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Abstract. We propose an approach to minimum-state deterministic �-
nite automaton (DFA) inductive synthesis that is based on using sat-
is�ability modulo theories (SMT) solvers. To that end, we explain how
DFAs and their response to input samples can be encoded as logic for-
mulas with integer variables, equations, and uninterpreted functions. An
SMT solver is then tasked with �nding an assignment for such a formula,
from which we can extract the automaton of a required size. We provide
an implementation of this approach, which we use to conduct experi-
ments on a series of benchmarks. The results showed that our method
outperforms in terms of CPU time other SAT and SMT approaches and
other exact algorithms on prepared benchmarks.

Keywords: Grammatical inference · Automata identi�cation · Satis�a-
bility modulo theories · Exact search.

1 Introduction

In his notable paper [7] Gold proved that the following problem is NP-complete.
INSTANCE: Finite alphabet Σ, two �nite subsets S+, S− ⊆ Σ∗, integer K > 0.
QUESTION: Is there a K-state deterministic �nite automaton (DFA) A that
recognizes a language L ⊆ Σ∗ such that S+ ⊆ L and S− ⊆ Σ∗ − L ?
This problem is important both from theoretical and practical points of view.
In the theory of grammatical inference [11], we can pose interesting questions.
For instance: What if instead of a �nite state automaton, a regular expression
[1] or a context-free grammar is required [19, 13]? What if we are given all words
up to a certain length [23]? What if we are given in�nitely many words [8]?
The problem of �nding the smallest deterministic automaton (the optimization
version of the above given instance) is also crucial in practice, since searching
for a small acceptor compatible with examples and counter-examples is generally
a good idea in grammatical inference applications [25].
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The purpose of the present proposal is threefold. The �rst objective is to
devise an algorithm for the smallest deterministic automaton problem. It entails
preparing satis�ability modulo theories (SMT) logical formula before starting the
searching process. The second objective is to implement this encoding by means
of an available SMT solver to get our approach working. The third objective
is to investigate to what extent the power of SMT solvers makes it possible to
tackle the regular inference problem for large-size instances and to compare our
approach with existing ones. Particularly, we will refer to the following classical
and new exact DFA identi�cation methods: Bica [17], Exbar [15], Zakirzyanov
et al's SAT encoding [26], and Smetsers et al's SMT encoding [21]. In view of
the possibility of future comparisons with other methods, the Python implemen-
tation of our method is given via GitHub.4

This paper is organized into �ve sections. In section 2, we present neces-
sary de�nitions and facts originated from automata, formal languages, and con-
straint programming. Section 3 describes our inference algorithm based on solv-
ing an SMT formula. Section 4 shows experimental results of our approach.
Concluding comments are made in Section 5.

2 Preliminaries

We assume the reader to be familiar with basic regular language and automata
theory, e.g., from Hopcroft et al. textbook [12], so that we introduce only some
notations and notions used later in the paper.

2.1 Words and Languages

An alphabet is a �nite, non-empty set of symbols. We use the symbol Σ for
an alphabet. A word is a �nite sequence of symbols chosen from an alphabet.
For a word w, we denote by |w| the length of w. The empty word ε is the
word with zero occurrences of symbols. Let x and y be words. Then xy denotes
the catenation of x and y, that is, the word formed by making a copy of x and
following it by a copy of y. As usual, Σ∗ denotes the set of words over Σ. A word
w is called a pre�x of a word u if there is a word x such that u = wx. It is a
proper pre�x if x 6= ε. A set of words all of which are chosen from some Σ∗,
where Σ is a particular alphabet, is called a language.

2.2 Deterministic Finite Automata

A deterministic �nite automaton (DFA) is a �ve-tuple A = (Σ,Q, s, F, δ) where
Σ is an alphabet, Q is a �nite set of states, s ∈ Q is the initial state, F ⊆ Q is
a set of �nal states, and δ is a relation from Q×Σ to Q such that ((q, a), r1) ∈ δ
and ((q, a), r2) ∈ δ implies r1 = r2 for every pair (q, a) ∈ Q×Σ.

Members of δ are called transitions. A transition ((q, a), r) ∈ δ with q, r ∈ Q
and a ∈ Σ, is usually written as δ(q, a) = r. Relation δ speci�es the moves: the

4 https://github.com/wieczorekw/wieczorekw.github.io/tree/master/SMT4DFA
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meaning of δ(q, a) = r is that automaton A in the current state q reads a and
moves to next state r. If for given q and a there is no such r that ((q, a), r) ∈ δ,
simply saying δ(q, a) is unde�ned, the automaton stops and we can assume it
enters the rejecting state. Moving into a state that is not �nal is also regarded
as rejecting but it may be only an intermediate state.

It is convenient to de�ne δ̄ as a relation from Q×Σ∗ to Q by the following
recursion: ((q, ya), r) ∈ δ̄ if ((q, y), p) ∈ δ̄ and ((p, a), r) ∈ δ, where a ∈ Σ,
y ∈ Σ∗, and requiring ((t, ε), t) ∈ δ̄ for every state t ∈ Q. The language accepted
by automaton A is then

L(A) = {x ∈ Σ∗ | there is q ∈ F such that ((s, x), q) ∈ δ̄}.

Two automata are equivalent if they accept the same language.

A sample S will be an ordered pair S = (S+, S−) where S+, S− are �nite
languages with an empty intersection (have no common word). S+ will be called
the positive part of S (examples), and S− the negative part of S (counter-
examples).

Let S be a sample over an alphabet Σ, P be the set of all pre�xes of S+∪S−,
and let A = (Σ,Q, s, F, δ) be a DFA. Let f : P → Q be bijective. For simplicity of
notation, we will write qp instead of f(p) = q for q ∈ Q and p ∈ P . An automaton
A is an augmented pre�x tree acceptor (APTA) if:

� s = qε,

� F = {qp | p ∈ S+},
� δ = {((qp, a), qr) | p, r ∈ P such that r = pa},
� {F,R,N} is a partition of Q, where F is the set of �nal states, R = {qp | p ∈
S−} is the set of rejecting states, and N = Q− (F ∪R) is the set of neutral
states.

Clearly, L(A) = S+ and transitions (as arcs) along with states (as vertices)
form a tree with the qε root, whose edges are labelled by symbols taken from
an alphabet Σ (see Figure 1 as an example).

From now on, if the states of a DFA A = (Σ,Q, s, F, δ) have been partitioned
into �nal, F , rejecting, R, and neutral, N , states, then we will say that x ∈ Σ∗
is: (a) recognized by accepting (or simply accepted) if there is q ∈ F such that
((s, x), q) ∈ δ̄, (b) recognized by rejecting if there is q ∈ R such that ((s, x), q) ∈ δ̄,
and (c) rejected if it is not accepted. So, when we pass an automaton according
with consecutive symbols (the letters of a word) and stop after reading the last
symbol at a neutral state, then the word is rejected but is not recognized by
rejecting.
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Fig. 1. An APTA accepting ab, aab and `rejecting' a, aa, ba. The set of its states, Q,
is partitioned into F = {qab, qaab}, R = {qa, qaa, qba}, N = {qε, qb}.

Many exact and inexact DFA learning algorithms work starting from building
an APTA and then folding it up into a smaller hypothesis by merging various
pairs of compatible nodes. The merging operation takes two states, q1 and q2, and
replaces them with a single state, q3, in such a way that every state incoming to q1
or q2 now incomes to q3 and every state outcoming from q1 or q2 now outcomes
from q3. It should be noted that the e�ect of the merge is that a DFA will
possibly lose the determinism property through this. Therefore, not all merges
will be admitted.

2.3 Satis�ability Modulo Theories

In computer science and mathematical logic, the satis�ability modulo theories
(SMT) problem is a decision problem for logical formulas with respect to combi-
nations of background theories�possibly other than Boolean algebra�expressed
in classical �rst-order logic with equality [14]. Examples of theories typically used
in computer science are the theory of real numbers, the theory of integers, the
theory of uninterpreted functions, and the theories of various data structures
such as lists, arrays, bit vectors and so on. Therefore, SMT can be thought of as
a form of the constraint satisfaction problem.

Translating a problem into an SMT formula is often the �rst choice when we
are dealing with applications in �elds that require determining the satis�ability
of formulas in more expressive logics than SAT. The concrete syntax of the SMT
standard is very complex. The description of SMT-LIB language [2] is a good
reference as a basic background. There are a lot of research publications on the
construction of SMT solvers. The reader is referred to an introductory textbook
on the topic [14]. Decision procedures for logical formulas with respect to equa-
tions and uninterpreted functions use the results of Tarjan [22] and Dawney et
al. [5]. Linear arithmetic, on the other hand, may be solved with recipes given by
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Dutertre and Moura [6]. In our implementation, Z3 library [16] was used, which
is released under MIT License and available through a web page.5

3 Proposed Encoding for the Induction of Deterministic

Automata

Our translation reduces DFA identi�cation into an SMT instance. Suppose we
are given a sample S with nonempty S+ and nonempty S− over an alphabet
Σ, and a nonnegative integer K. We want to �nd a (K + 1)-state DFA A =
(Σ, {q0, q1, . . . , qK}, s, F, δ) such that every w ∈ S+ is recognized by accepting
and every w ∈ S− is recognized by rejecting.

3.1 Direct Encoding

Let P be the set of all pre�xes of S+ ∪S−. The integer variables will be xp ∈ Z.
Assume further that {fa}a∈Σ is a family of uninterpreted functions Z× Z→ B
indexed by Σ and g : Z→ B is also an uninterpreted function. The interpretation
of these variables and functions is as follows. The value of xp is the index of
a state which is reached after passing from the initial state, s, through transitions
determined by consecutive symbols of a pre�x p in a resultant automaton A. The
value of fa(i, j) is > if ((qi, a), qj) ∈ δ, fa(i, j) = ⊥ otherwise. Finally, we let
g(i) = > if qi ∈ F and ⊥ if not.

Let us now see how to describe the constraints of the relationship between
an automaton A and a sample S in terms of SMT.

1. Naturally, the number of states is already �xed up

0 ≤ xp ≤ K, for p ∈ P.

2. Every example has to be recognized by accepting

g(xp) = >, for p ∈ S+.

3. Every counter-example has to be recognized by rejecting

g(xp) = ⊥, for p ∈ S−.

4. Finally, for every pair of pre�xes (p, pa) (a ∈ Σ, p, pa ∈ P ), there has to be
exactly one transition from qxp

to qxpa
on a symbol a. We can guarantee this

by requiring
fa(xp, xpa) = >,

fa(xp, i) =⇒ xpa = i, for 0 ≤ i ≤ K.

The conjunction of above-mentioned clauses makes the desired SMT formula.

5 https://github.com/Z3Prover/z3
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Theorem 1. The above encoding of (1)-(4) is proper, i.e., if there exists a DFA
with at most K + 1 states that matches a given sample S, then a DFA A de-
termined by variables x and functions f , g accepts all examples and rejects all
counter-examples.

Outline of the proof. First note that if there exists a DFA with at most K+1
states that matches a given sample S, then the SMT formula has to be satis�able.
Let A be a DFA determined by x, f , and g. Take any u ∈ S+, u = a0a1 · · · am−1,
m ≥ 0. Because of (4) there is exactly one path qε, qa0 , qa0a1 , . . ., qu in A that
is traversed on reading the sequence of symbols a0, a1, · · · , am−1. On account of
(2) the last state qu ∈ F . So u is recognized by accepting. Now, take any w ∈ S−,
w = a0a1 · · · am−1, m ≥ 0. Similarly, based on (4) and (3), we can conclude that
w is recognized by rejecting. Naturally, s = qε. Because every xp is not bigger
than K, the automaton A has at most K + 1 states.

3.2 Symmetry Breaking

So as to improve the speed of search process we follow the symmetry-breaking
advice [4]. In case there is no k-state DFA for a given sample S, the corresponding
(unsatis�able) SMT instance will solve the problem many times: once for each
permutation of the state indices. Therefore, we build an APTA A for S, and
then construct the graph G whose vertices are the states of A and there are
edges between vertices that can be merged (i.e., xp and xr can get the same
state index). There are two types of constraints which must be respected during
graph building:

� Consistency constraints (on pairs of states): qp ∈ F cannot be merged with
qr ∈ R.

� Determinization constraints (on couple of pairs of states): if δ(qp1 , a) = qr1
and δ(qp2 , a) = qr2 , then merging qp1 with qp2 implies that qr1 and qr2 must
also be merged in order to produce a deterministic automaton.

Notice that in any valid solution to an SMT instance, all vertices in an in-
dependent set6 in G must get a di�erent index. So, we �x vertices in a large
independent set I to numbers (states indices) in a preprocessing step. For �nd-
ing an independent set a greedy algorithm analyzed in [9] is used. Obviously, if
there is an independent set of size n in G (|I| = n), then there is no k-state DFA
for S with k < n.

3.3 Iterative SMT Solving

The translation of DFA identi�cation into SMT (direct encoding with symmetry
breaking predicates) uses a �xed set of states. To prove that the minimal size of
a DFA equals K, we have to show that the translation with K states is satis�able

6 The independent set problem and the well-known clique problem are complementary:
a clique in G is an independent set in the complement graph of G and vice versa.
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and that the translation with K − 1 states is unsatis�able. Algorithm 1 is used
to determine the minimal size.

Algorithm 1 Determine minimum-state DFA for a given sample

function MinDFA(S+, S−, Σ)
K ← |I| as shown in Section 3.2
loop

construct an SMT formula as shown in Sections 3.1 and 3.2
solve the formula (we use Z3)
if the formula is satis�able then

decode a DFA using variables x and function g
return the DFA

else

K ← K + 1
end if

end loop

end function

4 Experimental Results

In this section, we describe some experiments comparing the performance of our
approach implemented7 in Python (SMT) with Pena and Oliveira's C imple-
mentation8 of backtrack search (BICA), our e�ective implementation9 of Lang's
algorithm in C++ (EXBAR), Zakirzyanov et al's translation-to-SAT approach
implemented10 in Java (SAT), and Smetsers et al's translation-to-SMT approach
implemented11 in Python (Z3GI), when positive and negative words are given.
For these experiments, we used a set of 70 samples based on randomly generated
regular expressions.

4.1 Brief Description of Other Approaches

The Bica [17] algorithm incrementally builds a hypothesis DFA by examining
the nodes in the APTA in breadth-�rst order. For each of these checks, the
algorithm decides whether it is possible to identify that node with one node in
the hypothesis, or whether the hypothesis DFA needs to be changed. In order
to do this e�ciently, it applies advanced search techniques which general idea
is based on con�ict diagnosis. First, the full set of restrictions is created and
entered into a constraint database. This database of constraints is then used to
keep a set of constraints that de�ne the solution. When a con�ict is reached,

7 https://github.com/wieczorekw/wieczorekw.github.io/tree/master/SMT4DFA
8 We have obtained Linux executable �le from the authors.
9 https://github.com/lazarow/exbar

10 https://github.com/ctlab/DFA-Inductor
11 https://gitlab.science.ru.nl/rick/z3gi/tree/lata
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the algorithm diagnoses which earlier decision is the cause of the con�ict, and
backtracks all the way to the point where that bad decision was taken.

The Exbar [15] algorithm also starts with building the APTA. In the begin-
ning, all nodes in the APTA are blue (candidates for merging), except for the
red (nodes already in a hypothesis) root. Then, the algorithm considers the blue
nodes that are adjacent to the red nodes and for a selected candidate decides
whether to accept it (changing its color into red) or merge with another previ-
ously accepted node. The order in which the blue nodes are picked and merged
matters, hence Exbar �rst chooses nodes that can be disposed of in as few ways
as possible. The best kind of blue node is the node that cannot be merged with
any red node. The next best kind is a node that has only one possible merge and
so forth. Additionally, the algorithm tries all possible merges in order to avoid
latent con�icts. Exbar searches a deterministic automaton that has at most N
states (the red nodes limit) and is consistent with all positive and negative ex-
amples. If DFA is not found, then the maximum number of the red nodes is
increased.

The headmost idea of SAT encoding comes from [10], where the authors based
on transformation from DFA identi�cation into graph coloring proposed in [3].
In another work [26] BFS-based symmetry breaking predicates were proposed,
instead of original max-clique predicates, which improved the translation-to-SAT
technique what was demonstrated with the experiments on randomly generated
input data. The core idea is as follows. Consider a graph H, the complement of
a graph G described in Section 3.2. Finding minimum-size DFA is equivalent to
a graph coloring (i.e., such an assignment of labels traditionally called `colors'
to the vertices of a graph H that no two adjacent vertices share the same color)
with a minimum number of colors. The graph coloring constraints, in turn, can
be e�ciently encoded into SAT [24].

Suppose that A = (Σ,Q = {0, 1, . . . ,K−1}, s = 0, F, δ) is a target automaton
and P is the set of all pre�xes of S+ ∪ S−. An SMT encoding proposed in [21]
uses four functions: δ : Q×Σ → Q, m : P → Q, λA : Q→ B, λT : S+ ∪ S− → B,
and the following �ve constraints:

m(ε) = 0,

x ∈ S+ ⇐⇒ λT (x) = >,
∀xa ∈ P : x ∈ Σ∗, a ∈ Σ δ(m(x), a) = m(xa),

∀x ∈ S+ ∪ S− λA(m(x)) = λT (x),

∀q ∈ Q ∀a ∈ Σ
∨
r∈Q

δ(q, a) = r.

The encoding has been also implemented using Z3Py, the Python front-end of
an e�cient SMT solver Z3. The main di�erence between this and our proposals
lies in the way they determine state indices and ensure determinism. Smetsers
et al. [21] used for these purposes functions m and δ, we used integer variables x
and the family of functions f along with the collection of implications. Besides,
our δ (decoded from family f) is a relation, while their δ is a surjection, which
always de�nes a completely speci�ed automaton.
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4.2 Benchmarks

As far as we know all common benchmarks are too hard to be solved by exact
algorithms without some heuristic non-exact steps. Thus, our own algorithm
was used for generating problem instances. This algorithm builds a set of words
with the following parameters: size N of a regular expression to be generated,
alphabet size A, the number |S| of words actually generated and their minimum,
dmin, and maximum, dmax, lengths. The algorithm is arranged as follows. First,
using Algorithm 2 construct a random regular expression E.

Algorithm 2 Generate random expression

function Gen(N , star_parent ← False by default)
if N ≤ 1 then

return randomly chosen symbol from Σ
else

if star_parent then
operator ← choose randomly: concatenation or alternation

else

operator ← choose randomly: concat., alt. or repetition
end if

if operator is repetition then
return Gen(N − 1, True)∗

else if operator is alternation then
r ← choose a random integer from range [1,max(1, N − 2)]
return (Gen(r) | Gen(N − r − 1))

else

r ← choose a random integer from range [1,max(1, N − 2)]
return (Gen(r) Gen(N − r − 1))

end if

end if

end function

Next, obtain corresponding minimum-state DFA M . Then, as long as a sample
S is not symmetrically structurally complete12 with respect to M repeat the
following steps: (a) using the Xeger library for generating random strings from
a regular expression, get two words u and w; (b) truncate as few symbols from the
end of w as possible in order to achieve a counter-example w̄, if it has succeeded,
add u to S+ and w̄ to S−. Finally, accept S = (S+, S−) as a valid sample if it is
not too small, too large or highly imbalanced.

In this manner we produced 70 sets with: N ∈ [30, 80], A ∈ {2, 5, 6, 7, 8},
|S| ∈ [60, 3000], dmin = 0, and dmax = 850. For the purpose of diversi�cation
samples' structure, 10 of them (those with A = 6, and N = 26, 27, . . . , 35) were
generated with Σ in Algorithm 2 extended by one or two randomly generated

12 Refer to Chapter 6 of [11] for the formal de�nition of this concept.
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10 W. Wieczorek et al.

words of length between 10 and 20. The �le names with samples13 have the form
`aAwordsN .txt'.

4.3 Performance Comparison

In all experiments, we used Intel Xeon W-2135 CPU, 3.7GHz processor, under
Ubuntu 20.04 LTS operating system with 32 GB RAM. The time limit (TL) was
set to 3600 s. The results are listed in Table 1.

Table 1: Execution times of exact solving DFA identi�cation in seconds.
The sign `-' means that the execution was impossible.

Problem SAT EXBAR BICA Z3GI SMT

a2words30 7.01 0.01 0.41 1.71 2.69
a2words36 19.91 2.98 2858.36 201.53 29.68
a2words40 22.99 3.70 - TL 74.07
a2words42 0.37 0.01 0.10 0.30 0.44
a2words44 0.48 0.02 0.19 0.83 1.08
a2words45 5.07 0.61 1.15 TL 32.56
a2words47 0.50 0.05 0.20 2017.24 1.19
a2words48 3.84 0.96 3.28 232.11 8.27
a2words49 72.39 1.84 - 61 60.76
a2words50 0.82 0.06 0.19 21.91 1.58
a6words26 29.47 TL 92.08 33.28 12.15
a6words27 33.88 TL TL 9.63 9.67
a6words28 2.58 12.31 13.58 2.36 2.46
a6words29 104.38 589.84 - 9.65 28.85
a6words30 3.20 0.19 0.40 0.70 1.54
a6words31 2.33 0.15 8.56 1.59 3.34
a6words32 10.22 0.4 0.46 2.57 5.62
a6words33 5.30 TL 2.69 5.36 7.37
a6words34 87.92 2114.58 213.85 18.17 16.54
a6words35 82.18 0.04 0.60 1.89 8.21
a8words60 118.90 TL 23.08 7.73 15.69
a8words61 1588.92 11.67 - 83.31 134.43
a8words62 42.34 1.92 TL 25.11 77.03
a8words63 86.44 TL - 16.50 41.92
a8words64 35.68 1.09 0.35 0.91 7.85
a8words65 TL TL - TL TL

a8words66 121.37 1.35 2.96 3.03 12.70
a8words67 43.19 34.72 TL 9.75 34.38
a8words68 TL 105.04 - 172.39 243.05
a8words69 427.59 23.43 36.30 0.78 34.61
a5words40 8.32 0.93 4.37 1.24 3.78
a5words41 509.23 4.46 - TL 111.65
a5words42 4.71 0.08 1.06 0.38 2.73
a5words43 TL 133.03 - 427.64 320.10

13 https://github.com/lazarow/exbar/tree/master/samples
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Exact Searching for the Smallest Deterministic Automaton 11

Table 1: Execution times of exact solving DFA identi�cation in seconds.

Problem SAT EXBAR BICA Z3GI SMT

a5words44 TL 0.15 - 2.49 227.65
a5words45 95.95 0.76 1.31 4.16 32.04
a5words46 568.48 0.03 2.32 8.20 27.43
a5words47 TL 0.05 - 1.82 130.99
a5words48 7.03 0.20 - 1.16 4.38
a5words49 67.32 TL TL 25.16 491.73
a6words50 10.38 0.09 0.77 3.25 3.77
a6words51 328.00 TL - 37.97 76.26
a6words52 1.10 0.02 0.17 0.32 0.82
a6words53 TL 5.02 - 8.68 143.01
a6words54 66.08 0.36 9.56 6.47 18.09
a6words55 848.91 TL - 11.41 43.55
a6words56 TL 0.93 - 36.25 147.75
a6words57 135.24 TL - 36.60 179.41
a6words58 1374.14 184.24 - 25.16 83.36
a6words59 16.90 0.54 0.91 1.87 5.17
a7words60 135.74 0.04 0.58 1.63 10.71
a7words61 1.48 0.00 0.15 0.7 1.28
a7words62 149.90 13.63 TL 26.85 35.88
a7words63 9.00 0.51 1.03 0.89 5.36
a7words64 0.62 0.00 0.10 0.17 0.57
a7words65 7.47 0.05 0.52 0.70 2.75
a7words66 412.56 0.12 3.8 4.17 62.81
a7words67 3147.21 2829.06 - 33.46 488.95
a7words68 158.95 71.04 - 96.68 90.91
a7words69 114.08 TL TL 44.94 674.51
a8words70 349.94 193.38 TL 57.11 272.24
a8words71 TL TL - 5.67 444.03
a8words72 1238.59 3.69 - 17.43 56.11
a8words73 TL 16.52 - 1.96 370.62
a8words74 46.02 26.78 0.37 29.18 7.67
a8words75 200.96 TL 87.07 17.35 34.16
a8words76 1206.09 164.72 - 15.36 114.76
a8words77 61.51 TL 1649.78 936.65 20.76
a8words78 TL 150.43 - TL 260.69
a8words79 2368.12 TL - TL TL

Mean 751.56 867.25 686.88 378.18 187.40

First, note that two of the analyzed solutions are written in Python (SMT
and Z3GI) and use Z3 library that is implemented in C++, the remaining algo-
rithms are implemented in C (BICA), C++ (EXBAR) and Java (SAT). While
the comparison of the execution times of algorithms in Python is not objec-
tionable, doubts may arise when comparing Python implementations with other
programming languages. First of all, note that Python is a scripting language,
while C, C ++, and Java are non-scripting languages. As shown by empirical
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research [18], in the initialization phase of a C and C ++ program, programs
show up to three and four times advantage over Java and �ve to ten times faster
than script languages. In the internal data structure search phase, the advan-
tage of C and C ++ over Java is about two-fold, and the scripting languages are
comparable or may even be faster than Java.

While computing the mean values, all TL cells were substituted by 3600. The
dash sign (only in BICA column) means that the program we obtained form the
authors was not able to execute on a certain �le due to the �Too many collisions.
Specify a large hash table.� error. Therefore, for the comparison between SMT
and BICA, we took only those rows which do not contain the dash sign.

In order to determine whether the observed mean di�erence between SMT
and remaining methods is a real CPU time decrease we used a paired samples
t test [20, pp. 1560�1565] for SMT vs SAT, SMT vs EXBAR, SMT vs BICA,
and SMT vs Z3GI. As we can see from Table 4.3, p value is low in all cases,
so we can conclude that our results did not occur by chance and that using
our SMT encoding is likely to improve CPU time performance for prepared
benchmarks. It must be mentioned, however, that the di�erence between the
two SMT-based approaches (SMT and Z3GI) is not of strong signi�cance. The
p-value is 0.07. Usually p-value should be below 0.05 to tell that the rejection
of the hypothesis H0 (the two means are equal) is strong, or the result is highly
statistically signi�cant. On the other hand, the execution times would seem to
suggest that for large or complex data sets, SMT performs better. In Table 1
there is no entry in which SMT exeeds the time limit and Z3GI does not, but
there are four entries (a2words40 with 382 words for which a minimum-size DFA
has 13 states, a2words45 with 485 words for which a minimum-size DFA has 14
states, a5words41 with 1624 words for which a minimum-size DFA has 11 states,
and a8words78 with 1729 words for which a minimum-size DFA has 4 states) in
which Z3GI exeeds the time limit and SMT does not.

Table 2. Obtained p values from the paired samples t test.

SMT vs SAT SMT vs EXBAR SMT vs BICA SMT vs Z3GI

1.51e−4 1.11e−4 2.13e−3 7.10e−2

5 Conclusions

We presented an e�cient translation from DFA identi�cation into an SMT in-
stance. By performing this new encoding, we can use the advanced SMT solvers
more e�ciently than using the earlier approach shown in the literature. In ex-
perimental results, we show that our approach outperforms the current state-of-
the-art satis�ability-based methods and the well-known backtracking algorithms,
which was con�rmed by an appropriate statistical test.
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It is possible to verify whether the DFAs found are equivalent to the given
regexes used in benchmark generation, but it seems useless because the samples
are too small to infer a target automaton. On the other hand, the size of a proper
sample is beyond the scope of exact algorithms, such as our SMT-based or SAT-
based ones. For such big data, we use�in the GI �eld�heuristic search. In
some sense, then, the minimal-size DFA is an overgeneralization, but one should
remember that thanks to the parameter K, we can also obtain less general
automata. This parameter can be regarded as the degree of data generalization.
The smallest K for which our SMT formula is satis�able, will give the most
general automaton. As K increases, we obtain a set of less general automata.
What is more, usually the running time for larger K is growing short.

We see here a new area of research. One may ask, for example, whether for
any K an obtained DFA is equivalent to an original regex. Perhaps it is a matter
of a number of factors including the size of data, the density of data, etc.
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