistributed and LSTM layers (TD-
LSTM), and convolutional autoencoder followed by a multi-channel, temporal
CNN (1D-CNN). In consequence, to cope with variability in the observations as
well as limited training data, particularly in order to improve model uncertainty
the final decision is taken on the basis of several models that are simpler but
more robust to the specifics of the noisy data sequences.

The algorithm was evaluated on UTD-MHAD and SYSU 3DHOI datasets.
Since in SYSU 3DHOI dataset the performers are not extracted from depth
maps, we extracted the subjects. For each depth map we determined a window
surrounding the person, which has then been scaled to the required input shape.

In Subsection 2.1 we present features describing the person’s shape in single
depth maps. Afterwards, in Subsection 2.2 we outline features representing mul-
tivariate time-series. Then, in Subsection 2.3 we detail embedding actions using
neural network with TimeDistributed and LSTM layers. In Subsection 2.4 we
discuss multi-class classifiers to construct ensemble. Finally, in Subsection 2.5
we describe the ensemble as well as our algorithm that for each classified action
determines classifiers for voting.

2.1 Embedding Action Features Using CAE and Multi-channel,
Temporal CNN

Embedding Frame-Features. Since current datasets for depth-based action
recognition have insufficient number of sequences to learn deep models with ad-
equate generalization capabilities, we utilize a convolutional autoencoder (CAE)
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operating on single depth maps to extract informative frame-features. Time-
series of such features representing actions in frame sequences are then fed to
multi-channel, temporal CNN that is responsible for extraction embedded fea-
tures. Because the number of frames in the current benchmark datasets for RGB-
D-based action recognition is pretty large, deep feature representations can be
learned. Given an input depth map sequence x = {x1, x2, . . . , xT }, we encode
each depth map xi using a CNN backbone f into a feature f(xi), which results in
a sequence of embedded feature vectors f(x) = {f(x1), f(x2), . . . , f(xT )}. The
dimension of such embedding for a depth map sequence is T ×Df , where Df is
size of the embedded vector.

An autoencoder is a type of neural network that projects a high-dimensional
input into a latent low-dimensional code (encoder), and then carries out a re-
construction of the input using such a latent code (the decoder) [19]. To achieve
this the autoencoder learns a hidden representation for a set of input data, by
learning how to ignore less informative information. This means that the autoen-
coder tries to generate from such a reduced encoding an output representation
that is close as possible to its input. When the hidden representation uses fewer
dimensions than the input, the encoder carries out dimensionality reduction.
An autoencoder consists of an internal (hidden) layer that stores a compressed
representation of the input, as well as an encoder that maps the input into the
code, and a decoder that maps the code to a reconstruction of the original input.
The encoder compresses the input and produces the code, whereas the decoder
reconstructs the input using only this code. Learning to replicate its input at its
output is achieved by learning a reduction side and a reconstructing side. Au-
toencoders are considered as unsupervised learning technique since no explicit
labels are needed to train them. Once such a representation with reduced di-
mensionality is learned, it can then be taken as input to a supervised algorithm
that can then be trained on the basis of a smaller labeled data subset.

We extracted frame-features using encoder/decoder paradigm proposed in
[20]. We implemented a convolutional autoencoder in which the input depth
map is first transformed into a lower dimensional representation through suc-
cessive convolution operations and rectified linear unit (ReLU) activations and
afterwards expanded back to its original size using deconvolution operations.
The mean squared error, which measures how close the reconstructed input is to
the original input has been used as the loss function in the unsupervised learn-
ing. The network has been trained using Adam optimizer with learning rate set
to 0.001. After training, the decoding layers of the network were excluded from
the convolutional autoencoder. The network trained in such a way has been
used to extract low dimensional frame-features. The depth maps acquired by
the sensor were projected two 2D orthogonal Cartesian planes to represent top
and side view of the maps. On training subsets we trained a single CAE for all
classes. The convolutional autoencoder has been trained on depth maps of size
3 × 64 × 64. The CAE network architecture is shown in Fig. 1. The network
consists of two encoding layers and two associated decoding layers. The size of
depth map embedding is equal to 100.
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Fig. 1. Architecture of convolutional autoencoder.

Features of Time-series. Embedding Action Features Using Multi-
channel, Temporal CNN. On the basis of depth map sequences representing
human actions the CAE that was discussed above produces multivariate time-
series. Having on regard that depth map sequences differ in length, such vari-
able length time-series were interpolated to a common length. In multi-channel,
temporal CNNs (MC CNNs) the 1D convolutions are applied in the temporal
domain. In this work, the time-series (TS) of frame-features that were extracted
by the CAE have been used to train a multi-channel 1D CNN. The number
of channels is equal to 100, see Fig. 1. The multivariate time-series were inter-
polated to the length equal to 64. Cubic-spline algorithm has been utilized to
interpolate the TS to such a common length.

The first layer of the MC CNN is a filter (feature detector) operating in
time domain. Having on regard that the amount of the training data in current
datasets for depth-based action recognition is quite small, the neural network
consists of two convolutional layers, each with 8× 1 filter, 4× 1 and 2× 1 max
pools, and strides set to 1 with no padding, respectively, see Fig. 2. The number of
neurons in the dense layer is equal to 100. The number of output neurons is equal
to number of the classes. Nesterov Accelerated Gradient (Nesterov Momentum)
has been used to train the network, in 1000 iterations, with momentum set to
0.9, dropout equal to 0.5, learning rate equal to 0.001, and L1 parameter set to
0.001. After the training, the output of the dense layer has been used to embed
the features, which are referred to as 1D-CNN features.

Fig. 2. Flowchart of the multi-channel CNN for multivariate time-series modeling.
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2.2 DTW-based Action Features

Frame-Feature Vector. For each depth frame we calculate also handcrafted
features describing the person’s shape. Similarly to learned frame-features that
have been described in Subsection 2.1, we project the acquired depth maps
onto three orthogonal Cartesian views to capture the 3D shape and motion
information of human actions. Only pixels representing the extracted person in
depth maps are utilized for calculating the features. The following vectors of
frame-features were calculated on such depth maps:

1. correlation (xy, xz and zy axes),

2. x−coordinate for which the corresponding depth value represents the closest
pixel to the camera, y−coordinate for which the corresponding depth value
represents the closest pixel to the camera.

This means that the person shape in each depth map is described by 3 and
2 features, respectively, depending on the chosen feature set. A human action
represented by a number of depth maps is described by a multivariate time-series
of length equal to number of frames and dimension 2 or 3 in dependence on the
chosen feature set.

DTW-based Features. Dynamic time warping (DTW) is an effective algo-
rithm for measuring similarity between two temporal sequences, which may vary
in speed and length. It calculates an optimal match between two given sequences,
e.g. time series [21]. In time-series classification one of the most effective algo-
rithms is 1-NN-DTW, which is a special k-nearest neighbor classifier with k = 1
and a dynamic time warping for distance measurement. In DTW the sequences
are warped non-linearly in time dimension to determine the best match between
two samples such that when the same pattern exists in both sequences, the
distance is smaller. Let us denote D(i, j) as the DTW distance between sub-
sequences x[1 : j] and y[1 : j]. Then the DTW distance between x and y can be
determined by the dynamic programming algorithm according to the following
iterative equation:

D(i, j) = min{D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)}+ |xi, yj | (1)

The time complexity of calculation of DTW distance is O(nm), where n and m
are the length of x and y, respectively.

We calculate the DTW distance between all depth maps sequences in the
training subset. For each depth map sequence the DTW distances between mul-
tivariate time-series were calculated for the feature sets 1 and 2. The DTW
distances between a given sequence and all remaining sequences from the train-
ing set were then used as features. This means that the resulting feature vector
has size nt × 2, where nt denotes the number of training depth map sequences.
The DTW distances have been calculated using library [22].
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2.3 Embedding Actions Using Neural Network Consisting of
TimeDistributed and LSTM Layers

The neural network operates on depth map sequences, where each sample has a
64×64 data format, across 30 time-steps. The frame batches of size 30 were con-
structed by sampling with replacement. In first three layers we employ TimeDis-
tributed wrapper to apply the same Conv2D layer to each of the 30 time-steps,
independently. The first TimeDistributed layer wraps 32 convolutional filters of
size 5× 5, with padding set to ’same’. The second TimeDistributed layer wraps
32 convolutional filters of size 5× 5. The third TimeDistributed layer wraps the
max pooling layer in window of size 4 × 4. Afterwards, TimeDistributed layer
wraps the flattening layer. Next, two TimeDistributed layers wrap dense layers
with 256 and 128 neurons, respectively. At this stage the output shape is equal
to (None, 30, 128). Finally, we utilize 64 LSTMs and then 64 global average
pooling filters, see Fig. 3. The resulting features are called TD-LSTM. The neu-
ral networks have been trained using adadelta with learning rate set to 0.001.
The loss function was categorical crossentropy and the models were trained as
one-vs-all. The motivation of choosing such approach is due to redundant depth
maps, i.e. the same human poses in different actions.

2.4 Multi-class Classifiers to Construct Ensemble

The features described in Subsections 2.1 –2.3 were used to train multi-class
classifiers with softmax encoding, see Fig. 3. Having on regard that for each
class an action-specific classifier to extract depth map features has been trained,
the number of such classifiers is equal to the number of actions to be recognized.
The convolutional autoencoder operating on sequences of depth maps delivers
time-series of CAE-based frame-features, on which we determine 1D-CNN fea-
tures (Subsect. 2.1). Similarly to features mentioned above, the DTW-based
features (Subsect. 2.2) are also common features for all classes. The base net-
works of TimeDistributed-LSTM network (Subsect. 2.3) operating on sequences
of depth maps deliver class-specific action features. The discussed TD-LSTM
features are of size 64, see Fig. 3, and they are then concatenated with action
features mentioned above. The multi-class classifiers delivering at the outputs the
softmax-encoded class probability distributions are finally used in an ensemble
responsible for classification of actions.

2.5 Ensemble of Classifiers

Figure 3 depicts the ensemble for action classification. The final decision is cal-
culated on the basis of voting of the classifiers. In essence, the final decision is
taken using an ensemble of individual models. One advantage of this approach
is its interpretability. Because each class is expressed by one classifier only, it
is possible to gain knowledge about the discriminative power of individual clas-
sifiers. As we can see, for each class the action features that are common for
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Fig. 3. Ensemble operating on features extracted by DTW, features embedded by
CAE and 1D-CNN, which are then concatenated with class-specific features that are
embedded by TimeDistributed and LSTM neural networks.

all actions are concatenated with class-specific features, and then used to train
multi-class classifiers.

Having on regard that not all classifiers do not contribute equally in decision
making we selected the classifiers individually for each testing example. During
the classification of each action we initially perform a classification using all
classifiers trained in advance and additionally we employ a k-NN classifier. The k-
NN classifiers operate only on TD-LSTM features, whereas the logistic regression
(LR) classifiers operate on the concatenated features. We consider each class-
specific LR classifier with corresponding k-NN with k set to three and inspect
their decisions. If decisions of both classifiers are the same then the LR classifier
will take in the final voting about the action category. In a case when less than
three LR classifiers were selected for the final voting then all LR classifiers attend
in the final voting. The discussed algorithm has been compared with an algorithm
based on differential evolution (DE), which is responsible for determining the
weights for the soft voting.

3 Experimental Results

The proposed algorithm has been evaluated on two publicly available benchmark
datasets: UTD-MHAD dataset [23] and SYSU 3D Human-Object Interaction
Set (SYSU 3DHOI) [24]. The datasets were selected having on regard their
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frequent use by action recognition community in the evaluations and algorithm
comparisons.

The UTD-MHAD dataset contains 27 different actions performed by eight
subjects (four females and four males). All actions were performed in an indoor
environment with a fixed background. Each performer repeated each action four
times. The dataset consists of 861 data sequences and it was acquired using the
Kinect sensor and a wearable inertial sensor.

The SYSU 3D Human-Object Interaction (3DHOI) dataset was recorded by
the Kinect sensor and comprises 480 RGB-D sequences from 12 action classes,
including calling with cell phone, playing with a cell phone, pouring, drinking,
wearing backpack, packing a backpack, sitting on a chair, moving a chair, taking
something from a wallet, taking out a wallet, mopping and sweeping. Actions
were performed by 40 subjects. Each action involves a kind of human-object
interactions. Some motion actions are quite similar at the beginning since the
subjects operate or interact with the same objects, or actions start with the
same sub-action, such as standing still. The above mentioned issues make this
dataset challenging following the evaluation setting in [25], in which depth map
sequences with the first 20 subjects were used for training and the rest for testing.

Table 1 presents experimental results that were achieved on the UTD-MHAD
dataset. As we can observe, the ensemble consisting of weak classifiers operating
on only one-vs-all features, which were embedded using the LSTMs achieves
relatively low accuracy in comparison to remaining results, i.e. the recognition
performances in row #3 are lower than remaining performances. The DTW
features if used alone or when combined with the features embedded by the
LSTMs permit achieving better results in comparison to results presented in row
#3. The features embedded by CAE and 1D-CNN, see results in first row, permit
to achieve better results in comparison to results, which we discussed above.
Concatenating the above mentioned features with the features embedded by
LSTMs leads to slightly better results, cf. results in the first and fourth row. The
best results were achieved by the ensemble consisting of weak classifiers operating
on one-vs-all features (LSTM-based), concatenated with features embedded by
CAE and 1D-CNN, and concatenated with DTW features. Although the features

Table 1. Recognition performance on UTD-MHAD dataset.

common one-vs-all Accuracy Precision Recall F1-score

1D-CNN - 0.8558 0.8593 0.8558 0.8474

DTW - 0.7930 0.8096 0.7930 0.7919

- TD-LSTM 0.6419 0.6833 0.6419 0.6322

1D-CNN TD-LSTM 0.8581 0.8649 0.8581 0.8504

DTW TD-LSTM 0.8256 0.8455 0.8256 0.8242

DTW 1D-CNN TD-LSTM 0.8814 0.8844 0.8814 0.8747
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embedded by LSTMs achieve relatively poor results, when combined with the
other features they improve the recognition accuracy significantly. The discussed
results were achieved by the logistic regression classifiers. They were obtained
on the basis of soft voting in the ensemble, which gave slightly better results in
comparison to hard voting. Logistic regression returns well calibrated predictions
by default as it directly optimizes the Log loss and therefore it has been chosen
to built the ensemble. Figure 4 depicts the confusion matrix for the best results
achieved on the discussed dataset.

Fig. 4. Confusion matrix on UTD-MHAD dataset.

Table 2 presents experimental results that were achieved using feature selec-
tion. As we can notice, our feature selection algorithm permits achieving better
results in comparison to results shown in Tab. 1. The Differential Evolution
allows achieving the best classification performance.

Table 2. Recognition performance on UTD-MHAD dataset with selected classifiers
for voting.

voting using selected classifiers differential evolution(DE)

common AccuracyPrecision Recall F1-score AccuracyPrecision Recall F1-score

- 0.6535 0.6992 0.6535 0.6426 0.6721 0.7112 0.6721 0.6601

TD-LSTM 0.8628 0.8688 0.8628 0.8548 0.8581 0.8649 0.8581 0.8504

DTW 0.8326 0.8557 0.8326 0.8304 0.8302 0.8497 0.8302 0.8279

DTW TD-LSTM 0.8860 0.8883 0.8860 0.8784 0.8907 0.8919 0.8907 0.8833
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Table 3 presents the recognition performance of the proposed method com-
pared with previous methods. Most of current methods for action recognition
on UTD-MHAD dataset are based on skeleton data. Methods based on skele-
ton modality usually achieve better results in comparison to methods relying on
depth data only. Despite the fact that our method is based on depth modality,
we evoked the recent skeleton-based methods to show that it outperforms many
of them.

Table 3. Comparative recognition performance of the proposed method with recent
algorithms on MHAD dataset.

Method Modality Accuracy [%]
JTM [26] skeleton 85.81
SOS [27] skeleton 86.97
Kinect & inertial [23] skeleton 79.10
Struct. SzDDI [28] skeleton 89.04
WHDMMs+ConvNets [29][28] depth 73.95
Proposed method depth 89.07

Table 4 illustrates results that were achieved on the 3DHOI dataset. As we
can observe, the ensemble consisting of weak classifiers operating on only one-vs-
all features, which were embedded using the LSTMs achieves comparable results
with results that were obtained using DTW features, and whose performances
are lower in comparison to remaining results. Combining DTW features with
features embedded by LSTMs leads to better results in comparison to results
achieved using only features embedded by LSTMs, compare results in row #5
with results in row #3. The features embedded by CAE and 1D-CNN, see re-
sults in first row, permit to achieve better results in comparison to results, which
we discussed above. Combining features embedded by CAE and 1D-CNN with
features embedded by LSTMs leads to further improvement of the recognition
performance, see results in row #4. The best results were achieved by the ensem-
ble consisting of weak classifiers operating on one-vs-all features (LSTM-based)
concatenated with features embedded by CAE and 1D-CNN, and concatenated
with DTW features. The discussed results were achieved by the logistic regression
classifiers. They were obtained on the basis of soft voting in the ensemble, which
gave slightly better results in comparison to hard voting. Figure 5 illustrates the
confusion matrix.

Table 5 presents results that were obtained using feature selection. As we
can observe, both our algorithm and DE improve results presented in Tab. 4.
Results achieved by our algorithm are superior in comparison to results achieved
by differential evolution.

Table 6 presents results achieved by recent algorithms on 3DHOI dataset in
comparison to results achieved by our algorithm. As we can observe, our algo-
rithm achieves the best results on this challenging dataset. It is worth noting that
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Table 4. Recognition performance on SYSU 3DHOI dataset.

common one-vs-all Accuracy Precision Recall F1-score

1D-CNN - 0.8114 0.8197 0.8114 0.8104

DTW - 0.4781 0.4889 0.4781 0.4546

- TD-LSTM 0.4781 0.4800 0.4781 0.4627

1D-CNN TD-LSTM 0.8553 0.8591 0.8553 0.8550

DTW TD-LSTM 0.5044 0.5318 0.5044 0.4872

DTW 1D-CNN TD-LSTM 0.8947 0.8953 0.8947 0.8941

Fig. 5. Confusion matrix on 3DHOI dataset.

Table 5. Recognition performance on 3D HOI dataset with selected classifiers for
voting.

voting using selected classifiers differential evolution(DE)

common AccuracyPrecision Recall F1-score AccuracyPrecision Recall F1-score

- 0.5482 0.5521 0.5482 0.5318 0.5263 0.5325 0.5263 0.5140

1D-CNN 0.8640 0.8709 0.8640 0.8638 0.8684 0.8743 0.8684 0.8688

DTW 0.5351 0.5619 0.5351 0.5151 0.5351 0.5602 0.5351 0.5172

DTW 1D-CNN 0.9035 0.9033 0.9035 0.9024 0.8904 0.8909 0.8904 0.8895

method [30] relies on depth and skeleton modalities, whereas [25] additionally
utilizes RGB images jointly with the skeleton data.

4 Conclusions

In this paper we presented an approach to encapsulate the content of raw depth
maps sequences with human actions. The algorithm has been designed to recog-
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Table 6. Comparative recognition performance of the proposed method with recent
algorithms on 3DHOI dataset.

Method Modality Acc. [%]
MSRNN [25] depth+RGB+skel. 79.58
PTS [30] depth+skeleton 87.92
Proposed method depth 90.35

nize actions in scenarios when amount of training data is small. It achieves con-
siderable gain in action recognition accuracy on challenging 3D Human-Object
Interaction Set (SYSU 3DHOI). On UTD-MHAD dataset it outperforms recent
methods on raw depth maps and outperforms most recent methods on skeleton
data. The novelty of the proposed method lies in multi-stream features, which
are extracted using dynamic time warping, TimeDistributed and LSTM layers,
and convolutional autoencoder followed by a multi-channel, temporal CNN. The
main methodological results show that despite data scarcity the proposed ap-
proach builds classifiers that are able to cope with difficult data and outperforms
all the other methods in terms of accuracy.
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