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Abstract. The serverless computing paradigm allows simplifying oper-
ations, offers highly parallel execution and high scalability without the
need for manual management of underlying infrastructure. This paper
aims to evaluate if recent advancements such as container support and
increased computing resource limits in AWS Lambda allow it to serve
as an underlying platform for running bioinformatics workflows such as
basecalling of nanopore reads. For the purposes of the paper, we devel-
oped a sample workflow, where we focused on Guppy basecaller, which
was tested in multiple scenarios. The results of the experiments showed
that AWS Lambda is a viable platform for basecalling, which can support
basecalling nanopore reads from multiple sequencing reads at the same
time while keeping low infrastructure maintenance overhead. We also be-
lieve that recent improvements to AWS Lambda make it an interesting
choice for a growing number of bioinformatics applications.
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1 Introduction

In recent years, we have seen the growing popularity of the serverless comput-
ing paradigm, which was popularized by AWS Lambda offering that was made
available in 2014 [17]. It allows to simplify operations, abstract away the un-
derlying servers and reduce maintenance overhead by allowing to run and scale
workflows without the need to manage the infrastructure manually, while also
offering support for highly parallel execution [9]. It is also often referred to as
Function-as-a-Service (FaaS) [22]. So far, it gained widespread adoption for ser-
vices that require high throughput with relatively low requirements for comput-
ing power, becoming a popular choice for Web APIs and asynchronous processing
[14]. However, due to the nature of most bioinformatic workflows, which often
require advanced computing capabilities in terms of CPU and memory, so far,
it didn’t gain massive adoption, and traditional computing clusters are still the
most popular architecture used to run a bioinformatics analysis. Additionally, so
far, only a few computing runtimes were officially supported on major platforms
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such as AWS Lambda. However, the recent introduction of support for Docker
[10] containers [1], as well as expanding maximum memory that can be used by
AWS Lambda function to 10,240 MB and up to 6 vCPU cores, makes it easier
to run workloads with higher computing power requirements [4].

At the same time, in the past years, we observed the rapid growth of third-
generation sequencing technologies that allow for cost-effective and quick genome
sequencing. Nowadays, large DNA sequencing platforms offer natural transmis-
sion bridge to Cloud environments to facilitate data storage, processing, and
analysis. For example, Illumina, which delivers technological solutions for ge-
netic and genomic data analyses, promotes efficiency by streaming the sequenc-
ing data directly to the AWS cloud with their BaseSpace Sequence Hub tool [8].
This paper aims to evaluate the feasibility, performance, and cost-effectiveness
of performing computations directly on AWS Lambda to see if it can be used to
carry out operations such as basecalling [23] of nanopore reads. We experimen-
tally check whether Cloud serverless computing can serve to computationally-
demanding tasks related to modern DNA sequencing technologies. The paper is
organized as follows. In section 2, we review the related works in the area. In
section 3, we describe the testing environment along with bioinformatic tools
considered as a part of our experiments. Section 4 contains a description of the
testing methodology along with performance experiments that we carried out
for selected scenarios. Finally, section 5 summarizes the results and concludes
our findings.

2 Related Works

In the literature, there is only a little research concerning running bioinformat-
ics workflows with the use of serverless computing platforms. In the paper, [21],
Niu et al. describe the proof of concept example of running all-against-all pair-
wise comparison among 20,000 human protein sequences using Striped Smith-
Waterman implementation. According to their findings, it can be accomplished
in about 2 minutes for a cost of less than one dollar. Authors conclude that
the use of serverless cloud computing can be leveraged to dramatically speed up
the execution time of certain tasks at a low cost. They also suggest that in a
similar approach, serverless computing can be used for tasks such as sequence
alignment, protein-folding, or deep learning.

Malawski et al. [20] focused on evaluating AWS Lambda, Google Cloud Func-
tions, and HyperFlow in the context of executing scientific workflows in a server-
less manner. The authors developed a prototype workflow executor functions
based on the aforementioned technologies. They managed to deploy and run the
Montage astronomy workflow. They suggest that AWS Lambda infrastructure
offers good scalability. However, not all workflows are suitable to serverless com-
puting architecture, and it might be worth considering a hybrid approach that
combines serverless and traditional architectures.

In their research [12], Burkat et al. evaluated serverless infrastructures in
the model of Container-as-a-Service as a platform for running various scientific
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workflows. Authors especially focused on two offerings, AWS Fargate and Google
Cloud Run. For evaluation purposes, they extended the HyperFlow engine to
support execution on these platforms. During experiments, the authors run four
scientific workflows: Ellipsoids, Vina, KINC, and Soy-KB, which were selected
due to different resource requirements. The authors conclude the paper with a
claim that serverless containers can be successfully used for scientific workflows.

Joyner et al., in their article [18], propose Ripple, a dedicated programming
framework that aims to allow programs that were designed for single-machine
execution to take advantage of parallelism offered by serverless computing. Rip-
ple offers an interface that allows users to express workflows of a broad spectrum
of applications, such as machine learning, genomics, or proteomics. Authors port
three workflows: SpaceNet building border identification, proteomics with Tide
and Percolator, and DNA compression with METHCOMP, showing that using
Ripple can offer significant performance benefits versus traditional cloud deploy-
ments.

John et al. [15] proposed a solution called SWEEP, which is a workflow man-
agement system that takes advantage of the serverless execution model. It is
cloud-agnostic and allows users to define, run and monitor scientific workflows.
The authors evaluated their system for two cases, variant calling, and satellite
imagery processing. They also list the elasticity of serverless computing and lack
of overhead related to cluster management in traditional computing as signifi-
cant benefits of the serverless approach.

In his research [19], Lee et al. proposed a DNAVisualisation.org, a fully server-
less web tool dedicated to DNA sequence visualizations. With this tool, the au-
thors wanted to demonstrate the applicability of serverless computing in the
field of molecular biology in addition to allowing the ability to visualize DNA
sequences in a cost-effective manner quickly. They also suggest that while not
all applications are a great fit for serverless computing, some of them might
benefit from decreased costs, reduced development complexity, which can be a
significant advantage over the traditional architectures.

Crespo-Cepeda et al., in their work [13], consider challenges and opportu-
nities for AWS Lambda services in the context of bioinformatics. Their paper
proposes an architecture for running CloudDmetMiner, focusing on simplifying
the workflow as much as possible, based on AWS Lambda and AWS S3. Au-
thors conclude successful experiments suggesting that serverless computing can
ease the code execution by reducing the time it takes to manage and provision
infrastructure manually.

In their paper [16], Jonas et al. suggest that stateless functions offered by
serverless computing can allow for more straightforward parallel computation
without complex management of clusters and configuration tools. Authors also
introduce and evaluate a tool called PyWren, which is a framework that al-
lows mapping selected calculations across multiple concurrently running AWS
Lambda functions. They conclude the paper with a suggestion that stateless
functions are a great fit for data processing for future applications.

Based on the above, we can conclude that there is a lot of interest in evaluat-
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ing serverless computing architectures for various scientific workflows. However,
just a few of them consider bioinformatics workflows, and not a single one of them
considered performing basecalling in such an environment. This paper aims to
expand knowledge in that area by evaluating basecalling workflow when using
AWS Lambda and serverless computing model.

3 Testing workflow and environment

For the evaluation, we selected the workflow where we split Nanopore MinION
FAST5 files with nanopore reads (raw signal data) into batches. These batches
are later processed separately by independent Lambda functions, enabling state-
less parallelism, as the functions do not have to communicate with each other
during processing. During executions, Lambda calls the basecalling function,
which processes the files from an AWS S3 bucket. After processing its batch,
each function saves the results in a separate folder in AWS S3 bucket. The data
stored in that bucket can be used for further processing. Fig. 1 presents the
considered workflow.

Fig. 1: Diagram of the considered workflow.

Each Lambda function used a Docker container runtime, taking advantage of
a custom Docker image based on Ubuntu 16.04 operating system with a Python
3.6 wrapper script that executes a binary with basecalling software.

For basecalling, we considered several tools. The first one was Deepnano-blitz
[11], an open-source basecaller, developed by Boža, V., based on bidirectional
recurrent neural networks. It was very promising, as its implementation is op-
timized to take advantage of Intel AVX2 instruction set [7], which is also sup-
ported by Lambda environment [6]. Unfortunately, after preliminary testing in
the Lambda environment, it turned out that Lambda’s lack of support for shared
memory between separate processes makes it impossible to run Deepnano-blitz
in its current form. We consider adjusting Deepnano-blitz in the future for the
AWS Lambda environment. Next considered basecaller was Guppy [23], which is
a closed-source, state-of-the-art basecaller developed by Oxford Nanopore Tech-
nologies. It has support for multiple basecalling models – fast and high accuracy.
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We also considered two alternative open-source basecallers, Bonito [5], and Caus-
calcall [24]. However, after preliminary testing, they turned out to offer much
lower performance in comparison to Guppy, so we decided to focus on Guppy in
our experiments and potentially considering Deepnano-blitz in the next research.

4 Performance experiments

During experiments, we decided to measure the basecalling capabilities of the
AWS Lambda computing environment with a different maximum available mem-
ory setting, which also translates to the number of virtual CPU cores that are
available for the function. According to official documentation[?], available CPU
power scales proportionally with memory with 1 full vCPU core at 1769 MB of
memory to the maximum of 6 vCPU cores for 10240 MB of allocated memory.
For each run, we recorded the number of samples processed per second, as well
as the ratio of samples per second to available memory, to assess which setting is
the most effective from a pricing perspective, as AWS Lambda is billed per GB/s
[3]. The tests were run with Guppy in the 4.0.14 version, using both fast and
high accuracy models for R9.4.1 chemistry. To carry out experiments, we used a
subset of the Klebsiella pneumoniae reads dataset that was used for benchmark-
ing in [23].

Based on results obtained during the experiments, we observed that when
using Guppy fast model, the number of samples processed per second scales lin-
early from 256 to about 6,144 MBs of RAM, where after crossing that threshold,
we see smaller improvements, as can be seen on Fig. 2. It is especially visible
in Fig. 3 that after crossing 6,144 MB, we see a lower ratio of samples per sec-
ond per one MB of memory. For Guppy fast model, we observed the highest
ratio of samples per second per MB of memory for 2,048 MBs, with a ratio of
86.76, which means that it’s the most efficient setting from the cost-effectiveness
standpoint.

When considering Guppy with high accuracy models, we observed different
patterns than for fast model. Except for a scenario with 6,144 MB of memory, we
observe that the ratio of samples per second per MB of RAM is growing along
with assigned memory, being the highest for 10,240 MBs of memory with the
value of 3.74, which can be seen in Fig. 5. We also observed much lower values
for samples processed per second in general compared to the fast model with a
peak of 38,293 samples processed per second for maximum memory of 10,240
MBs, as presented in Fig. 4 (versus 622,154 in the fast mode for the same amount
of memory). It is also important to note that it was impossible to run a high
accuracy model with only 256 MB of memory, which was previously possible
with the fast model. For all tested scenarios, we did not observe instances of
failing tasks other than expected initial invocation failure related to mandatory
image optimization step performed by AWS Lambda right after deployment of
new version of the container image.
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Fig. 2: Samples processed per second for Guppy fast model.

Fig. 3: Samples per second per MB of memory for Guppy fast model.
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Fig. 4: Samples processed per second for Guppy high accuracy model.

Fig. 5: Samples per second per MB of memory for Guppy high accuracy model.
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5 Results Summary and Concluding Remarks

Considering successful experiments and results presented in the previous chapter,
we conclude that thanks to recent advancements in AWS Lambda offering, it is
now possible to run basecalling workflows in a serverless manner. For example,
given the fact that the theoretical maximum of MinION Nanopore is around
2,300,000 signals per second (512 pores with around 4,500 signals read per second
per pore), with real-world scenarios resulting in less than 2,000,000 signals per
second, which means that 3 to 4 function instances would be able to keep up with
processing that data in near real-time. Given the ability of AWS Lambda to scale
up to hundreds of thousands of concurrently running functions [2], we gain the
capability to quickly basecall data from multiple sequencing experiments while
keeping the infrastructure maintenance overhead as low as possible. We expect
even better results with CPU-optimized basecallers such as Deepnano-blitz [11].
We believe that serverless computing architectures will continue to gain more
features and enable even more bioinformatic workflows in the future and that
there is still a lot of room for improvement and development in that area.
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