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Abstract. We consider the problem of functional, random data classi-
fication from equidistant samples. Such data are frequently not easy for
classification when one has a large number of observations that bear low
information for classification. We consider this problem using tools from
the functional analysis. Therefore, a mathematical model of such data
is proposed and its correctness is verified. Then, it is shown that any
finite number of descriptors, obtained by orthogonal projections on any
differentiable basis of L2(0, T ), can be consistently estimated within this
model.
Computational aspects of estimating descriptors, based on the fast imple-
mentation of the discrete cosine transform (DCT), are also investigated
in conjunction with learning a classifier and using it on-line. Finally,
the algorithm of learning descriptors and classifiers were tested on real-
life random signals, namely, on accelerations, coming from large bucket-
wheel excavators, that are transmitted to an operator’s cabin. The aim
of these tests was also to select a classifier that is well suited for working
with DCT-based descriptors.

Keywords: functional data classification, random element, bias, func-
tional data model, classifying signals, DCT

1 Introduction

Tasks of classifying functional data are difficult for many reasons. The
majority of them seems to concern a large number of observations, fre-
quently having an unexpectedly low information content from the point
of view of their classification. This kind of difficulty arises in many in-
dustrial applications, in which sensors may provide thousands of samples
per second (see, e.g., our motivation example at the end of this section).
We focus our attention on classifying data from repetitive processes, i.e.,
on stochastic processes that have a finite and the same duration T > 0
and after time T the process, denoted as X(t), t ∈ [0, T ] is repeated
with the same or different probability measures. For simplicity of the
exposition, we confine ourselves to two such measures and the problem
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is to classify samples from X(t), [0, T ] to two classes, having at our
disposal a learning sequence Xn(t), [0, T ], n = 1, 2, . . . , N of correctly
classified subsequences. An additional requirement is to classify newly
incoming samples almost immediately after the present [0, T ] is finished,
so as to be able to use the result of classification for making decisions
for the next period (also called a pass). This requirement forces us to
put emphasis not only on the theoretical but also on the computational
aspects of the problem.
An outline of the approach and the paper organization. It is
convenient to consider the whole X and Xn(t)’s as random elements
in a separable Hilbert space. We propose a framework (Section 2) that
allows us to impose probability distributions on them in a convenient
way, namely, by attaching them to a finite number of orthogonal projec-
tions, but the residuals of the projections definitely do not act as white
noise, since the samples are highly correlated, even when they are far
in time within [0, T ] interval. After proving the correctness of this ap-
proach (Section 2, Lemma 1) , we propose, in Section 3, the method
of learning descriptors, which are projections of X and Xn(t)’s on a
countable basis of the Hilbert space. We also sketch proof of the consis-
tency of the learning process in a general case and then, we concentrate
on the computational aspect of learning the descriptors (Section 4) by
the fast discrete cosine transform (DCT) and its joint action together
with learning and using a classifier of descriptors. Finally,in Section 5,
the proposed method was intensively tested on a large number of aug-
mented data, leading to the selection of classifiers that cooperate with
the learning descriptors in the most efficient way, from the viewpoint of
the classification quality measures.
Motivating case study. Large mechanical constructions such as bucket-
wheel excavators, used in open pit mines, undergo repetitive excitations
that are transmitted to an operator’s cabin, invoking unpleasant vibra-
tions, which influence the operator’s health in the long term. These ex-
citations can be measured by accelerometers, as samples from functional
observations that repeatedly occur after each stroke of the bucket into the
ground. Roughly speaking, these functional observations can be classified
into two classes, namely, to class I, representing typical, heavy working
conditions and to class II, corresponding to less frequent and less heavy
working conditions, occurring, e.g., when a sand background material is
present (see Fig. 1 for an excerpt of functional data from Class I and
II, a benchmark file is publicly available from the Mendeley site [28], see
also [29] for its detailed description).
Proper and fast classification can be useful for decision making whether
to use more or fewer vibrations damping in the next period between
subsequent shocks, invoked by strokes of the bucket into the ground.
We refer the reader to [25] to the study on a control system based on
magneto-rheological dampers, for which the classifier proposed here can
be used as an upper decision level.
Previous works. Over the last twenty years the problems of classifying
functions, curves and signals using methods from functional analysis has
attracted considerable attention from researchers. We refer the reader
to the fundamental paper [10] on (im-)possibilities of classifying proba-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77967-2_3

https://dx.doi.org/10.1007/978-3-030-77967-2_3


Classifying Functional Data from Projections 3

200 400 600 800 1000
samp.

-0.10

-0.05

0.05

0.10
X(t)

200 400 600 800 1000
samp.

-0.10

-0.05

0.05

0.10
X(t)

Fig. 1. An excerpt of functional data, representing accelerations vs sample number
of an operator’s cabin in bucket-wheel excavators. Left panel – curves from Class I
(heavy working conditions), right panel – curves from Class II (less onerous working
conditions)

bility density functions with (or without) certain qualitative properties.
Function classification, using a functional analogue of the Parzen kernel
classifier is developed in [6], while in [12], [5] generalizations of the Ma-
halanobis distance are applied. Mathematical models of functional data
are discussed in [18]. The reader is also referred to the next section for
citations of related monographs and to [21].
All the above does not mean that problems of classifying functions,
mainly sampled signals, were not considered earlier. Conversely, the first
attempts at classifying electrocardiogram (ECG) signals can be traced
back, at least, to the 1960s, see [1] for the recent review and to [20] for
feature selection using the FFT.
The recognition problems for many other kinds of bio-medical signals
have been extensively studied. We are not able to review all of them,
therefore, we confine ourselves to recent contributions, surveys, and pa-
pers more related to the present one.
Electroencephalogram (EEG) signals are rather difficult for an automatic
classification, hence the main effort is put on a dedicated feature selec-
tion, see [14], [13] and survey papers [4], [19] the latter being of special
interest for human-computer interactions. In a similar vein, in [2] the
survey of using electromyography (EMG) signals is provided. For a long
time, also studies on applying the EMG signals classification for control
of hand prosthesis had been conducted. We refer the reader to recent
contributions [30], [17] and to [8] for a novel approach to represent a
large class of signals arising in a health care system.
Up to now, problems of classifying data from accelerometers, as those
arising in our motivating case study, have not received too much attention
(see [22], where the recognition of whether a man is going upstairs or
downstairs is considered).
Our derivations are based on orthogonal projections. One should no-
tice that classifiers based on orthogonal expansions were studied for a
long time, see [15] for one of the pioneering papers on classifiers based
on probability density estimation and [9] for the monograph on proba-
bilistic approaches to pattern recognition. Observe, however, that in our
problem we learn the expansion coefficients in a way that closer to non-
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parametric estimation of a regression function with non-random (fixed
design) cases (see, e. g., [23]). Furthermore, in our case observation er-
rors are correlated, since they arise from the truncation of the orthogonal
series with random coefficients.

2 Model of random functional data and
problem statement

Constructing a simple mathematical description of random functional
data, also called random elements, is a difficult task, since in infinite
dimensional Hilbert spaces an analogue of the uniform distribution does
not exists (see monographs: [16], [11], [27], [3] for basic facts concerning
probability in spaces of functions). Thus, it is not possible to define
probability density function (p.d.f.) with respect to this distribution. As
a way to get around this obstacle, we propose a simple model of random
elements in the Hilbert space L2(0, T ) of all squared integrable functions,
where T > 0 is the horizon of observations.

V1) Let us assume that vk(t), t ∈ [0, T , k = 1, 2, . . . is a selected
orthogonal and complete, infinite sequence of functions in L2(0, T ),
which are additionally normalized, i.e., ||vk|| = 1, k = 1, 2, . . ., where
for g ∈ L2(0, T ) its squared norm ||g||2 is defined as < g, g >, while

< g, h >=
∫ T

0
g(t)h(t) dt is the standard inner product in L2(0, T ).

Within this framework, any g ∈ L2(0, T ) can be expressed as

g =

∞∑
k=1

< g, vk > vk, (1)

where the convergence is understood in the L2 norm. For our purposes
we consider a class of random elements, denoted further as X, Y etc.
that can be expressed as follows

X =

K∑
k=1

θk vk +

∞∑
k=K+1

αk vk, (2)

where

– 1 ≤ K < ∞ is a preselected positive integer that splits3 the series
expansion of X into two parts, namely, the first one that we later
call an informative part and the second one, which is either much
less informative or noninformative at all from the point of view of
classifying X,,

– coefficients θk , k = 1, 2 . . . ,K are real-valued random variables
that are drawn according to exactly one of cumulative, multivariate

distribution functions FI(θ̄) or FII(θ̄), θ̄
def
= [θ1, θ2, . . . , , θK ],

– αk, k = (K+1), (K+2), . . . are also random variables (r.v.’s), having
properties that are specified below.

3 For theoretical purposes K is assumed to be fixed and a priori known. Later, we
comment on the selection of K in practice.
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We shall write

X(t) =

K∑
k=1

θk vk(t) +

∞∑
k=K+1

αk vk(t), t ∈ [0, T ], (3)

when the dependence of X on t has to be displayed.
Distribution functions FI(θ̄) and FII(θ̄), as well as those according to
αk, k = (K + 1), (K + 2), . . . are drawn, are not known, but we require
that the following assumptions hold.
R1) The second moments of θk, k = 1, 2 . . . ,K exist and they are

finite. The variances of θk’s are denoted as σ2
k.

R2) The expectations E(αk) = 0, k = (K + 1), (K + 2), . . . , where E
denotes the expectations with respect to all θk’s and αk’s. Further-
more, there exists a finite constant 0 < C0 <∞, say, such that

E(α2
k) ≤ C0

k2
, k = (K + 1), (K + 2), . . . . (4)

R3) Collections θk, k = 1, 2 . . . ,K and αk, k = (K + 1), (K + 2), . . .
are mutually uncorrelated in the sense that E(θk αl) = 0 for all k =
1, 2 . . . ,K and l = (K + 1), (K + 2), . . .. Furthermore, E(αj αl) = 0
for j 6= l, j, l = (K + 1), (K + 2), . . ..

To motivate assumption R2), inequality (4), notice that expansion co-
efficients of smooth, e.g., continuously differentiable, functions into the
trigonometric series decay as O(k−1), while the second order differentia-
bility yields O(k−2) rate of decay.
To illustrate the simplicity of this model, consider θ̄ that drawn at ran-
dom from the K-variate normal distribution with the expectation vector
µ̄c and the covariance matrix Σ−1

c , where c stands for class label I or
II. Consider also sequence αk, k = (K + 1), (K + 2), . . . of the Gaus-
sian random variables, having the zero expectations, that are mutually
uncorrelated and uncorrelated also with θ̄. Selecting the dispersions of
αk’s of the form: σ0/k, 0 < σ0 < ∞, we can draw at random θ̄ and
αk’s for which R1)–R3) hold. Thus, it suffices to insert them into (3).
We underline, however, that in the rest of the paper, the gaussianity of
θ̄ and αk’s are not postulated.

Lemma 1 (Model correctness). Under V1), R1) and R2) model (2)
is correct in the sense that E||X||2 is finite.

Indeed, applying V1), and subsequently R1) and R2), we obtain

E||X||2 =
K∑
k=1

E(θ2
k) +

∞∑
k=(K+1)

E(α2
k) ≤

K∑
k=1

E(θ2
k) + C0 γK , (5)

where γK
def
=
∑∞
k=(K+1) k

−2 <∞, since this series is convergent. •

Lemma 2 (Correlated observations). Under V1), R1) and R2) ob-
servations X(t′) and X(t′′) are correlated for every t′, t′′ ∈ [0, T ] and
for their covariance we have:

Cov(X(t′), X(t′′)) =

∞∑
k=(K+1)

E(α2
k) vk(t′) vk(t′′), (6)
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and, for commonly bounded basis functions, its upper bound is given by

|Cov(X(t′), X(t′′))| ≤ c20 γK , c0
def
= sup

k
sup

t∈[0, T ]

|vk(t)|. (7)

Problem statement. Define a residual random element rK as fol-
lows: rK =

∑∞
k=(K+1) αk vk and observe that (by R2)) E(rK) = 0,

E||(rK)||2 ≤ C0 γK < ∞. Define also an informative part of X as
fθ̄ =

∑K
k=1 θk vk and assume that we have observations (samples) of

X at equidistant points ti ∈ [0, T ], i = 1, 2, . . . , m which are of the form

xi = X(ti) = fθ̄(ti) + rK(ti), i = 1, 2, . . . , m. (8)

Having these observations, collected as x̄, at our disposal, the problem
is to classify X to class I or II. These classes correspond to unknown
information on whether θ̄ in (8) was drawn according to FI or FII dis-
tributions, which are also unknown.
The only additional information is that contained in samples from learn-
ing sequence {(X(1), j1), (X(2), j2), . . . , (X(N), , jN )}. The samples from
each X(n) have exactly the same structure as (8) and they are fur-

ther denoted as x̄(n) = [x
(n)
1 , x

(n)
2 , . . . x

(n)
m ]tr, while jn ∈ {I, II}, n =

1, 2, . . . , N are class labels attached by an expert.

Thus, the learning sequence is represented by collection XN
def
= [x̄(n), n =

1, 2, . . . , N ], which is an m×N matrix and the sequence of labels J def
=

{jn ∈ {I, II}, n = 1, 2, . . . , N} Summarizing, our aim is to propose a
nonparametric classifier that classifies random function X, represented
by x̄, to class I or II and a learning procedure based on XN and the
corresponding jn’s.

3 Learning descriptors from samples and their
properties

The number of samples in x̄ and x̄n’s is frequently very large (when gen-
erated by electronic sensors, it can be thousands of samples per second).
Therefore, it is impractical to build a classifier directly from samples.
Observe that the orthogonal projection of X on the subspace spanned
by v1, v2, . . .vK is exactly fθ̄. Thus, the natural choice of descriptors
of X would be θ̄, but it is not directly accessible. We do not have also
a direct access to θ̄(n)’s constituting X(n)’s. Hence, we firstly propose a
nonparametric algorithm of learning θ̄ and θ̄(n)’s from samples. We em-
phasize that this algorithm formally looks like as well known algorithms
of estimating regression functions (see, e.g., [23], [26]), but its statisti-
cal properties require re-investigation, since noninformative residuals rN
have a different correlation structure than that which appears in classic
nonparametric regression estimation problems.
Denote by θ̂k the following expression

θ̂k =
T

m

m∑
i=1

xi vk(ti), k = 1, 2, . . . , K (9)
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further taken as the learning algorithm for θk =< X, vk >.

Asymptotic unbiasedness. It can be proved that for continuously
differentiable X(t), t ∈ [0, T ] and vk’s we have

|Eθ̄(θ̂k)− θk| ≤
T L1

m
(10)

where Eθ̄ is the expectation with respect to αk’s, conditioned on θ̄ and
L1 > 0 is the maximum of |X′(t)| and |v′k(t)|, t ∈ [0, T ].

One can largely reduce errors introduced by approximate integration by
selecting vk’s that are orthogonal in the summation sense on sample
points, i.e.,

T

m

m∑
i=1

vl(ti) vk(ti) = 0 for k 6= l, k, l = 1, 2, . . . . (11)

The well known example of such basis is provided by the cosine series

v1(t) = 1, v2(t) =
√

2 cos(π t/T ), v3(t) =
√

2 cos(2π t/T ), . . . (12)

computed at equidistant ti’s.

Lemma 3 (Bias). For all k = 1, 2, . . . , K we have: 1) if X(t) and
vk(t)’s are continuously differentiable t ∈ [0, T ], then θ̂k is asymptotically
unbiased, i.e., Eθ̄(θ̂k)→ θk as m→∞,
2) if for vk, k = 1, 2, . . . , K and m conditions(11) hold, then θ̂k is
unbiased for m finite, i.e., Eθ̄(θ̂k) = θk.

Variance and mean square error (MSE). Analogously, assuming
that vk’s and X(t)| are twice continuously differentiable, we obtain:

Varθ̄(θ̂k) ≤ T L2

m2
γK , (13)

where L2 is the maximum of X′′(t)| and |v′′k(t)|, t ∈ [0, T ]. Thus, the
conditional mean squared error of learning θ̂k is not larger than T L1

m
+

T L2
m2 γK and it can be reduced by enlarging m.

Lemma 4 (Consistency). For all k = 1, 2, . . . , K we have:

Eθ̄
(
θ̂k − θk

)2

→ 0, as m → ∞, (14)

i.e., θ̂k is consistent in the MSE sense, hence also in the probability.

Notice also that this is the worst case analysis in the class of all twice
differentiable functions X(t)| and |vk(t)|, which means that L1 and L2

depend on k.

Observe that replacing xi’s in (9) by x
(n)
i ’s we obtain estimators θ̂

(n)
k of

the descriptors θ
(n)
k in the learning sequence. Obviously, the same upper

bounds (10) and (13) hold also for them.
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4 A fast algorithm for learning descriptors and
classification

The above considerations are, to a certain extent, fairly general. By se-
lecting (12) as the basis, one can compute all θ̂k’s in (9) simultaneously
by the fast algorithm, being the fast version of the discrete cosine trans-
form (see, e.g., [7] and [24]). The action of this algorithm on x̄ (or on
x̄(n)’s ) is further denoted as FDCT (x̄). Notice, however, that for vec-
tor x̄, containing m samples, also the output of the FDCT (x̄) contains
m elements, while we need only K < m of them, further denoted as
ˆ̄θ = [θ̂k, k = 1, 2, . . . , K]tr. Thus, if TruncK [.] denotes the truncation
of a vector to its K first elements, then

ˆ̄θ = TruncK [FDCT (x̄)], (15)

is the required version of the learning of all the descriptors at one run,
at the expense of O(m log(m)) arithmetic operations.

Remark 1. If K is not known in advance, it is a good point to select it
by applying TruncK [FDCT (.)] to x̄(n)’s together with the minimization
of one of the well known criterions such as the AIC, BIC etc. Notice also
that K plays the role of a smoothing parameter, i.e., smaller K provides
a less wiggly estimate of X(t), t ∈ [0, T ].

A projection-based classifier for functional data. The algorithm:
TruncK [FDCT (.)] is crucial for building a fast classifier from projections,
since it will be used many times both in the learning phase as well as
for fast recognition of forthcoming observations of X’s. The second in-
gredient that we need is a properly chosen classifier for K dimensional
vectors θ̄. Formally, any reliable and fast classifier can be selected, pos-
sibly excluding the nearest neighbors classifiers, since they require to
keep and look up the whole learning sequence, unless its special edition
is not done. For the purposes of this paper we select the support vec-
tor machine (SVM) classifier and the one that is based on the logistic
regression (LReg) classifier. We shall denote by Class[θ̄, {θ̄(n), J }] the
selected classifier that – after learning it from the collection of descrip-
tors {θ̄(n)}, n = 1, 2, . . . , N and correct labels J – classifies descriptor
θ̄ of new X to I or II class.

A projection-based classification algorithm (PBCA)
Learning

1. Convert available samples of random functions into descriptors:

θ̄(n) = TruncK [FDCT (x̄(n))], n = 1, 2, . . . , N

and attach class labels jn to them in order to obtain (θ̄(n), jn), n =
1, 2, . . . , N .

2. Split this sequence into the learning sequence of the length 1 < Nl <
N with indexes selected uniformly at random (without replacements)
from n = 1, 2, . . . , N . Denote the set of this indexes by Jl and its
complement by Jv.
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3. Use θ̄(n), n ∈ Jl to learn classifier Class[., {θ̄(n), Jl}], where dot
stands for a dummy variables, representing a descriptor to be clas-
sified.

4. Verify the quality of this classifier by testing it on all descriptors
with indexes from Jv, i.e., compute

ĵn′ = Class[θ̄(n′), {θ̄(n), Jl}], n′ ∈ Jv. (16)

5. Compare the obtained class labels ĵn′ with proper ones jn′ , n′ ∈ Jv
and count the number of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) cases. Use them to compute
the classifier quality indicators such as accuracy, precision, F1 score,
. . . and store them.

6. Repeat steps 2-5 a hundred times, say, and assess the quality of the
classifier, using the collected indicators. If its quality is satisfactory,
go to the on-line classification phase. Otherwise, repeat steps 2-5 for
different K.

On-line classification

Acquisition: collect samples xi = X(ti), i = 1, 2, . . . , m of the next
random function and form vector x̄ from them.

Compute descriptors: θ̄ = TruncK [FDCT (x̄)].

Classification: Compute predicted class label ĵ for descriptors θ̄ as
ĵ = Class[θ̄, {θ̄(n), Jl}].

Decision: if appropriate, make a decision corresponding to class ĵ and
go to the Acquisition step.

Even for a large number of samples from repetitive functional random
data the PBCA is relatively fast for the following reasons.

– The most time-consuming Step 1 is performed only once for each
(possibly long) vector of samples from the learning sequence. Fur-
thermore, the fast FDCT algorithm provides the whole vector of m
potential descriptors in one pass. Its truncation to K first descrip-
tors is immediate and it can be done many times, without running
the FDCT algorithm. This advantage can be used for even more ad-
vanced task of looking for a sparse set of descriptors, but this topic
is outside the scope of this paper.

– Steps 2-5 of the learning phase are repeated many times for the
validation and testing reasons, but this is done off-line and for de-
scriptor vectors of the length K << m. The total execution time
of the validation and testing phase depends on the time of learning
Class[., {θ̄(n), Jl}] that depends on a particular choice of the clas-
sifier Class. For the SVM and LogReg classifiers and for K about
dozens, it takes a few seconds on a standard PC with 3 GHz CPU
clock.

– The execution time of the on-line usage phase is fast, since it uses the
fast version of DCT only once for the incoming vector of samples x̄
at the expence of O(m log(m)) operations, while the already trained
recognizer has to classify θ̄ of the length K only.
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5 Testing on accelerations of the operator’s
cabin

The PBCA was tested on samples of a function (signal), representing the
accelerations of an operator’s cabin (see Fig. 1), mounted on a bucket-
wheel excavator. The aim of testing was not only to check the correctness
of the algorithm, but also to select a suitable classifier.
We had 44 000 samples, acquired with the rate 512 Hz and grouped
into portions of T = 2 sec. duration each. The resulting x̄(n)’s of the
length m = 1024 samples, representing the learning sequence Xn, n =
1, 2, . . . , N = 43, were extended by adding labels of their proper classi-
fications. A low-pass filter with the cutoff4 frequency 5 Hz was applied
before using FDCT . The number of K = 16 of estimated descriptors
θ̂

(n)
k , k = 1, 2, . . . , K was selected as the first K elements of FDCT

sequences.
As one can notice, 44 000 samples occurred to be low informative for
functional data classification. Therefore, for the aim of our tests, we had
to use augmented data. In the augmentation process we used a silent, nice
feature of the projection-based descriptors and the linearity of (9) with
respect to samples. Namely, instead of augmenting raw samples, we aug-
mented θ̂

(n)
k , k = 1, 2, . . . , K by adding to each of them pseudo-random

errors that had Gaussian distribution with zero mean and dispersion
σa = 0.018. Taking into account that most of θ̂

(n)
k ’s was of the order

±0.5, the interval ±3σa has the length of 10.8 % of their amplitudes.
In this way the augmented testing sequence, containing N ′ = 43 000
examples, having K = 16 descriptors , was generated.
The following classifiers were tested as part of the PBCA:

LogR – the logistic regression classifier,
SVM – the support vector machine,
DecT – the decision tree classifier,
gbTr – the gradient boosted trees,
RFor – the random forests classifier,
5NN – the 5 nearest neighbors5 classifier.

The results of learning and testing are summarized in Table 1. Its right
panel contains just one example of the confusion matrix – for illustration
only. The left panel summarizes all the extensive simulations. It contains
the values of indicators that are the most frequently used for assessing
the quality of classifiers.
The analysis of these quality indicators allows recommending the SVM
and the LogR classifiers as the decision unit, applied after learning de-
scriptors. Also the CPU time of 7.5 10−6 sec., used for the SVM and LogR
classifier to recognize a new example, was slightly better than for the rest

4 From earlier experiments [25], it was known that frequencies of importance are less

than 2.5 Hz.
5 The 5 NN classifier was tested for comparisons only. We do not recommend its usage

with the PCBA, since it requires storing all the learning sequence, unless its editing

(condensation) is not done.
6 MCC is the abbreviation for the Matthews Correlation Coefficient.
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Classifier LogR SVM DecT gbTr RFor 5NN

Accuracy 0.91 0.94 0.84 0.92 0.91 0.90

Cohen κ 0.76 0.82 0.60 0.77 0.73 0.70

MCC 6 0.76 0.82 0.61 0.77 0.73 0.71

Precision 0.96 0.94 0.93 0.94 0.92 0.90

Recall 0.92 0.98 0.86 0.96 0.96 0.98

Specificity 0.88 0.80 0.60 0.79 0.72 0.65

FScore 0.94 0.96 0.89 0.95 0.94 0.94

Pred. class

I II

I 30303 2697

II 1220 8780

Table 1. Left table – a summary of learning and testing the PBCA on the augmented

acceleration data for different classifiers (abbreviations explained in the text). Right

table – an example of the confusion matrix when the LogR classifier was used.

of classifiers displayed in Table 1, which needed about 10− 15 10−6 sec.,
as the average of 30000 simulation experiments.

6 Concluding remarks

The mathematical model of random infinite-dimensional data is pro-
posed that allows us to impose arbitrary probability distribution on a
finite dimensional space of descriptors. Its correctness is proved and the
learning algorithm for these descriptors is proposed and investigated. In
particular, it was shown that the learning algorithm is consistent in the
MSE sense for any finite number of the descriptors.
The fast version of the learning algorithm is tested from the view point
of its cooperation with a finite dimensional classifier. The winners are the
SVM and logistic regression classifiers, as tested on augmented real data.
By passing, a new approach to data augmentation is proposed. Namely,
instead of augmenting raw observations, we use random perturbation of
estimated descriptors, which leads to essential computational savings. On
the other hand, the descriptors estimated from the raw learning sequence
are sufficient for learning the classifiers, which means a kind of raw data
compression when they are disregarded.
Further research in this direction is desirable. One can consider extend-
ing them by including ensembles of classifiers and neural network-based
recognizers.
From the practical point of view, it would be also of interest to consider
the classification of signals from accelerometers to more than two classes,
taking into account the kind of background that is met by a bucket-
wheel excavator. This is, however, outside the scope of this paper, since
it requires cumbersome data labeling by experts.
Further directions of research may include also other applications, e.g.,
a human motion classification, based on a motion capture cameras, a
computer-aided laparoscopy training and theoretical aspects such as clas-
sifying random elements by learning their derivatives.
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